Structural and Physical Properties of Ultrathin Bismuth Films

V. L. Karbivskyy, V. V. Zaika, L. I. Karbivska, N. A. Kurgan, and N. O. Zueva

G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 02.07.2021; final version — 04.11.2021 Download PDF logo PDF

Abstract
Bismuth films are interesting objects for research because of the many effects occurring when the film thickness is less than 70 nm. The electronic band structure changes significantly depending on the film thickness. Consequently, by changing the film thickness, it is possible to control the physical properties of the material. The purpose of this paper is to give a brief description of the basic structural and physical properties of bismuth films. The structural properties, namely, morphology, roughness, nanoparticle size, and texture, are discussed first, followed by a description of the transport properties and the band structure. The transport properties are described using the semi-metal–semiconductor transition, which is associated with the quantum size effect. In addition, important characteristic is a two-channel model, which allows describing the change in resistivity with temperature. The band structure of bismuth films is the most interesting part due to the anomalous effects for which there is still no unambiguous explanation. These effects include anomalous spin polarization, nontrivial topology, and zone changes near the edge of film.

Keywords: bismuth thin films, band structure, Rashba effect, transport properties, anomalous spin polarization.

DOI: https://doi.org/10.15407/ufm.22.04.539

Citation: V. L. Karbivskyy, V. V. Zaika, L. I. Karbivska, N. A. Kurgan, and N. O. Zueva, Structural and Physical Properties of Ultrathin Bismuth Films, Progress in Physics of Metals, 22, No. 4: 539–561 (2021)


References  
  1. S.Kochowski and A. Opilski, Thin Solid Films, 48, No. 3: 345 (1978);https://doi.org/10.1016/0040-6090(78)90014-7
  2. A. Takayama, T. Sato, S. Souma, and T. Takahashi, Journal of Electron Spectroscopy and Related Phenomena, 201: 105 (2015); https://doi.org/10.1016/j.elspec.2014.11.002
  3. T. Hirahara, Journal of Electron Spectroscopy and Related Phenomena, 201: 98 (2015); https://doi.org/10.1016/j.elspec.2014.08.004
  4. W. Kobayashi, Y. Koizumi, and Y. Moritomo, Applied Physics Letters, 100, No. 1: 011903 (2012); https://doi.org/10.1063/1.3673562
  5. S. Ito, B. Feng, M. Arita, A. Takayama, R.-Y. Liu, T. Someya, W.-C. Chen, T. Limori, H. Namatame, M. Taniguchi, C.-M. Cheng, S.-J. Tang, F. Komori, K. Kobayashi, T.-C. Chiang, and I. Matsuda, Physical Review Letters, 117, No. 23: 236402 (2016); https://doi.org/10.1103/PhysRevLett.117.236402
  6. A.A. Najim, Materials Science in Semiconductor Processing, 121: 105334(2021); https://doi.org/10.1016/j.mssp.2020.105334
  7. T. Shin, Thin Solid Films, 666: 108 (2018); https://doi.org/10.1016/j.tsf.2018.09.037
  8. G. Orozco-Hernández, J.J. Olaya, J.E. Alfonso, C.A. Pineda-Vargas, and C. Mtshali, Thin Solid Films, 628: 170 (2017); https://doi.org/10.1016/j.tsf.2017.03.018
  9. L. Du, D. Lu, J. Li, K. Yang, L. Yang, B. Huang, J. Yi, Q. Yi, L. Miao, X. Qi, C. Zhao, J. Zhong, and S. Wen, ACS Appl. Mater. Interfaces, 11, No. 39: 35863 (2019); https://doi.org/10.1021/acsami.9b10354
  10. J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T.A. Ezquerra, The Journal of Physical Chemistry C, 121, No. 6: 3511 (2017); https://doi.org/10.1021/acs.jpcc.6b10331
  11. K. Xu, L. Wang, X. Xu, S.X. Dou, W. Hao, and Y. Du, Energy Storage Materials, 19: 446 (2019); https://doi.org/10.1016/j.ensm.2019.03.021
  12. G. Bian, Z. Wang, X.-X. Wang, C. Xu, S. Xu, T. Miller, M.-Z. Hasan, F. Liu, and T.-C. Chiang, ACS Nano, 10, No.3: 3859 (2016); https://doi.org/10.1021/acsnano.6b00987
  13. E. Hashemi, R. Poursalehi, and H. Delavari, Materials Science in Semiconductor Processing, 89: 51 (2019); https://doi.org/10.1016/j.mssp.2018.08.028
  14. R. Borja-Urby, S.P. Paredes-Carrera, H. Viltres-Cobas, P. Santiago-Jacinto, F. Paraguay-Delgado, G. Herrera-Pérez, L. Rendón-Vázquez, J.-C. Sánchez-Ochoa, and D. Morales-Cruzf, Journal of Electron Spectroscopy and Related Phenomena, 237: 146891 (2019); https://doi.org/10.1016/j.elspec.2019.146891
  15. A. Goriachko, P.V. Melnik, A. Shchyrba, S.P. Kulyk, and M.G. Nakhodkin, Surface Science, 605, No. 19–20: 1771 (2011); https://doi.org/10.1016/j.susc.2011.06.004
  16. C. Wansorra, E. Bruder, and W. Donner, Acta Materialia, 200: 455 (2020); https://doi.org/10.1016/j.actamat.2020.09.030
  17. A.J. Caruana, M.D. Cropper, and S.A. Stanley, Surface and Coatings Technology, 271: 8 (2015); https://doi.org/10.1016/j.surfcoat.2015.02.002
  18. X. Zhang, W. Ren, F. Xin, and P. Shi, Journal of Alloys and Compounds, 614: 80 (2016); https://doi.org/10.1016/j.jallcom.2014.06.044
  19. M. Wu, B. Xu, Y. Zhang, S. Qi, W. Ni, J. Hu, and J. Ma, Chemical Engineering Journal, 381: 122558 (2019); https://doi.org/10.1016/j.cej.2019.122558
  20. Y. Ma, E. Ahlberg, Y. Sun, B.B. Iversen, and A.E.C. Palmqvist, Electrochimica Acta, 56, No. 11: 4216 (2011); https://doi.org/10.1016/j.electacta.2011.01.093
  21. V.Y. Kolosov, A.A. Yushkov, and L.M. Veretennikov, Journal of Physics: Conference Series, 1115, No. 3: 032087 (2018); https://doi.org/10.1088/1742-6596/1115/3/032087
  22. Z. Yang, Z. Wu, Y. Lyu, and J. Hao, InfoMat, 1, No. 1: 98 (2019); https://doi.org/10.1002/inf2.12001
  23. M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, Nano Letters, 14, No. 10: 5630 (2014); https://doi.org/10.1021/nl502208u
  24. Y. Zabila, M. Marszalek, M. Krupinski, A. Zarzycki, and M. Perzanowski, Coatings, 11, No. 2: 175 (2021); https://doi.org/10.3390/coatings11020175
  25. C.M. Bedoya-Hincapié, J. de la Roche, E. Restrepo-Parra, J.E. Alfonso, and J.J. Olaya-Florez, Ingeniare. Revista Chilena de Ingeniería, 23, No. 1: 92 (2015); https://doi.org/10.4067/s0718-33052015000100011
  26. E.S. Walker, S.R. Na, D. Jung, S.D. March, J.-S. Kim, T. Trivedi, W. Li, L. Tao, M.L. lee, K.M. Liechti, D. Akinwande, and S.R. Bank, Nano Letters, 16, No. 11: 6931 (2016); https://doi.org/10.1021/acs.nanolett.6b02931
  27. F. Gity, L. Ansari, M. Lanius, P. Schüffelgen, G. Mussler, D. Grützmacher, and J.C. Greer, Applied Physics Letters, 110, No. 9: 093111 (2017); https://doi.org/10.1063/1.4977431
  28. S.-Y. Yang, K. Chang, and S.S.P. Parkin, Phys. Rev. Research 2:022029(2020); https://doi.org/10.1103/PhysRevResearch.2.022029
  29. Y. Hirai, N. Yoshikawa, H. Hirose, M. Kawaguchi, M. Hayashi, and R. Shimano, Physical Review Applied, 14, No. 6: 064015 (2020); https://doi.org/10.1103/physrevapplied.14.064015
  30. L. Perfetti, J. Faure, E. Papalazarou, J. Mauchain, M. Marsi, M. O. Goerbig, A. Taleb-Ibrahimi, and Y. Ohtsubo, Journal of Electron Spectroscopy and Related Phenomena, 201: 60 (2015); https://doi.org/10.1016/j.elspec.2014.12.004
  31. X. Wang, X. Yang, N. Shen, B. Wang, G. Ge, G. Wang, J. Wan, Applied Surface Science, 481, 1449–1458 (2019); https://doi.org/10.1016/j.apsusc.2019.03.251
  32. A.V. Matetskiy, L.V. Bondarenko, A.Y. Tupchaya, D.V. Gruznev, S.V. Eremeev, A.V. Zotov, and A.A. Saranin, Applied Surface Science, 406: 122 (2017); https://doi.org/10.1016/j.apsusc.2017.02.023
  33. M.C. Richter, J.-M. Mariot, M.A. Gafoor, L. Nicolaï, O. Heckmann, U. Djukic, W. Ndiaye, I. Vobornik, J. Fujii, N. Barrett, V. Feyer, C.M. Schneider, and K. Hricovini, Surface Science, 651: 147 (2016); https://doi.org/10.1016/j.susc.2016.03.032
  34. T.-R. Chang, Q. Lu, X. Wang, H. Lin, T. Miller, T.-C. Chiang, and G. Bian, Crystals, 9. No. 10: 510(2019); https://doi.org/10.3390/cryst9100510
  35. K. Saito, H. Sawahata, T. Komine, and T. Aono, Physical Review B, 93, No. 4: 041301 (2016); https://doi.org/physrevb.93.041301
  36. K. Nagaoka, T. Uchihashi, and T. Nakayama, Surface Science, 644: 41 (2016); https://doi.org/10.1016/j.susc.2015.09.008
  37. T. Payer, C. Klein, M. Acet, V. Ney, M. Kammler, F.-J. Meyer zu Heringdorf, and M. Horn-von Hoegen, Thin Solid Films, 520, No. 23: 6905 (2012); https://doi.org/10.1016/j.tsf.2012.06.004
  38. S.S. Hars, H.R. Sharma, J.A. Smerdon, S. Coates, K. Nozawa, A.P. Tsai, and R. McGrath, Surface Science, 678: 222 (2018); https://doi.org/10.1016/j.susc.2018.04.023
  39. J. Toudert, R. Serna, C. Deeb, and E. Rebollar, Optical Materials Express, 9, No. 7: 2924 (2019); https://doi.org/10.1364/OME.9.002924
  40. Y. Ahn, Y.-H. Kim, S.-I. Kim, and K.-H Jeong, Current Applied Physics, 12, No. 6: 1518 (2012); https://doi.org/10.1016/j.cap.2012.04.031
  41. R.K. Jain, J. Kaur, S. Arora, A. Kumar, A.K. Chawla, and A. Khanna, Applied Surface Science, 463: 45 (2019); https://doi.org/10.1016/j.apsusc.2018.08.200
  42. B. He, G. Tian, J. Gou, B. Liu, K. Shen, Q. Tian, Z. Yu, F. Song, H. Xie, Y. Gao, Y. Lu, K. Wu, L. Chen, and H. Huang, Surface Science, 679: 147 (2018); https://doi.org/10.1016/j.susc.2018.09.005
  43. S.E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, Thin Solid Films, 636: 384 (2017); https://doi.org/10.1016/j.tsf.2017.06.048
  44. N. Wang, Y.-X. Dai, T.-L. Wang, H.-Z. Yang, and Y. Qi, International union of crystallography journal, 7, No. 1: 49 (2020); https://doi.org/10.1107/S2052252519015458
  45. C. Sui, L. Di, and X. Qin, Vacuum, 166: 316 (2019); https://doi.org/10.1016/j.vacuum.2019.05.026
  46. J. Baron, P. Silva-Bermudez, and S. E. Rodil, MRS Proceedings, 1477: 40 (2012); https://doi.org/10.1557/opl.2012.1722
  47. E.V. Demidov, V.M. Grabov, V.A. Kamarov, A.N. Krushelnitckii, A.V. Suslov, M.V.Suslov, Semiconductors, 53: 727 (2019); https://doi.org/10.1134/S1063782619060046
  48. S.A. Stanley and M.D. Cropper, Applied Physics A, 120, No. 4: 1461 (2015); https://doi.org/10.1007/s00339-015-9337-3
  49. A. Prados and R. Ranchal, Electrochimica Acta, 316: 113 (2019); https://doi.org/10.1016/j.electacta.2019.05.085
  50. L. Yang, Y.-X. Zheng, S.-D. Yang, Z.-H. Liu, J.-B. Zhang, R.-J. Zhang, S.-Y. Wang, D.-X. Zhang, and L.-Y. Chen, Applied Surface Science, 421, No. B: 899 (2017); https://doi.org/10.1016/j.apsusc.2016.11.006
  51. Megha, S. Rathod, A. Lakhani, and D. Kumar, AIP Conference Proceedings, 2100: 020155 (2019); https://doi.org/10.1063/1.5098709
  52. H. Emoto, Y. Ando, G. Eguchi, R. Ohshima, E. Shikoh, Y. Fuseya, T. Shinjo, and M. Shiraishi, Physical Review B, 93, No. 17: 174428 (2016); https://doi.org/10.1103/physrevb.93.174428
  53. C.F. Gallo, B.S. Chandrasekhar, and P. H. Sutter, Journal of Applied Physics, 34, No. 1: 144 (1963); https://doi.org/10.1063/1.1729056
  54. W. Ning, F. Kong, Y. Han, H. Du, J. Yang, M. Tian, and Y. Zhang, Scientific Reports, 4, No. 1: 7086 (2014); https://doi.org/10.1038/srep07086
  55. X. Sun, Z. Zhang, and M. S. Dresselhaus, Applied Physics Letters, 74, No. 26: 4005 (1999); https://doi.org/10.1063/1.123242
  56. N.S. Kablukova, V.A. Komarov, D.O. Skanchenko, E.S. Makarova, and E.V. Demidov, Semiconductors, 51, No 7: 879 (2017); https://doi.org/10.1134/s1063782617070168
  57. A.D. Liao, M. Yao, F. Katmis, M. Li, S. Tang, J.S. Moodera, C. Opeil, and M.S. Dresselhaus, Applied Physics Letters, 105, No. 6: 063114 (2014); https://doi.org/10.1063/1.4893140
  58. P. Kröger, D. Abdelbarey, M. Siemens, D. Lükermann, S. Sologub, H. Pfnür, and C. Tegenkamp, Physical Review B, 97, No. 4: 045403 (2018); https://doi.org/10.1103/physrevb.97.045403
  59. D. Oller, G.E. Fernandes, J.H. Kim, and J. Xu, Physica B: Condensed Matter, 475: 117 (2015); https://doi.org/10.1016/j.physb.2015.07.023
  60. Y. Liu and R.E. Allen, Physical Review B, 52, No. 3: 1566 (1995); https://doi.org/10.1103/physrevb.52.1566
  61. Y. Ohtsubo and S. Kimura, New Journal of Physics, 18: 123015 (2016); https://doi.org/10.1088/1367-2630/18/12/123015
  62. Y.M. Koroteev, G. Bihlmayer, E.V. Chulkov, and S. Blügel, Physical Review B, 77, No 4: 045428 (2018); https://doi.org/10.1103/physrevb.77.045428
  63. Y. Ohtsubo, L. Perfetti, M.O. Goerbig, P.L. Fèvre, F. Bertran, and A. Taleb-Ibrahimi, New Journal of Physics, 15,No. 3: 033041 (2013); https://doi.org/10.1088/1367-2630/15/3/033041
  64. Y. Fuseya, M. Ogata, and H. Fukuyama, Journal of the Physical Society of Japan, 84, No. 1: 012001 (2015); https://doi.org/10.7566/jpsj.84.012001
  65. A. Takayama, T. Sato, S. Souma, T. Oguchi, and T. Takahashi, Physical Review Letters, 114, No. 6: 066402 (2015); https://doi.org/10.1103/physrevlett.114.066402
  66. A. Takayama, T. Sato, S. Souma, T. Oguchi, and T. Takahashi, Nano Letters, 12, No. 4: 1776 (2012); https://doi.org/10.1021/nl2035018
  67. A. Takayama, T. Sato, S. Souma, and T. Takahashi, Physical Review Letters, 106, No. 16: 166401 (2011); https://doi.org/physrevlett.106.166401
  68. C. Zucchetti, F. Bottegoni, A. Calloni, G. Bussetti, L. Duò, M. Finazzi, and F. Ciccacci, Journal of Physics: Conference Series, 903: 012024 (2017); https://doi.org/10.1088/1742-6596/903/1/012024
  69. M.-Y. Yao, F. Zhu, C.Q. Han, D.D. Guan, C. Liu, D. Qian, and J. Jia, Scientific Reports, 6, No. 1: 21326 (2016); https://doi.org/10.1038/srep21326
  70. C.R. Ast and I. Gierz, Physical Review B, 86, No. 8: 085105 (2012); https://doi.org/10.1103/physrevb.86.085105
  71. T. Hirahara, T. Nagao, I. Matsuda, G. Bihlmayer, E.V. Chulkov, Y.M. Koroteev, and S. Hasegawa, Physical Review B, 75, No. 3: 035422 (2007); https://doi.org/10.1103/physrevb.75.035422
  72. T. Hirahara, T. Shirai, T. Hajiri, M. Matsunami, K. Tanaka, S. Kimura, S. Hasegawa, and K. Kobayashi, Physical Review Letters, 115, No. 10: 106803 (2015); https://doi.org/10.1103/physrevlett.115.106803
  73. P. Hofmann, Progress in Surface Science, 81, No. 5: 191 (2006); https://doi.org/10.1016/j.progsurf.2006.03.001