Structural and Physical Properties of Ultrathin Bismuth Films

V. L. Karbivskyy, V. V. Zaika, L. I. Karbivska, N. A. Kurgan, and N. O. Zueva

G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 02.07.2021; final version — 04.11.2021 Download PDF logo PDF

Bismuth films are interesting objects for research because of the many effects occurring when the film thickness is less than 70 nm. The electronic band structure changes significantly depending on the film thickness. Consequently, by changing the film thickness, it is possible to control the physical properties of the material. The purpose of this paper is to give a brief description of the basic structural and physical properties of bismuth films. The structural properties, namely, morphology, roughness, nanoparticle size, and texture, are discussed first, followed by a description of the transport properties and the band structure. The transport properties are described using the semi-metal–semiconductor transition, which is associated with the quantum size effect. In addition, important characteristic is a two-channel model, which allows describing the change in resistivity with temperature. The band structure of bismuth films is the most interesting part due to the anomalous effects for which there is still no unambiguous explanation. These effects include anomalous spin polarization, nontrivial topology, and zone changes near the edge of film.

Keywords: bismuth thin films, band structure, Rashba effect, transport properties, anomalous spin polarization.


Citation: V. L. Karbivskyy, V. V. Zaika, L. I. Karbivska, N. A. Kurgan, and N. O. Zueva, Structural and Physical Properties of Ultrathin Bismuth Films, Prog. Phys. Met., 22, No. 4: 539–561 (2021)

  1. S.Kochowski and A. Opilski, Thin Solid Films, 48, No. 3: 345 (1978);
  2. A. Takayama, T. Sato, S. Souma, and T. Takahashi, Journal of Electron Spectroscopy and Related Phenomena, 201: 105 (2015);
  3. T. Hirahara, Journal of Electron Spectroscopy and Related Phenomena, 201: 98 (2015);
  4. W. Kobayashi, Y. Koizumi, and Y. Moritomo, Applied Physics Letters, 100, No. 1: 011903 (2012);
  5. S. Ito, B. Feng, M. Arita, A. Takayama, R.-Y. Liu, T. Someya, W.-C. Chen, T. Limori, H. Namatame, M. Taniguchi, C.-M. Cheng, S.-J. Tang, F. Komori, K. Kobayashi, T.-C. Chiang, and I. Matsuda, Physical Review Letters, 117, No. 23: 236402 (2016);
  6. A.A. Najim, Materials Science in Semiconductor Processing, 121: 105334(2021);
  7. T. Shin, Thin Solid Films, 666: 108 (2018);
  8. G. Orozco-Hernández, J.J. Olaya, J.E. Alfonso, C.A. Pineda-Vargas, and C. Mtshali, Thin Solid Films, 628: 170 (2017);
  9. L. Du, D. Lu, J. Li, K. Yang, L. Yang, B. Huang, J. Yi, Q. Yi, L. Miao, X. Qi, C. Zhao, J. Zhong, and S. Wen, ACS Appl. Mater. Interfaces, 11, No. 39: 35863 (2019);
  10. J. Toudert, R. Serna, I. Camps, J. Wojcik, P. Mascher, E. Rebollar, and T.A. Ezquerra, The Journal of Physical Chemistry C, 121, No. 6: 3511 (2017);
  11. K. Xu, L. Wang, X. Xu, S.X. Dou, W. Hao, and Y. Du, Energy Storage Materials, 19: 446 (2019);
  12. G. Bian, Z. Wang, X.-X. Wang, C. Xu, S. Xu, T. Miller, M.-Z. Hasan, F. Liu, and T.-C. Chiang, ACS Nano, 10, No.3: 3859 (2016);
  13. E. Hashemi, R. Poursalehi, and H. Delavari, Materials Science in Semiconductor Processing, 89: 51 (2019);
  14. R. Borja-Urby, S.P. Paredes-Carrera, H. Viltres-Cobas, P. Santiago-Jacinto, F. Paraguay-Delgado, G. Herrera-Pérez, L. Rendón-Vázquez, J.-C. Sánchez-Ochoa, and D. Morales-Cruzf, Journal of Electron Spectroscopy and Related Phenomena, 237: 146891 (2019);
  15. A. Goriachko, P.V. Melnik, A. Shchyrba, S.P. Kulyk, and M.G. Nakhodkin, Surface Science, 605, No. 19–20: 1771 (2011);
  16. C. Wansorra, E. Bruder, and W. Donner, Acta Materialia, 200: 455 (2020);
  17. A.J. Caruana, M.D. Cropper, and S.A. Stanley, Surface and Coatings Technology, 271: 8 (2015);
  18. X. Zhang, W. Ren, F. Xin, and P. Shi, Journal of Alloys and Compounds, 614: 80 (2016);
  19. M. Wu, B. Xu, Y. Zhang, S. Qi, W. Ni, J. Hu, and J. Ma, Chemical Engineering Journal, 381: 122558 (2019);
  20. Y. Ma, E. Ahlberg, Y. Sun, B.B. Iversen, and A.E.C. Palmqvist, Electrochimica Acta, 56, No. 11: 4216 (2011);
  21. V.Y. Kolosov, A.A. Yushkov, and L.M. Veretennikov, Journal of Physics: Conference Series, 1115, No. 3: 032087 (2018);
  22. Z. Yang, Z. Wu, Y. Lyu, and J. Hao, InfoMat, 1, No. 1: 98 (2019);
  23. M. Liu, J. Tao, C.-Y. Nam, K. Kisslinger, L. Zhang, and D. Su, Nano Letters, 14, No. 10: 5630 (2014);
  24. Y. Zabila, M. Marszalek, M. Krupinski, A. Zarzycki, and M. Perzanowski, Coatings, 11, No. 2: 175 (2021);
  25. C.M. Bedoya-Hincapié, J. de la Roche, E. Restrepo-Parra, J.E. Alfonso, and J.J. Olaya-Florez, Ingeniare. Revista Chilena de Ingeniería, 23, No. 1: 92 (2015);
  26. E.S. Walker, S.R. Na, D. Jung, S.D. March, J.-S. Kim, T. Trivedi, W. Li, L. Tao, M.L. lee, K.M. Liechti, D. Akinwande, and S.R. Bank, Nano Letters, 16, No. 11: 6931 (2016);
  27. F. Gity, L. Ansari, M. Lanius, P. Schüffelgen, G. Mussler, D. Grützmacher, and J.C. Greer, Applied Physics Letters, 110, No. 9: 093111 (2017);
  28. S.-Y. Yang, K. Chang, and S.S.P. Parkin, Phys. Rev. Research 2:022029(2020);
  29. Y. Hirai, N. Yoshikawa, H. Hirose, M. Kawaguchi, M. Hayashi, and R. Shimano, Physical Review Applied, 14, No. 6: 064015 (2020);
  30. L. Perfetti, J. Faure, E. Papalazarou, J. Mauchain, M. Marsi, M. O. Goerbig, A. Taleb-Ibrahimi, and Y. Ohtsubo, Journal of Electron Spectroscopy and Related Phenomena, 201: 60 (2015);
  31. X. Wang, X. Yang, N. Shen, B. Wang, G. Ge, G. Wang, J. Wan, Applied Surface Science, 481, 1449–1458 (2019);
  32. A.V. Matetskiy, L.V. Bondarenko, A.Y. Tupchaya, D.V. Gruznev, S.V. Eremeev, A.V. Zotov, and A.A. Saranin, Applied Surface Science, 406: 122 (2017);
  33. M.C. Richter, J.-M. Mariot, M.A. Gafoor, L. Nicolaï, O. Heckmann, U. Djukic, W. Ndiaye, I. Vobornik, J. Fujii, N. Barrett, V. Feyer, C.M. Schneider, and K. Hricovini, Surface Science, 651: 147 (2016);
  34. T.-R. Chang, Q. Lu, X. Wang, H. Lin, T. Miller, T.-C. Chiang, and G. Bian, Crystals, 9. No. 10: 510(2019);
  35. K. Saito, H. Sawahata, T. Komine, and T. Aono, Physical Review B, 93, No. 4: 041301 (2016);
  36. K. Nagaoka, T. Uchihashi, and T. Nakayama, Surface Science, 644: 41 (2016);
  37. T. Payer, C. Klein, M. Acet, V. Ney, M. Kammler, F.-J. Meyer zu Heringdorf, and M. Horn-von Hoegen, Thin Solid Films, 520, No. 23: 6905 (2012);
  38. S.S. Hars, H.R. Sharma, J.A. Smerdon, S. Coates, K. Nozawa, A.P. Tsai, and R. McGrath, Surface Science, 678: 222 (2018);
  39. J. Toudert, R. Serna, C. Deeb, and E. Rebollar, Optical Materials Express, 9, No. 7: 2924 (2019);
  40. Y. Ahn, Y.-H. Kim, S.-I. Kim, and K.-H Jeong, Current Applied Physics, 12, No. 6: 1518 (2012);
  41. R.K. Jain, J. Kaur, S. Arora, A. Kumar, A.K. Chawla, and A. Khanna, Applied Surface Science, 463: 45 (2019);
  42. B. He, G. Tian, J. Gou, B. Liu, K. Shen, Q. Tian, Z. Yu, F. Song, H. Xie, Y. Gao, Y. Lu, K. Wu, L. Chen, and H. Huang, Surface Science, 679: 147 (2018);
  43. S.E. Rodil, O. Garcia-Zarco, E. Camps, H. Estrada, M. Lejeune, L. Bourja, and A. Zeinert, Thin Solid Films, 636: 384 (2017);
  44. N. Wang, Y.-X. Dai, T.-L. Wang, H.-Z. Yang, and Y. Qi, International union of crystallography journal, 7, No. 1: 49 (2020);
  45. C. Sui, L. Di, and X. Qin, Vacuum, 166: 316 (2019);
  46. J. Baron, P. Silva-Bermudez, and S. E. Rodil, MRS Proceedings, 1477: 40 (2012);
  47. E.V. Demidov, V.M. Grabov, V.A. Kamarov, A.N. Krushelnitckii, A.V. Suslov, M.V.Suslov, Semiconductors, 53: 727 (2019);
  48. S.A. Stanley and M.D. Cropper, Applied Physics A, 120, No. 4: 1461 (2015);
  49. A. Prados and R. Ranchal, Electrochimica Acta, 316: 113 (2019);
  50. L. Yang, Y.-X. Zheng, S.-D. Yang, Z.-H. Liu, J.-B. Zhang, R.-J. Zhang, S.-Y. Wang, D.-X. Zhang, and L.-Y. Chen, Applied Surface Science, 421, No. B: 899 (2017);
  51. Megha, S. Rathod, A. Lakhani, and D. Kumar, AIP Conference Proceedings, 2100: 020155 (2019);
  52. H. Emoto, Y. Ando, G. Eguchi, R. Ohshima, E. Shikoh, Y. Fuseya, T. Shinjo, and M. Shiraishi, Physical Review B, 93, No. 17: 174428 (2016);
  53. C.F. Gallo, B.S. Chandrasekhar, and P. H. Sutter, Journal of Applied Physics, 34, No. 1: 144 (1963);
  54. W. Ning, F. Kong, Y. Han, H. Du, J. Yang, M. Tian, and Y. Zhang, Scientific Reports, 4, No. 1: 7086 (2014);
  55. X. Sun, Z. Zhang, and M. S. Dresselhaus, Applied Physics Letters, 74, No. 26: 4005 (1999);
  56. N.S. Kablukova, V.A. Komarov, D.O. Skanchenko, E.S. Makarova, and E.V. Demidov, Semiconductors, 51, No 7: 879 (2017);
  57. A.D. Liao, M. Yao, F. Katmis, M. Li, S. Tang, J.S. Moodera, C. Opeil, and M.S. Dresselhaus, Applied Physics Letters, 105, No. 6: 063114 (2014);
  58. P. Kröger, D. Abdelbarey, M. Siemens, D. Lükermann, S. Sologub, H. Pfnür, and C. Tegenkamp, Physical Review B, 97, No. 4: 045403 (2018);
  59. D. Oller, G.E. Fernandes, J.H. Kim, and J. Xu, Physica B: Condensed Matter, 475: 117 (2015);
  60. Y. Liu and R.E. Allen, Physical Review B, 52, No. 3: 1566 (1995);
  61. Y. Ohtsubo and S. Kimura, New Journal of Physics, 18: 123015 (2016);
  62. Y.M. Koroteev, G. Bihlmayer, E.V. Chulkov, and S. Blügel, Physical Review B, 77, No 4: 045428 (2018);
  63. Y. Ohtsubo, L. Perfetti, M.O. Goerbig, P.L. Fèvre, F. Bertran, and A. Taleb-Ibrahimi, New Journal of Physics, 15,No. 3: 033041 (2013);
  64. Y. Fuseya, M. Ogata, and H. Fukuyama, Journal of the Physical Society of Japan, 84, No. 1: 012001 (2015);
  65. A. Takayama, T. Sato, S. Souma, T. Oguchi, and T. Takahashi, Physical Review Letters, 114, No. 6: 066402 (2015);
  66. A. Takayama, T. Sato, S. Souma, T. Oguchi, and T. Takahashi, Nano Letters, 12, No. 4: 1776 (2012);
  67. A. Takayama, T. Sato, S. Souma, and T. Takahashi, Physical Review Letters, 106, No. 16: 166401 (2011);
  68. C. Zucchetti, F. Bottegoni, A. Calloni, G. Bussetti, L. Duò, M. Finazzi, and F. Ciccacci, Journal of Physics: Conference Series, 903: 012024 (2017);
  69. M.-Y. Yao, F. Zhu, C.Q. Han, D.D. Guan, C. Liu, D. Qian, and J. Jia, Scientific Reports, 6, No. 1: 21326 (2016);
  70. C.R. Ast and I. Gierz, Physical Review B, 86, No. 8: 085105 (2012);
  71. T. Hirahara, T. Nagao, I. Matsuda, G. Bihlmayer, E.V. Chulkov, Y.M. Koroteev, and S. Hasegawa, Physical Review B, 75, No. 3: 035422 (2007);
  72. T. Hirahara, T. Shirai, T. Hajiri, M. Matsunami, K. Tanaka, S. Kimura, S. Hasegawa, and K. Kobayashi, Physical Review Letters, 115, No. 10: 106803 (2015);
  73. P. Hofmann, Progress in Surface Science, 81, No. 5: 191 (2006);