Thermodynamic Calculation of Fe–N and Fe–Ga Melting Diagrams at Pressures from 0.1 MPa to 7 GPa

V. Z. Turkevych$^1$, Yu. Yu. Rumiantseva$^1$, I. О. Hnatenko$^1$, I. O. Hladkyi$^2$, and Yu. I. Sadova$^1$

$^1$V. Bakul Institute for Superhard Materials of the N.A.S. of Ukraine, 2 Avtozavodska Str., UA-04114 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Prosp. Peremohy, UA-03056 Kyiv, Ukraine

Received 04.11.2021; final version — 17.11.2021 Download PDF logo PDF

Abstract
This paper presents results of melting-diagrams’ calculations for the Fe–N and Fe–Ga systems at atmospheric pressure (0.1 MPa) and at high pressures (3, 5 and 7 GPa). Thermodynamic calculations are performed within the models of phenomenological thermodynamics. As shown, the increase of pressure results in destabilization of high-temperature b.c.c.-Fe modification in Fe–N system and stabilization of Fe4N equilibrium with the liquid phase. In Fe–Ga system, the intermetallic compounds Fe3Ga, Fe6Ga5, Fe3Ga4, and FeGa3 retain their stability up to pressure of 7 GPa. The stabilization of Fe4N equilibrium with the liquid phase at high pressures indicates that the Fe4N can be a competing phase in the gallium-nitride crystallization from the Fe–Ga–N system melt.

Keywords: Fe–N and Fe–Ga diagrams, high pressures, thermodynamic calculations, ThermoCalc.

DOI: https://doi.org/10.15407/ufm.22.04.531

Citation: V. Z. Turkevych, Yu. Yu. Rumiantseva, I. О. Hnatenko, I. O. Hladkyi, and Yu. I. Sadova, Thermodynamic Calculation of Fe–N and Fe–Ga Melting Diagrams at Pressures from 0.1 MPa to 7 GPa, Prog. Phys. Met., 22, No. 4: 531–538 (2021)


References  
  1. P.C. Angelo, and B. Ravisankar, Introduction to Steels: Processing, Properties, and Applications (CRC Press: 2019).
  2. P. Bajaj, A. Hariharan, P. Kürnsteiner, D. Raabe, and E.A. Jägle, Mater. Sci. Eng. A, 772 (2020); https://doi.org/10.1016/j.msea.2019.138633
  3. W. Qiang, K. Wang, J. Mater. Process Technol., 250:169 (2017); https://doi.org/10.1016/j.jmatprotec.2017.07.021
  4. Z. Brytan, W. Borek, and T. Tański, Introductory Chapter: Why Austenitic Stainless Steels are Continuously Interesting for Science?, Austenitic Stainless Steels — New Aspects (IntechOpen: 2017); https://doi.org/10.5772/intechopen.72062
  5. Nursultan E. Sagatov, Dinara N. Sagatova, Pavel N. Gavryushkin, and Konstantin D. Litasov, Crystal Growth & Design (Article ASAP:2021); https://doi.org/10.1021/acs.cgd.1c00432
  6. Bastian K. Brink, Kenny Ståhl, Thomas L. Christiansen, and Marcel A.J. Somers, Journal of Alloys and Compounds, 690: 431 (2017); https://doi.org/10.1016/j.jallcom.2016.08.130
  7. X. Wang, W.T. Zheng, H.W. Tian, S.S. Yu, W. Xu, S.H. Meng, X.D. He, J.C. Han, C.Q. Sun, and B.K. Tay, Applied Surface Science, 220, Nos. 1–4: 30 (2003); https://doi.org/10.1016/S0169-4332(03)00752-9
  8. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Progress in Physics of Metals, 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  9. Y.N. Palyanov, I.N. Kupriyanov, A.F. Khokhryakov, and Y.M. Borzdov, Cryst. Eng. Comm., 19, No. 31: 4459 (2017); https://doi.org/10.1039/C7CE01083D
  10. І.А. Petrusha, B.S. Sadovyi, P.S. Sadovyi, A.S. Osipov, Yu.Yu. Rumiantseva, P.A. Balabanov, P. Klimczyk, Yu.I. Sadova, О.V. Savitskyi, S.O. Hordieiev, and T.О. Sakal, Tooling Material Science, No. 24: 312(2021); https://doi.org/10.333839/2708-731X-2021-24-1-312-325
  11. V.Z. Turkevych, Yu.Yu. Rumiantseva, О.V. Savitskyi, S.O. Hordieiev, O.V. Kushch, Yu.I. Sadova, and D.V. Turkevych, Tooling Material Science, No. 24: 307(2021); https://doi.org/10.333839/2708-731X-2021-24-1-307-311
  12. C. Dasarathy and William Hume-Rothery, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 286, No. 1405: 141 (1965); https://doi.org/10.1098/rspa.1965.0135
  13. H.A. Wriedt, N.A. Gokcen, and R.H. Nafziger, Bulletin of Alloy Phase Diagrams, 8: 355(1987); https://doi.org/10.1007/BF02869273
  14. M. Hillert, J. Alloys Compd., 320, No. 2: 161 (2001); https://doi.org/10.1016/S0925-8388(00)01481-X
  15. P.A. Turchi, L. Kaufman, Z. Liu, and S. Zhou, Thermodynamics and Kinetics of Phase Transformations in Plutonium Alloys — Part I (USA: 2004); https://doi.org/10.2172/895082
  16. Springer Nature Switzerland AG, Part of Springer Nature [Electronic resource]. — Access mode: https://www.springernature.com/gp/products/journals
  17. F.D. Murnaghan, Proc. Nation. Acad. Sci. USA, 9, No. 30: 244 (1944); https://doi.org/10.1073/pnas.30.9.244
  18. M. Kusakabe, K. Hirose, R. Sinmyo, Y. Kuwayama, Y. Ohishi, and G. Helffrich, Journal of Geophysical Research: Solid Earth, 124, No. 4: 3448 (2019); https://doi.org/10.1029/2018JB015823
  19. M.H. Wetzel, T.T. Rabending, M. Friák, M. Všianská, M. Šob, and A. Leineweber, Materials, 14, No. 14: 3963 (2021); https://doi.org/10.3390/ma14143963
  20. Zhi Li, Zhen Zhao, Tong-Tong Shi, and Xi-Min Zang, International Journal of Modern Physics B, 34, No. 17: 2050156 (2020); https://doi.org/10.1142/S0217979220501568
  21. A. Leineweber, H. Jacobs, W. Kockelmann, S. Hull, D. Hinz-Hübner, Journal of Alloys and Compounds, 384, Nos. 1–2: 1 (2004); https://doi.org/10.1016/j.jallcom.2004.03.122
  22. K.D. Litasov, A. Shatskiy, D.S. Ponomarev, and P.N. Gavryushkin, Journal of Geophysical Research: Solid Earth, 122, No. 5: 3574 (2017); https://doi.org/10.1002/2017JB014059
  23. Yukai Zhuang, Xiaowan Su, Nilesh P. Salke, Zhongxun Cui, Qingyang Hu, Dongzhou Zhang, and Jin Liu, Geoscience Frontiers,12, No. 2: 983 (2021); https://doi.org/10.1016/j.gsf.2020.04.012
  24. J.-O. Andersson, Thomas Helander, Lars Höglund, Pingfang Shi, and Bo Sundman, Calphad, 26, No. 2: 273 (2002); https://doi.org/10.1016/S0364-5916(02)00037-8
  25. Y. Bataleva, Y. Palyanov, Y. Borzdov, I. Novoselov, and O. Bayukov, Minerals, 8, No. 11: 522 (2018); https://doi.org/10.3390/min8110522