Thermodynamic Calculation of Fe–N and Fe–Ga Melting Diagrams at Pressures from 0.1 MPa to 7 GPa

V. Z. Turkevych$^1$, Yu. Yu. Rumiantseva$^1$, I. О. Hnatenko$^1$, I. O. Hladkyi$^2$, and Yu. I. Sadova$^1$

$^1$V. Bakul Institute for Superhard Materials of the N.A.S. of Ukraine, 2 Avtozavodska Str., UA-04114 Kyiv, Ukraine
$^2$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Prosp. Peremohy, UA-03056 Kyiv, Ukraine

Received 04.11.2021; final version — 17.11.2021 Download PDF logo PDF

This paper presents results of melting-diagrams’ calculations for the Fe–N and Fe–Ga systems at atmospheric pressure (0.1 MPa) and at high pressures (3, 5 and 7 GPa). Thermodynamic calculations are performed within the models of phenomenological thermodynamics. As shown, the increase of pressure results in destabilization of high-temperature b.c.c.-Fe modification in Fe–N system and stabilization of Fe4N equilibrium with the liquid phase. In Fe–Ga system, the intermetallic compounds Fe3Ga, Fe6Ga5, Fe3Ga4, and FeGa3 retain their stability up to pressure of 7 GPa. The stabilization of Fe4N equilibrium with the liquid phase at high pressures indicates that the Fe4N can be a competing phase in the gallium-nitride crystallization from the Fe–Ga–N system melt.

Keywords: Fe–N and Fe–Ga diagrams, high pressures, thermodynamic calculations, ThermoCalc.


Citation: V. Z. Turkevych, Yu. Yu. Rumiantseva, I. О. Hnatenko, I. O. Hladkyi, and Yu. I. Sadova, Thermodynamic Calculation of Fe–N and Fe–Ga Melting Diagrams at Pressures from 0.1 MPa to 7 GPa, Prog. Phys. Met., 22, No. 4: 531–538 (2021)

  1. P.C. Angelo, and B. Ravisankar, Introduction to Steels: Processing, Properties, and Applications (CRC Press: 2019).
  2. P. Bajaj, A. Hariharan, P. Kürnsteiner, D. Raabe, and E.A. Jägle, Mater. Sci. Eng. A, 772 (2020);
  3. W. Qiang, K. Wang, J. Mater. Process Technol., 250:169 (2017);
  4. Z. Brytan, W. Borek, and T. Tański, Introductory Chapter: Why Austenitic Stainless Steels are Continuously Interesting for Science?, Austenitic Stainless Steels — New Aspects (IntechOpen: 2017);
  5. Nursultan E. Sagatov, Dinara N. Sagatova, Pavel N. Gavryushkin, and Konstantin D. Litasov, Crystal Growth & Design (Article ASAP:2021);
  6. Bastian K. Brink, Kenny Ståhl, Thomas L. Christiansen, and Marcel A.J. Somers, Journal of Alloys and Compounds, 690: 431 (2017);
  7. X. Wang, W.T. Zheng, H.W. Tian, S.S. Yu, W. Xu, S.H. Meng, X.D. He, J.C. Han, C.Q. Sun, and B.K. Tay, Applied Surface Science, 220, Nos. 1–4: 30 (2003);
  8. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Progress in Physics of Metals, 21, No. 4: 580 (2020);
  9. Y.N. Palyanov, I.N. Kupriyanov, A.F. Khokhryakov, and Y.M. Borzdov, Cryst. Eng. Comm., 19, No. 31: 4459 (2017);
  10. І.А. Petrusha, B.S. Sadovyi, P.S. Sadovyi, A.S. Osipov, Yu.Yu. Rumiantseva, P.A. Balabanov, P. Klimczyk, Yu.I. Sadova, О.V. Savitskyi, S.O. Hordieiev, and T.О. Sakal, Tooling Material Science, No. 24: 312(2021);
  11. V.Z. Turkevych, Yu.Yu. Rumiantseva, О.V. Savitskyi, S.O. Hordieiev, O.V. Kushch, Yu.I. Sadova, and D.V. Turkevych, Tooling Material Science, No. 24: 307(2021);
  12. C. Dasarathy and William Hume-Rothery, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 286, No. 1405: 141 (1965);
  13. H.A. Wriedt, N.A. Gokcen, and R.H. Nafziger, Bulletin of Alloy Phase Diagrams, 8: 355(1987);
  14. M. Hillert, J. Alloys Compd., 320, No. 2: 161 (2001);
  15. P.A. Turchi, L. Kaufman, Z. Liu, and S. Zhou, Thermodynamics and Kinetics of Phase Transformations in Plutonium Alloys — Part I (USA: 2004);
  16. Springer Nature Switzerland AG, Part of Springer Nature [Electronic resource]. — Access mode:
  17. F.D. Murnaghan, Proc. Nation. Acad. Sci. USA, 9, No. 30: 244 (1944);
  18. M. Kusakabe, K. Hirose, R. Sinmyo, Y. Kuwayama, Y. Ohishi, and G. Helffrich, Journal of Geophysical Research: Solid Earth, 124, No. 4: 3448 (2019);
  19. M.H. Wetzel, T.T. Rabending, M. Friák, M. Všianská, M. Šob, and A. Leineweber, Materials, 14, No. 14: 3963 (2021);
  20. Zhi Li, Zhen Zhao, Tong-Tong Shi, and Xi-Min Zang, International Journal of Modern Physics B, 34, No. 17: 2050156 (2020);
  21. A. Leineweber, H. Jacobs, W. Kockelmann, S. Hull, D. Hinz-Hübner, Journal of Alloys and Compounds, 384, Nos. 1–2: 1 (2004);
  22. K.D. Litasov, A. Shatskiy, D.S. Ponomarev, and P.N. Gavryushkin, Journal of Geophysical Research: Solid Earth, 122, No. 5: 3574 (2017);
  23. Yukai Zhuang, Xiaowan Su, Nilesh P. Salke, Zhongxun Cui, Qingyang Hu, Dongzhou Zhang, and Jin Liu, Geoscience Frontiers,12, No. 2: 983 (2021);
  24. J.-O. Andersson, Thomas Helander, Lars Höglund, Pingfang Shi, and Bo Sundman, Calphad, 26, No. 2: 273 (2002);
  25. Y. Bataleva, Y. Palyanov, Y. Borzdov, I. Novoselov, and O. Bayukov, Minerals, 8, No. 11: 522 (2018);