Pressure Welding Through a Layer of Hydrocarbon Substance: Physical Processes of a Diffusion Joint Formation

O. V. Jartovsky$^1$ and O. V. Larichkin$^2$

$^1$Donbass State Engineering Academy, 72 Akademichna Str., Donetsk Region, UA-34313 Kramatorsk, Ukraine
$^2$JSC ‘Novokramatorsky Machine Building Plant’, 5 Oleksa Tykhy Str., Donetsk Region, UA-84305 Kramatorsk, Ukraine

Received 05.04.2020; final version — 09.07.2021 Download PDF logo PDF

Abstract
The article deals with the hypothesis on the diffusion-processes’ activation mechanisms during pressure welding with a pulsed current through the hydrocarbon-substance layer. Despite the developing this welding method in the last century, this topic is still insufficiently studied and, thus, needs further research. In the time of developing this welding method, the required amount of scientific data on the physical and chemical processes accompanying the formation of the joint did not exist. The article overviews the physicochemical processes dealing with the subject of the study of interdisciplinary research. Experimental studies carried out by specialists in different fields enabled establishing data necessary to develop the hypothesis. The nanoscale carbon formations were discovered, and their properties were studied. The phenomena accompanying the electric current in micropinches, ‘Coulomb explosions’ with the shock wave formation, the anomalous mass transfer under the shock loading during diffusion welding of different materials were investigated. As experimentally proved, the electroexplosive and electromagnetic phenomena, shock waves affecting the surface metal layers activate the diffusion processes. Based on a large number of interdisciplinary studies, a hypothesis on the formation of a diffusion joint during pressure welding with a pulsed current through the layer of hydrocarbon substance is formulated. The time of formation of a joint at the same temperature is lesser than that required for diffusion welding in vacuum. The structure of the welded joint is similar to the structure obtained by diffusion welding in vacuum.

Keywords: pressure welding, hydrocarbon substances, electric explosion, electric current, nanotubes, diffusion.

DOI: https://doi.org/10.15407/ufm.22.03.440

Citation: O. V. Jartovsky and O. V. Larichkin, Pressure Welding Through a Layer of Hydrocarbon Substance: Physical Processes of a Diffusion Joint Formation, Progress in Physics of Metals, 22, No. 3: 440–460 (2021)


References  
  1. V.V. Gubarev, Yu.V. Kazakov, and M.L. Finkelshtein, Svarochnoye Proizvodstvo, No. 7: 49 (1976) (in Russian).
  2. S.P. Kocharmin, A.P. Semenov, and N.I. Dmitriev, Sposob Svarki Davleniem. Avtorskoe Svidetelstvo SSSR, No. 944226 (Published: 23.01.1983) (in Russian).
  3. S.P. Kocharmin, S.V. Gavrintsev, and A.P. Semenov, Sposob Svarki Davleniem. Avtorskoe Svidetelstvo SSSR, No. 975284 (Published: 23.11.1982) (in Russian).
  4. A.V. Zhartovskiy, Flyus dlya Diffuzionnoy Svarki. Avtorskoe Svidetelstvo SSSR, No. 1109294 (Published: 23.08.1984) (in Russian).
  5. V.A. Zuyok, R.A. Rud, I.A. Petelguzov, and M.V. Tretyakov, Problems of Atomic Science and Technology. Physics of Radiation Effects and Radiation Materials Science, 95, No. 1: 141 (2010) (in Russian).
  6. M.G. Bolotov and I.O. Prybytko, Prog. Phys. Met., 22, No. 1: 103 (2021); https://doi.org/10.15407/ufm.22.01.103
  7. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, J. Alloys Compd., 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  8. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Prog. Phys. Met., 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  9. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, EPL, 132, No. 4: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  10. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Phys. Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
  11. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
  12. M.V. Murashov, S.D. Panin, and S.M. Klimov, Science and Education of the Bauman MSTU, No. 1: 189 (2015) (in Russian); http://engineering-science.ru/doc/753353.html
  13. M.P. Sychev and M.V. Murashov, Herald of the Bauman Moscow State Technical University, Spec. Iss.: 12 (2011) (in Russian).
  14. A.E. Borisevich and S.L. Cherkas, Zhurnal Tekhnicheskoy Fiziki, 82, No. 10: 58 (2012) (in Russian).
  15. N.Y. Yavorovsky, V.G. Domashenko, and P.V. Balukhtin, Proc. 4th Korea–Russia Int. Symp. Science and Technology (KORUS 2000) (Korea: University of Ulsan: 2000), p. 280.
  16. I.N. Tilikin, T.A. Shelkovenko, A.R. Mingaleev,V.M. Romanova, and S.A. Pikuz, J. Exp. Theor. Phys., 128: 946 (2019); https://doi.org/10.1134/S1063776119050157
  17. G.G. Savenkov, V.A. Morozov, and A.A. Lukin, Pis’ma v ZhTF, 42, No. 22: 23 (2016) (in Russian); https://doi.org/10.21883/pjtf.2016.22.43935.16331
  18. A.A. Lukin, V.A. Morozov, and Yu.V. Sudenkov, Vestnik of Saint-Petersburg University, 1. No. 2: 133 (2008) (in Russian).
  19. S.V. Barahvostov, M.B. Bochkarev, N.B. Volkov, K.A. Nagayev, V.P. Tarakanov, S.I. Tkachenko, E.A. Chingina, Scientific Herald of Uzhhorod University. Series ‘Physics’, No. 30: 63 (2011) (in Russian).
  20. M.Y. Baranov, Technical Electrodynamics, No. 3: 3 (2008) (in Ukrainian).
  21. I.A. Barykov, G.S. Volkov, V.A. Gasilov, E.V. Grabovskij, V.I. Zaitsev, A.S. Boldarev, and O.G. Olkhovskaya, Problems of Atomic Science and Technology. Ser. Thermonuclear Fusion, 40, No. 4: 80 (2017) (in Russian); https://doi.org/10.21517/0202-3822-2017-40-4-80-85
  22. E.V. Parkevich, I.N. Tilikin, A.V. Agafonov, T.A. Shelkovenko, V.M. Romanova, A.R. Mingaleev, S.Yu. Savinov, G.A. Mesyats, and S.A. Pikuz, JETP Lett., 103: 357 (2016); https://doi.org/10.1134/S0021364016050118
  23. A.N. Dolgov, N.V. Zemchenkova, N.A. Klyachin, and D.E. Prokhorovich, Prikladnaya Fizika, No. 2: 9 (2012) (in Russian).
  24. A.N. Dolgov, N.A. Klyachin, and D.E. Prohorovich, Problems of Atomic Science and Technology. Ser. Thermonuclear Fusion, 40, No. 1: 83 (2017) (in Russian); https://doi.org/10.21517/0202-3822-2017-40-1-83-90
  25. A.N. Dolgov, N.A. Klyachin, and D.E. Prohorovich, Uspekhi Prikladnoi Fiziki, 4, No. 1: 46 (2016) (in Russian).
  26. I.V. Kurchatov, Atomic Energy, No. 3: 65 (1956) (in Russian).
  27. N.G. Ivoilov, M.M. Bikchantaev, O.A. Strebkov, Yu.E. Khalabuda, A.Kh. Gil’mutdinov, A.V. Voloshin, and A.V. Protasov, Proc. Kazan Univ. Phys.-Math. Ser., 151, No. 3: 52 (2009) (in Russian); http://mi.mathnet.ru/uzku785
  28. G. Oshawa, East-West Institute Magazine, No. 3 (1965).
  29. M. Kushi and G. Oshawa, Kushi Institute Study Guide, 10: 1 (1980).
  30. M. Singh, M. Saksena, V. Dixit, and V. Kartha, Fusion Technology, 26: 266 (1994); https://doi.org/10.13182/FST94-A30331
  31. L.I. Urutskoev, V.I. Liksonov, and V.G. Tsinoev, Prikladnaya Fizika, No. 4: 83 (2000) (in Russian).
  32. V.A. Pan’kov and B.P. Kuz’min, Aktual’nyye Problemy Sovremenoy Nauki, No. 5 (44): 117 (2008) (in Russian).
  33. R. Sundaresan and J. O’M. Bockris, Fusion Technology, 26: 261(1994); https://doi.org/10.13182/FST94-A30330
  34. V.I. Kazbanov, A.G. Olado, and G.M. Rybachenko, Sbornik Nauchnykh Trudov Krasnoyarsk, No. 4: 442 (1998) (in Russian).
  35. Y. Tashpolotov and Eh. Sadykov, URL: http://econf.rae.ru/pdf/2010/06/ab88b15733.pdf (in Russian)
  36. V.F. Balakirev and V.V. Krymskiy, Izvestiya Chelyabinskogo Nauchnogo Centra, No. 4 (21): 65 (2003) (in Russian).
  37. V.I. Oreshkin and E.V. Oreshkin, Zhurnal Tekhnicheskoy Fiziki, 87, No. 1: 34 (2017) (in Russian); https://doi.org/10.21883/JTF.2017.01.44015.1866
  38. S.A. Pikuz, T.A. Shelkovenko, and D.A. Hammer, Fizika Plazmy, 41, No. 4: 319 (2015) (in Russian).
  39. Yu.S. Buranova, Trudy MFTI, 3, No. 3: 30 (2011) (in Russian).
  40. N.I. Alekseev, S.V. Polovtsev, and N.A. Charykov, Zhurnal Tekhnicheskoy Fiziki, 76, No. 3: 57 (2006) (in Russian).
  41. V.M. Semenov, A.V. Zhartovsky, V.I. Kabatsky, and A.V. Kabatsky, Resursosberegayushchie Tekhnologii pri Proizvodstve Svarnykh Zagotovok [Resource-Saving Technologies for Production of Workpieces] (Kramatorsk: DDMA: 2009) (in Russian).
  42. I.P. Suzdalev, Nanotekhnologiya: Fiziko-Khimiya Nanoklasterov, Nanostruktr i Nanomaterialov [Nanotechnology: Physics and Chemistry of Nanoclusters and Nanomaterials] (Moscow: KomKniga: 2006) (in Russian).
  43. A.I. Podlivaev and L.A. Openov, Fizika i Tehnika Poluprovodnikov, 51, No. 2: 222 (2017) (in Russian); https://doi.org/10.21883/FTP.2017.02.44109.8281
  44. G.S. Ivanchenko and N.G. Lebedev, Fiz. Tverd. Tela, 49, No. 1: 183 (2007) (in Russian).
  45. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Eds. M.S. Dresselhaus, G. Dresselhaus, and P. Avouris) (Springer: 2001); https://doi.org/10.1007/3-540-39947-X
  46. G. Seifert, R. Gutierres, and R. Schmidt, Phys. Lett. A, 211, No. 6: 357 (1996); https://doi.org/10.1016/0375-9601(96)00020-5
  47. V.V. Komarov, A.M. Popova, I.O. Stureiko, L. Shmidt, Kh. Yungklas, Moscow University Physics Bulletin, 68: 1 (2013); https://doi.org/10.3103/S0027134913010116
  48. M.V. Khilko, G.S. Volkov, I.N. Frolov, and A.N. Gritsuk, Problems of Atomic Science and Technology. Ser. Thermonuclear Fusion, 39, No. 1: 55 (2016). (in Russian); http://vant.iterru.ru/engvant_2016_1/5.pdf
  49. V.I. Oreshkin, R.B. Baksht, A.Yu. Labetskiy, A.G. Russkikh, A.G. Shishlov, P.R. Levashov, K.V. Khishchenko, and K.V. Glazyrin, Zhurnal Tekhnicheskoy Fiziki, 47, No. 7: 38 (2004) (in Russian).
  50. A.G. Russkikh, V.I. Oreshkin, A.Yu. Labetskiy, S.A. Chaikovskiy, and A.V. Shishlov, Zhurnal Tekhnicheskoy Fiziki, 2007, 77, No. 5: 35 (2007) (in Russian).
  51. L.N. Larikov, V.M. Falchenko, V.F. Mazanko, S.M. Gurevich, G.K. Kharchenko, and A.I. Ignatenko, Avt. Svarka, No. 5: 19 (1974) (in Russian).
  52. L.N. Larikov, V.M. Falchenko, V.F. Mazanko, S.M. Gurevich, A.I. Ignatenko, and G.K. Kharchenko, Doklady AN SSSR, 221, No. 5: 1073 (1975) (in Russian).
  53. L.N. Larikov, V.F. Mazanko, and V.M. Falchenko, Fiz. Met. Metalloved., No. 6: 144 (1983) (in Russian).
  54. V.M. Mironov, V.F. Mazanko, D.S. Gertsriken, and A.V. Filatov, Massoperenos i Fazoobrazovanie v Metallakh pri Impulsnykh Vozdeistviyakh [Mass Transfer and Phase Formation in Metals at Impulse Actions] (Samara: Samara University: 2001) (in Russian).
  55. V.F. Mazanko, V.S. Mykhalenkov, E.A. Tsapko, E.Y. Bogdanov, and V.P. Bevz, Dopovidi NAN Ukrainy, No. 5: 92 (2007) (in Ukrainian).
  56. P.L. Gruzin, Doklady AN SSSR, 86, No. 2: 289 (1952) (in Russian).
  57. L.N. Larikov, A.I. Nosar, V.F. Mazanko, and V.M. Falchenko, Ukr. Phys. J., No. 9: 1516 (1977) (in Russian).
  58. M. Bolotov, G. Bolotov, S. Stepenko, and P. Ihnatenko, Appl. Sci., 11, No. 4: 1765 (2021); https://doi.org/10.3390/app11041765