TiMn2-Based Intermetallic Alloys for Hydrogen Accumulation: Problems and Prospects

V. A. Dekhtyarenko, D. G. Savvakin, V. I. Bondarchuk, V. M. Shyvaniuk, T. V. Pryadko, and O. O. Stasiuk

G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 18.06.2021; final version — 25.06.2021 Download PDF logo PDF

Abstract
The main advantages of hydrogen as an energy carrier in comparison with currently used hydrocarbons are determined. By comparing the advantages and disadvantages of available methods of hydrogen storage, it was proved that storage of it in a bound state (hydrides) provides the largest amount of stored hydrogen per unit weight of the container and is the safest method. As shown, the alloys based on AB2-type intermetallics are the most promising materials for safe storage and transportation of hydrogen in the bound state.

Keywords: hydrogen, hydrides, Laves phase, hydrogenation, dehydrogenation, hydrogen capacity.

DOI: https://doi.org/10.15407/ufm.22.03.307

Citation: V. A. Dekhtyarenko, D. G. Savvakin, V. I. Bondarchuk, V. M. Shyvaniuk, T. V. Pryadko, and O. O. Stasiuk, TiMn2-Based Intermetallic Alloys for Hydrogen Accumulation: Problems and Prospects, Progress in Physics of Metals, 22, No. 3: 307–351 (2021)


References  
  1. K.T. Moller, T.R. Jensen, E. Akiba, and H.W. Li., Prog. Nat. Sci., 27: 34 (2017); https://doi.org/10.1016/j.pnsc.2016.12.014
  2. V.N. Verbetsky and S.V. Mitrokhin, Materialovedenie, 1: 48 (2009) (in Russian).
  3. B.P. Tarasov, Rus. Chem. Journal, L, No. 6: 11 (2006).
  4. J. Bellosta von Colbe, J.-R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzik, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M.V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D.A. Sheppard, A. Stuart, G. Walker, C.J. Webb, H. Yang, V. Yartys, A. Züttel, and M. Dornheim, Int. J. Hydrogen Energy, 44: 7780 (2019); https://doi.org/10.1016/j.ijhydene.2019.01.104
  5. B.P. Tarasov and M.V. Lototskyy, Rus. Chem. Journal, L, No. 4: 11 (2006).
  6. О. Baklitskaya-Kameneva, Russian Nanotechnology, 84: 14 (2009) (in Russian).
  7. B. Viswanathan, Energy Sources: Fundamentals of Chemical Conversion Processes and Applications (Elsevier: 2017), Ch. 10, р. 185; https://doi.org/10.1016/B978-0-444-56353-8.00010-1
  8. M.V. Lototskyy, Int. J. Hydrogen Energy, 41: 2739 (2016); https://doi.org/10.1016/j.ijhydene.2015.12.055
  9. C. Fiori, A. Dell’Era, F. Zuccari, A. Santiangeli, A. D’Orazio, and F. Orecchini, Int. J. Hydrogen Energy, 40: 11879 (2015); https://doi.org/10.1016/j.ijhydene.2015.02.105
  10. P. Fragiacomo and F. Piraino, J. Energy Storage, 17: 474 (2018); https://doi.org/10.1016/j.est.2018.04.011
  11. L. Gong, Q. Duan, L. Jiang, K. Jin, and J. Sun, Fuel, 182: 419 (2016); https://doi.org/10.1016/j.fuel.2016.05.127
  12. M.B. Ley, L.H. Jepsen, Y.S. Lee, Y.W. Cho, J.M. Bellosta von Colbe, M. Dornheim, M. Rokni, J.O. Jensen, M. Sloth, Ya. Filinchuk, J.E. Jørgensen, F. Besenbacher, and T.R. Jensen, Mater. Today, 17, No. 3: 122 (2014); https://doi.org/10.1016/j.mattod.2014.02.013
  13. C. Corgnale, B.J. Hardy, and D.L. Anton, Int. J. Hydrogen Energy, 37: 14223 (2012); https://doi.org/10.1016/j.ijhydene.2012.06.040
  14. D. Parra, M. Gillott, and G.S. Walker, Int. J. Hydrogen Energy, 41: 5215 (2016); https://doi.org/10.1016/j.ijhydene.2016.01.098
  15. D.J. Durbin and C. Malardier-Jugroot, Int. J. Hydrogen Energy, 38: 14595 (2013); https://doi.org/10.1016/j.ijhydene.2013.07.058
  16. Z.J. Cao, L.Z. Ouyang, H. Wang, J.W. Liu, L.X. Sun, and M. Zhu, J. Alloy Compd., 639: 452 (2015); https://doi.org/10.1016/j.jallcom.2015.03.196
  17. Z.J. Cao, L.Z. Ouyang, H. Wang, J.W. Liu, D.L. Sun, Q.A. Zhang, and M. Zhu, Int. J. Hydrogen Energy, 40: 2717 (2015); https://doi.org/10.1016/j.ijhydene.2014.12.093
  18. H. Barthelemy, M. Weber, and F. Barbier, Int. J. Hydrogen Energy, 42: 7254 (2017); https://doi.org/10.1016/j.ijhydene.2016.03.178
  19. Handbook of Hydrogen Storage: New Materials for Future Energy Storage (Ed. M. Hirscher) (Wiley‐VCH Verlag GmbH & Co. KGaA: 2010); https://doi.org/10.1002/9783527629800
  20. R.A. Varin, T. Czujko, and Z.S. Wronski, Nanomaterials for Solid State Hydrogen Storage (Berlin: Springer: 2009); https://doi.org/10.1007/978-0-387-77712-2
  21. P. Chen and M. Zhu, Mater. Today, 11: 36 (2008); https://doi.org/10.1016/S1369-7021(08)70251-7
  22. S.S. Srinivasan and D.E. Demirocak, Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production, Storage, and Utilization (Eds. Y.-P. Chen, S. Bashir, and J.L. Liu) (Berlin: Springer: 2017), p. 225; https://doi.org/10.1007/978-3-662-53514-1
  23. G. Principi, F. Agresti, A. Maddalena, and S.L. Russo, Energy, 34: 2087 (2009); https://doi.org/10.1016/j.energy.2008.08.027
  24. T.P. Chernyaeva and A.V. Ostapov, Problems Atomic Sci. Technol., 5: 16 (2013) (in Russian).
  25. T.M. Roshchina, Soros Educational J., 2: 89 (1998) (in Russian).
  26. A. Zuttel, A. Borgschulte, and L. Schlapbach, Hydrogen as a Future Energy Carrier (Wiley-VCH Verlag GmbH & Co. KGaA: 2008); https://doi.org/10.1002/9783527622894
  27. A. Zuttel, Mater. Today, 6, No. 9: 24 (2003); https://doi.org/10.1016/S1369-7021(03)00922-2
  28. M. Dornheim, Thermodynamics–Interaction Studies–Solids, Liquids and Gases (Ed. J.C. Moreno-Piraján) (IntechOpen: 2011), Ch. 33, p. 891; https://doi.org/10.5772/21662
  29. V.A. Yartys, V.V. Burnashev, and K.N. Semenenko, USSR Academy of Sciences. Advances in Chemistry, LII, No. 4: 529 (1983) (in Russian).
  30. B.P. Tarasov, M.V. Lototskyy, and V.A. Yartys, Rus. Chem. Journal, L, No. 6: 34 (2006).
  31. R. Griessen, The Lecture ‘Science and Technology of Hydrogen in Metals’, IX Chapter: Sustainability and Hydrogen (Amsterdam: Vrije Universiteit: 2008).
  32. A.C. Switendick, J. Less-Common Met., 130: 249 (1987); https://doi.org/10.1016/0022-5088(87)90116-0
  33. A.C. Switendick, Solid State Commun., 8, No. 15: 1463 (1970); https://doi.org/10.1016/0038-1098(70)90720-9
  34. M. Gupta, J. Less-Common Met., 103: 325 (1984); https://doi.org/10.1016/0022-5088(84)90256-X
  35. W.E. Wallace and S.K. Malik, Hydrides for Energy Storage (Eds. A.F. Andresen and A.J. Maelands) (New York: Pergamon: 1978), p. 33.
  36. H. Smithson, C.A. Marianetti, D. Morgan, A. Van der Ven, A. Predith, and G. Ceder, Phys. Rev. B, 66, No. 12: 144107 (2002); https://doi.org/10.1103/PhysRevB.66.144107
  37. Y. Ohsumi, Hydrogen Absorbing Alloy–Property and Application (AGNE: 1993) (in Japanese).
  38. K. Ohnishi, The Latest Technologies of Hydrogen-Absorbing Alloys (CMC: (1994) (in Japanese).
  39. V.N. Verbetsky and S.V. Mitrokhin, Alternative Energy and Ecology, 10: 20 (2005) (in Russian).
  40. V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, and V.E. Antonov, Int. J. Hydrogen Energy, 44: 7809 (2019); https://doi.org/10.1016/j.ijhydene.2018.12.212
  41. N. Gérard and S. Ono, Hydrogen in Intermetallic Compounds II. Topics in Applied Physics. Vol. 67 (Berlin–Heidelberg: Springer: 2005), Ch. 4, p. 165; https://doi.org/10.1007/3-540-54668-5_11
  42. A. Zaluska, L. Zaluski, and J.O. Ström-Olsen, J. Alloys Compd., 288: 217 (1999); https://doi.org/10.1016/S0925-8388(99)00073-0
  43. V. Skripnyuk, E. Buchman, E. Rabkin, Y. Estrin, M. Popov, and S. Jorgensen, J. Alloys Compd., 436: 99 (2007); https://doi.org/10.1016/j.jallcom.2006.07.030
  44. M. Krystian, M.J. Zehetbauer, H. Kropik, B. Mingler, and G. Krexner, J. Alloys Compd., 509: S449 (2011); https://doi.org/10.1016/j.jallcom.2011.01.029
  45. C. Chiu, S.-J. Huang, T.-Y. Chou, and E. Rabkin, J. Alloys Compd., 743: 437 (2018); https://doi.org/10.1016/j.jallcom.2018.01.412
  46. Z. Dehouche, H.A. Peretti, S. Hamoudi, Y. Yoo, and K. Belkacemi, J. Alloys Compd., 455: 432 (2008); https://doi.org/10.1016/j.jallcom.2007.01.138
  47. M. Felderhoff and B. Bogdanović, Int. J. Mol. Sci., 10: 325 (2009); https://doi.org/10.3390/ijms10010325
  48. C. Zhou, Z.Z. Fang, and R.C. Bowman Jr., J. Phys. Chem. C, 119: 22261 (2015); https://doi.org/10.1021/acs.jpcc.5b06190
  49. V.A. Livanov, A.A. Bukhanova, and B.A. Kolachev, Hydrogen in Titanium (Moscow: State Scientific and Technical Publishing House of Literature on Ferrous and Non-Ferrous Metallurgy: 1962) (in Russian).
  50. Т.V. Pryadko, Metallofiz. Noveishie Tekhnol., 37, No. 2: 243 (2015) (in Russian); https://doi.org/10.15407/mfint.37.02.0243
  51. O.I. Dekhtyar, O.M. Ivasishin, D.Yu. Kovalev, O.M. Korduban, V.K. Prokudina, V.I. Ratnikov, D.G. Savvakin, A.Ye. Sychev, and M.M. Gumenyak, Metallofiz. Noveishie Tekhnol., 36, No. 9: 1153 (2014) (in Russian); https://doi.org/10.15407/mfint.36.09.1153
  52. O.M. Ivasyshyn and D.G. Savvakin, Mater. Sci., 51: 465 (2016); https://doi.org/10.1007/s11003-016-9863-y
  53. O.M. Ivasishin, D.G. Savvakin, and N.M. Gumenyak, Metallofiz. Noveishie Tekhnol., 33, No. 7: 899 (2011) (in Russian).
  54. C. Song, L.E. Klebnoff, T.A. Johson, B.S. Chao, A.F. Socha, J.M. Oros, C.J. Radley, S. Wingert, and J.S. Breit, Int. J. Hydrogen Energy, 39: 14896 (2014); https://doi.org/10.1016/j.ijhydene.2014.07.069
  55. M.V. Lototskyy, I. Tolj, M.W. Davids, Y.V. Klochko, A. Parsons, D. Swanepoel, R. Ehlers, G. Louw, B. van der Westhuizen, F. Smithd, B.G. Pollet, C. Sita, and V. Linkov, Int. J. Hydrogen Energy, 41: 13831 (2016); https://doi.org/10.1016/j.ijhydene.2016.01.148
  56. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Powder Metall. Met. Ceram., 52: 340 (2013); https://doi.org/10.1007/s11106-013-9531-9
  57. S. Satyapal, J. Petrovic, C. Read, G. Thomas, and G. Ordaz, Catal. Today, 120, Nos. 3–4: 246 (2007); https://doi.org/10.1016/j.cattod.2006.09.022
  58. A. Godula-Jopek, Hydrogen Production by Electrolysis (Ed. A. Godula-Jopek) (Wiley-VCH Verlag GmbH & Co. KGaA: 2015), p. 273; https://doi.org/10.1002/9783527676507
  59. M.V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, and V. Yartys, Prog. Nat. Sci., 27: 3 (2017); https://doi.org/10.1016/j.pnsc.2017.01.008
  60. M.V. Lototskyy, I. Tolj, A. Parsons, F. Smith, C. Sita, and V. Linkov, J. Power Sources, 316: 239 (2016); https://doi.org/10.1016/j.jpowsour.2016.03.058
  61. A. Narvaez, Low Cost Metal Hydride-Based Hydrogen Storage System for Forklift Applications (Phase II). Hawaii Hydrogen Carriers, US DOE Annual Merit Review Meeting, June 18, 2014; https://www.hydrogen.energy.gov/pdfs/review14/st095_narvaez_2014_p.pdf
  62. B.P. Tarasov, M.S. Bocharnikov, Y.B. Yanenko, P.V. Fursikov, and M.V. Lototskyy, Int. J. Hydrogen Energy, 43: 4415 (2018); https://doi.org/10.1016/j.ijhydene.2018.01.086
  63. L.E.R. Vega, D.R. Leiva, R.M. Leal Neto, W.B. Silva, R.A. Silva, T.T. Ishikawa, C.S. Kiminami, and W.J. Botta, Int. J. Hydrogen Energy, 43, No. 5: 2913 (2018); https://doi.org/10.1016/j.ijhydene.2017.12.054
  64. V.Yu. Zadorozhnyy, G.S. Milovzorov, S.N. Klyamkin, M.Yu. Zadorozhnyy, D.V. Strugova, M.V. Gorshenkov, and S.D. Kaloshkina, Prog. Nat. Sci.: Materials Int., 27, No. 1: 149 (2017); https://doi.org/10.1016/j.pnsc.2016.12.008
  65. L. Pickering, M.V. Lototskyy, M.W. Davids, C. Sita, and V. Linkov, Mater Today: Proc., 5: 10470 (2018); https://doi.org/10.1016/j.matpr.2017.12.378
  66. M. Shibuya, J. Nakamura, and E. Akiba, J. Alloys Compd., 466: 558 (2018); https://doi.org/10.1016/j.jallcom.2007.11.120
  67. P. Lv, Z. Liu, A. K. Patel, X. Zhou, and J. Huot, Metals Materials Intl., 26: 205 (2020); https://doi.org/10.1007/s12540-019-00501-1
  68. P. Lv and J. Huot, Int. J. Hydrogen Energy, 41: 22128 (2016); https://doi.org/10.1016/j.ijhydene.2016.07.091
  69. H. Leng, Z. Yu, J. Yin, Q. Li, Z. Wu, and K.-C. Chou, Int. J. Hydrogen Energy, 42: 23731 (2017); https://doi.org/10.1016/j.ijhydene.2017.01.194
  70. E.I. Gkanas, M. Khzouz, G. Panagakos, T. Statheros, G. Mihalakakou, G.I. Siasos, G. Skodras, and S.S. Makridis, Energy, 142: 518 (2018); https://doi.org/10.1016/j.energy.2017.10.040
  71. M. Lototskyy, I. Tolj, Y. Klochko, M.W. Davids, D. Swanepoel, and V. Linkov, Int. J. Hydrogen Energy, 45: 7958 (2020); https://doi.org/10.1016/j.ijhydene.2019.04.124
  72. Y. Kojima, Y. Kawai, S. Towata, T. Matsunaga, T. Shinozawa, and M. Kimbara, J. Alloys Compd., 419: 256 (2006); https://doi.org/10.1016/j.jallcom.2005.08.078
  73. J.G. Park, H.Y. Jang, S.C. Han, P.S. Lee, and J.Y. Lee, Mat. Sci. Eng. A, 329–331: 351 (2002); https://doi.org/10.1016/S0921-5093(01)01598-2
  74. S.V. Mitrokhin, T.N. Bezuglaya, and V.N. Verbetsky, J. Alloys Compd., 330–332: 146 (2002); https://doi.org/10.1016/S0925-8388(01)01469-4
  75. Z. Dehouche, M. Savard, F. Laurencelle, and J. Goyette, J. Alloys Compd., 400: 276 (2005); https://doi.org/10.1016/j.jallcom.2005.04.007
  76. J.L. Bobet and Т.B. Darriet, Int. J. Hydrogen Energy, 25, No. 8: 767 (2000); https://doi.org/10.1016/S0360-3199(99)00101-9
  77. H. Oesterreicher and H. Bittner, Mat. Res. Bull., 13: 83 (1978); https://doi.org/10.1016/0025-5408(78)90031-4
  78. D.P. Shoemaker and C.B. Shoemaker, J. Less-Common Met., 68, No. 1: 43 (1979); https://doi.org/10.1016/0022-5088(79)90271-6
  79. Y. Morita, T. Gamo, and S. Kuranaka, J. Alloys Compd., 253–254: 29 (1997); https://doi.org/10.1016/S0925-8388(96)03056-3
  80. X. Yu, B. Xia, Z. Wu, and N. Xu, Mat. Sci. Eng. A, 373, Nos. 1–2: 303 (2004); https://doi.org/10.1016/j.msea.2004.02.008
  81. V. Ivanchenko and T. Pryadko, Landolt-Börnstein. New Series. Group IV (Springer: 2007), vol. 11, No. 3, p. 475.
  82. A. Walnsch, M.J. Kriegel, O. Fabrichnaya, and A. Leineweber, J. Phase Equilibria Diffusion, 41: 457 (2020); https://doi.org/10.1007/s11669-020-00804-6
  83. S. Samboshi, N. Masahashi, and S. Hanada, J. Alloys Compd., 352: 210 (2003); https://doi.org/10.1016/S0925-8388(02)01125-8
  84. R.M. Waterstrat, Тrans. Metall. Soc. AIME, 221: 686 (1961).
  85. V.N. Svechnikov and V.V. Pet’kov, Metallofizika, 64: 24 (1976) (in Russian).
  86. V. Ivanchenko, V. Dekhtyarenko, T. Kosorukova, and T. Pryadko, Chem. Metals Alloys., 1, No. 2: 137 (2008); https://doi.org/10.30970/cma1.0045
  87. Т. Yamashita, Т. Gamo, Y. Moriwaki, and M. Fukuda, Nippon Kinzoku Gakkaishi–Journal of the Japan Institute of Metals, 41: 148 (1977).
  88. S. Samboshi, N. Masahashi, and S. Hanada, Acta Mater., 49: 927 (2001) https://doi.org/10.1016/S1359-6454(00)00371-2
  89. X.Y. Song, Y. Chen, Z. Zhang, Y.Q. Lei, X.B. Zhang, and Q.D. Wang, Int. J. Hydrogen Energy, 25: 649 (2000); https://doi.org/10.1016/S0360-3199(99)00080-4
  90. N. Bouaziz, M. Bouzid, and A.B. Lamine, Int. J. Hydrogen Energy, 43: 1615 (2018); https://doi.org/10.1016/j.ijhydene.2017.11.049
  91. T. Huang, Z. Wu, G. Sun, and N. Xu, Intermetallics, 15: 593 (2007); https://doi.org/10.1016/j.intermet.2006.10.035
  92. V.A. Dekhtyarenko, Regularities and Mechanisms of Interaction of Hydrogen with Multicomponent Titanium Alloys Based on Laves Phases and B.C.C. Solid Solution (Abstract of a Thesis. for Dr. Tech. Sci.) (Kyiv: G.V. Kurdyumov Institute for Metal Physics, N.A.S.U.: 2021) (in Ukrainian).
  93. M. Yoshida and E. Akiba, J. Alloys Compd., 224, No. 1: 121 (1995); https://doi.org/10.1016/0925-8388(95)01518-3
  94. A. Ming, F. Pourarian, S.G. Sankar, W.E. Wallace, and L. Zhang, Mater. Sci. Eng., 33: 53 (1995).
  95. B.H. Liu, D.M. Kim, K.Y. Lee, and J.Y. Lee, J. Alloys Compds., 240, Nos. 1–2: 214 (1996); https://doi.org/10.1016/0925-8388(96)02245-1
  96. H. Тaizhong, W. Zhu, Y. Xuebin, C. Jinzhou, X. BaoJia, H. Тiesheng, and X. Naixin, Intermetallics, 12, No. 1: 91 (2004); https://doi.org/10.1016/j.intermet.2003.08.005
  97. V.G. Ivanchenko, V.I. Nichiporenko, and Т.V. Pryadko, Metallofiz. Noveishie Tekhnol., 28: 977 (2006) (in Russian).
  98. V.G. Ivanchenko, Т.V. Pryadko, I.S. Gavrylenko, and V.V. Pogorelaya, Сhem. Met. Alloys, 1, No. 1: 67 (2008); https://doi.org/10.30970/cma1.0004
  99. I. Jacob, A. Stern, A. Moran, D. Shaltiel, and D. Davidov, J. Less-Common Met., 73: 369 (1980); https://doi.org/10.1016/0022-5088(80)90331-8
  100. H.-H. Lee, K.-Y. Lee, and J.-Y. Lee, J. Alloys Compd., 239: 63 (1996); https://doi.org/10.1016/0925-8388(96)02276-1
  101. C.E. Lundin, F.E. Lynca, and C.B. Magee, J. Less-Common Met., 56: 19 (1977); https://doi.org/10.1016/0022-5088(77)90215-6
  102. J.G. Park, H.Y. Jang, S.C. Han, P.S. Lee, and J.Y. Lee, J. Alloys Compd., 325: 293 (2001); https://doi.org/10.1016/S0925-8388(01)01409-8
  103. Y. Wang, Y. Zhang, X. Wang, and C. Chen, Acta Metallurgica Sinica, 42, No. 6: 641 (2006).
  104. G. Li, N. Nishimiya, H. Satoh, and N. Kamegashira, J. Alloys Compd., 393: 231 (2005); https://doi.org/10.1016/j.jallcom.2004.08.097
  105. A.A. Shkola, Metallofiz. Noveishie Tekhnol., 38, No. 9: 1213 (2016) (in Ukrainian); https://doi.org/10.15407/mfint.38.09.1213
  106. A.V. Revyakin and V.A. Reznichenko, Titanium and Its Alloys. Issue II. Metallurgy of Titanium (Moscow: Publishing House of the Academy of Sciences of the U.S.S.R.: 1959) (in Russian).
  107. G.F. Kobzenko, A.A. Shkola, and T.V. Pryadko, Metallofiz. Noveishie Tekhnol., 24, No. 12: 1679 (2002) (in Russian).
  108. R.L. Kurtz and V.E. Henrich, Phys. Rev. B, 26, No. 12: 6682 (1982); https://doi.org/10.1103/PhysRevB.26.6682
  109. J.R. Johnson, J. Less-Common Met., 73: 345 (1980); https://doi.org/10.1016/0022-5088(80)90328-8
  110. J. Bodega, J.F. Fernández, F. Leardini, J.R. Ares, and C. Sánchez, J. Physics Chem. Solids, 72, No. 11: 1334 (2011); https://doi.org/10.1016/j.jpcs.2011.08.004
  111. E.A. Anikina and V.N. Verbetsky, Int. J. Hydrogen Energy, 36: 1344 (2011); https://doi.org/10.1016/j.ijhydene.2010.06.085
  112. S.V. Mitrokhin, T.N. Smirnova, V.A. Somenkov, V.P. Glazkov, and V.N. Verbetsky, J. Alloys Compd., 356–357: 80 (2003); https://doi.org/10.1016/S0925-8388(03)00257-3
  113. V.A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 37, No. 7: 683 (2015) (in Russian); https://doi.org/10.15407/mfint.37.05.0683
  114. T.V. Pryadko and V.A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 40, No. 5: 649 (2018) (in Russian); https://doi.org/10.15407/mfint.40.05.0649
  115. V.A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 41, No. 10: 1283 (2019); https://doi.org/10.15407/mfint.41.10.1283
  116. X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, and N.X. Xu, Int. J. Hydrogen Energy, 29: 1377 (2004); https://doi.org/10.1016/j.ijhydene.2004.01.015
  117. R.R. Jeng, C.Y. Chou, S.-L. Lee, Y.C. Wu, and H.Y. Bor, J. Chinese Institute Engineers, 34. No. 5: 601 (2011).
  118. B. Predel, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys Cr–Cs ... Cu–Zr (Ed. O. Madelung), Ch. 1, p. 1 (Berlin–Heidelberg: Springer-Verlag: 1994); https://doi.org/10.1007/10086090_1030
  119. K.N. Young and J. Nei, Materials (Basel), 6, No. 10: 4574 (2013); https://doi.org/10.3390/ma6104574
  120. T.P. Yadav, R.R. Shahi, and O.N. Srivastava, Int. J. Hydrogen Energy, 37: 3689 (2012); https://doi.org/10.1016/j.ijhydene.2011.04.210
  121. F. Stein, M. Palm, and G. Sauthoff, Intermetallics, 12. Nos. 7–9, Spec. Iss.: 713 (2004); https://doi.org/10.1016/j.intermet.2004.02.010
  122. D.J. Thoma and J.H. Perepezko, J. Alloys Compd., 224, No. 2: 330 (1995); https://doi.org/10.1016/0925-8388(95)01557-4
  123. S.V. Mitrokhin, T.N. Bezuglaya, and V.N. Verbetsky, Hydrogen Energy Progress XIII: Proceedings of the 13th World Hydrogen Energy Conference (Beijing, China, June 12–15, 2000), p. 534.
  124. P. Liu, X. Xie, L. Xu, X. Li, and T. Liu, Prog. Natur. Sci.: Mat. Int., 27: 652 (2017); https://doi.org/10.1016/j.pnsc.2017.09.007
  125. N.N. Greenwood and A. Earnshaw, Chemistry of the Elements. 2nd Ed. (Oxford: Butterworth Heinemann: 1997).
  126. Z. Cao, L. Ouyang, H. Wang, J. Liu, L. Sun, and M. Zhu, J. Alloys Compd., 639: 452 (2015); https://doi.org/10.1016/j.jallcom.2015.03.196
  127. H. Iba and E. Akiba, J. Alloys Compd., 253–254: 21 (1997); https://doi.org/10.1016/S0925-8388(96)03072-1
  128. E. Akiba and H. Iba, Intermetallics, 6: 461 (1998); https://doi.org/10.1016/S0966-9795(97)00088-5
  129. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Metallofiz. Noveishie Tekhnol., 33, Spec. Iss: 479 (2011) (in Russian).
  130. V.G. Ivanchenko, V.A. Dekhtyarenko, T.V. Pryadko, and I.I. Mel’nik, Metallofiz. Noveishie Tekhnol., 35, No. 11: 1465 (2013) (in Russian).
  131. V. Dekhtyarenko, T. Pryadko, and O. Boshko, Chem. Metals Alloys, 11: 77 (2018); https://doi.org/10.30970/cma11.0371
  132. G.G. Libowitz and A. Maeland, Material Science Forum, 30: 177 (2015); https://doi.org/10.4028/www.scientific.net/MSF.31.177
  133. S. Ono, K. Nomura, and J. Ikeda, J. Less-Common. Met., 72, No. 2: 159 (1980); https://doi.org/10.1016/0022-5088(80)90135-6
  134. K. Ohnishi and T. Kabutomori, The Latest Technologies of Hydrogen Absorbing Alloys (CMC: 1994), p. 33.
  135. J. Huot, D.B. Ravnsbæk, J. Zhang, F. Cuevas, M. Latroche, and T.R. Jensen, Prog. Mater. Sci., 58: 30 (2013); https://doi.org/10.1016/j.pmatsci.2012.07.001
  136. C. Raufast, D. Plante, and S. Miraglia, J. Alloys Compd., 617: 633 (2014); https://doi.org/10.1016/j.jallcom.2014.07.089
  137. N. Skryabina, D. Fruchart, M.G. Shelyapina, S. Dolukhanyan, and A. Aleksanyan, J. Alloys Compd., 580: S94 (2013); https://doi.org/10.1016/j.jallcom.2013.03.114
  138. H. Itoh, H. Arashima, K. Kubo, T. Kabutomori, and K. Ohnishi, J. Alloys Compd., 404–406: 417 (2005); https://doi.org/10.1016/j.jallcom.2004.12.175
  139. V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, V.I. Bondarchuk, and G.S. Mogylnyy, Int. J. Hydrogen Energy, 46: 8040 (2021); https://doi.org/10.1016/j.ijhydene.2020.11.283
  140. R.R. Chen, X.Y. Chen, X. Ding, X.Z. Li, J.J. Guo, H.S. Ding, Y.Q. Su, and H.Z. Fu, J. Alloys Compd., 748: 171 (2018); https://doi.org/10.1016/j.jallcom.2018.03.154
  141. S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, and V.A. Yartys, Int. J. Hydrogen Energy, 37: 7624 (2012); https://doi.org/10.1016/j.ijhydene.2012.01.149
  142. S. Suwarno, J.K. Solberg, J.P. Maehlen, B. Krogh, B.T. Børresen, E. Ochoa-Fernandez, E. Rytter, M. Williams, R. Denys, and V.A. Yartys, Trans. Nonferrous Metals Soc. China, 22, No. 8: 1831 (2012); https://doi.org/10.1016/S1003-6326(11)61394-0
  143. J. Matsuda and E. Akiba, J. Alloy Compd., 581: 369 (2013); https://doi.org/10.1016/j.jallcom.2013.07.073
  144. M. Balcerzak, Int. J. Hydrogen Energy, 42: 23698 (2017); https://doi.org/10.1016/j.ijhydene.2017.03.224
  145. J.F. Lynch, A.J. Maeland, and G.G. Libowitz, Z. Phys. Chem., 145, No. 12: 51 (1985); https://doi.org/10.1524/zpch.1985.145.1_2.051
  146. V. Ivanchenko, T. Pryadko, V. Dekhtyarenko, and T. Kosorukova, Chem. Metals Alloys., 1, No. 2: 133 (2008); https://doi.org/10.30970/cma1.0044
  147. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Metal Sci. Treatment Metals., 1: 4 (2010) (in Ukrainian);
  148. V.A. Dekhtyarenko, Metallofiz. Noveishie Tekhnol., 36, No. 3: 375 (2014) (in Russian); https://doi.org/10.15407/mfint.36.03.0375
  149. V.G. Ivanchenko, V.A. Dekhtyarenko, and T.V. Pryadko, Metallofiz. Noveishie Tekhnol., 37, No. 4: 521 (2015); https://doi.org/10.15407/mfint.37.04.0521
  150. V.A. Dekhtyarenko, Mater. Sci. Non-Equilibrium Phase Transform., 5, No. 3: 78 (2019).
  151. V.A. Dekhtyarenko, T.V. Pryadko, D.G. Savvakin, and T.A. Kosorukova, Metallofiz. Noveishie Tekhnol., 41, No. 11: 649 (2019) (in Russian); https://doi.org/10.15407/mfint.41.11.1455
  152. T.V. Pryadko, V.A. Dekhtyarenko, K.M. Khranovs’ka, and H.S. Mohyl’nyi, Mater. Sci., 55, No. 6: 854 (2020); https://doi.org/10.1007/s11003-020-00379-0
  153. G.P. Grabovetskaya, N.N. Nikitenkov, I.P. Mishin, I.V. Dushkin, and E.N. Stepanova, Bulletin Tomsk Polytech. Univ., 323: 55 (2013) (in Russian).
  154. Z.A. Matysina and D.A. Schur, Hydrogen and Solid-Phase Transformations in Metals, Alloys and Fullerites (Dnipro: Science and Education: 2002) (in Russian).
  155. D.H. Savvakin, M.M. Humenyak, M.V. Matviychuk, and O.H. Molyar, Mater. Sci., 47: 651 (2012); https://doi.org/10.1007/s11003-012-9440-y
  156. Gase und Kohlenstoff in Metallen. Reine und angewandte Metallkunde in Einzeldarstellungen (Hrsg. E. Fromm und E. Gebhardt) (Berlin–Heidelberg–New York: Springer Verlag: 1976), Bd. 26 (in German); https://doi.org/10.1002/bbpc.19770810821
  157. K. Young, K. Young, T. Ouchi, B. Huang, B. Chao, M.A. Fetcenko, L.A. Bendersky, K. Wang, and C. Chiu, J. Alloys Compd., 506, No. 2: 841 (2010); https://doi.org/10.1016/j.jallcom.2010.07.091
  158. V.G. Ivanchenko, V.А. Dekhtyarenko, Т.V. Pryadko, D.G. Savvakin, and I.K. Evlash, Mater. Sci., 51, No. 4: 492 (2015); https://doi.org/10.1007/s11003-016-9867-7
  159. X. Liu, L. Jiang, Z. Liu, Z. Huang, and S. Wang, J. Alloys Compd., 471, Nos. 1–2: L36 (2009); https://doi.org/10.1016/j.jallcom.2008.04.004
  160. A. Gueguen, J.M. Joubert, and M. Latroche, J. Alloys Compd., 509, No. 6: 3013 (2011); https://doi.org/10.1016/j.jallcom.2010.10.213
  161. Z. Hang, X. Xiao, S. Li, H. Ge, C. Chen, and L. Chen, J. Alloys Compd., 529: 128 (2012); https://doi.org/10.1016/j.jallcom.2012.03.044
  162. H.Y. Zhou, F. Wang, J. Wang, Z.M. Wang, Q.R. Yao, J.Q. Deng, C.Y. Tang, and G.H. Rao, Int. J. Hydrogen Energy, 39: 14887 (2014); https://doi.org/10.1016/j.ijhydene.2014.07.054
  163. K. Young, T. Ouchi, J. Nei, and L. Wang, J. Alloys Compd., 654: 216 (2016); https://doi.org/10.1016/j.jallcom.2015.09.010
  164. K. Young, T. Ouchi, J. Nei, and T. Meng, J. Power Sources., 281: 164 (2015); https://doi.org/10.1016/j.jpowsour.2015.01.170
  165. M. Enomoto, J. Phase Equilibria, 13: 195 (1992).
  166. W.B. Pearson and J.W. Christian, Acta Cryst., 5: 157 (1952); https://doi.org/10.1107/S0365110X52000484
  167. A.A. Kodentzov, S.F. Dunaev, and E.M. Slusarenko, J. Less-Comm. Met., 135: 15 (1987); https://doi.org/10.1016/0022-5088(87)90334-1
  168. J.-M. Joubert, R. Černý, M. Latroche, E. Leroy, L.Guénée, A. Percheron-Guégan, and K. Yvon, J. Solid State Chem., 166, No. 1: 1 (2002); https://doi.org/10.1006/jssc.2001.9499
  169. C. Jordy, M. Latroche, A. Percheron-Guégan, and J.C. Achard, Z. Phys. Chem., 185: 119 (1994).
  170. Q.A. Zhang, Y.Q. Lei, C.S. Wang, F.S. Wang, and Q.D. Wang, J. Power Sources, 75, No. 2: 288 (1998); https://doi.org/10.1016/S0378-7753(98)00112-8
  171. P. Pei, X.P. Song, J. Liu, G.L. Chen, X.B. Qin, and B.Y. Wang, Int. J. Hydrogen Energy, 34, No. 19: 8094 (2009) https://doi.org/10.1016/j.ijhydene.2009.08.023
  172. J.H. Kim, H. Lee, K.T. Hwang, and J.S. Han, Int. J. Hydrogen Energy, 34, No. 23: 9424 (2009); https://doi.org/10.1016/j.ijhydene.2009.09.087
  173. H. Kazemipour, A. Salimijazi, A. Saidi, A. Saatchi, and A. Aref arjmand, Int. J. Hydrogen Energy, 3, Iss. 24: 12784 (2014); https://doi.org/10.1016/j.ijhydene.2014.06.085
  174. S. Suwarno, J.K. Solberg, V.A. Yartys, and B. Krogh, J. Alloys Compd., 509, Suppl. 2: S775 (2011); https://doi.org/10.1016/j.jallcom.2010.10.130
  175. I.P. Jain, P. Jain, and A. Jain, J. Alloys Compd., 503, No. 2: 303 (2010); https://doi.org/10.1016/j.jallcom.2010.04.250
  176. A. Kumar, K. Shashikala, S. Banerjee, J. Nuwad, P. Das, and C.G.S. Pillai, Int. J. Hydrogen Energy, 37, No. 4: 3677 (2012); https://doi.org/10.1016/j.ijhydene.2011.04.135
  177. Р. Pei, X.P. Song, J. Liu, M. Zhao, and G.L. Chen, Int. J. Hydrogen Energy, 34, No. 20: 8597 (2009); https://doi.org/10.1016/j.ijhydene.2009.08.038
  178. C.Y. Seo, J.H. Kim, P.S. Lee, and J.Y. Lee, J. Alloys Compd., 348, Nos. 1–2: 252 (2003); https://doi.org/10.1016/S0925-8388(02)00831-9