On the Issue of Alloying and Modification of Alloys: Using the Waste Products for Creation of Novel Materials

G. E. Akhmetova$^1$, G. A. Ulyeva$^2$, and K. Tuyskhan$^1$

$^1$Karaganda Industrial University, 30 Republic Avenue, 101400 Temirtau, Kazakhstan
$^2$SC ‘ArcelorMittal Temirtau’, 1 Republic Avenue, 101407 Temirtau, Kazakhstan

Received 12.01.2021; final version — 07.06.2021 Download PDF logo PDF

Abstract
At the large and powerful industrial (private or state) enterprises of the world, particularly, Kazakhstan, RF, and some other post-Soviet (and not only) countries, the products are manufactured using obsolete technologies with high wastes’ generation. At that, the storage and warehousing are unorganized and technically unreasonable (wastes of different chemical compositions and hazard class are mixed) that does not allow their further efficient recycling. Increased processing of many industrial and household wastes is not only economical, but also considerably improves the environmental situation, significantly reduces the consumption of natural raw materials, and reduces the use of scarce lands for waste storage [1]. The authors of this article carried out a literary review on this topic and attempted to use microsilica, as a waste of silicon production, to create new materials with special properties. This refers to the field of experimental study of structures, phases, structural components for understanding the processes of alloying, modification, diffusion, etc. Understanding physical thinking from the metal physics point of view in the study of the nature and kinetics of the phase transformations, alloying, and modification processes enables using the physical research methods to solve research and technological problems in metallurgy and materials science in order to predict and change the required set of properties. The method of research in this article is electron microscopy as the simplest and fastest method of obtaining information about the microstructure, elemental composition, and distribution of components in the bulk.

Keywords: alloying, microalloying, modification, modifier, alloying element, production waste.

DOI: https://doi.org/10.15407/ufm.22.02.271

Citation: G. E. Akhmetova, G. A. Ulyeva, and K. Tuyskhan, On the Issue of Alloying and Modification of Alloys: Using the Waste Products for Creation of Novel Materials, Progress in Physics of Metals, 22, No. 2: 271–289 (2021)


References  
  1. V.I. Barkhatov, Otkhody Proizvodstva i Potrebeleniya — Rezerv Stroitelnykh Materialov: Monografiya [Waste from Production and Consumption — a Reserve of Building Materials: A Monograph] (Chelyabinsk: Publishing house of Chelyabinsk State University: 2017) (in Russian).
  2. See https://www.sciencedirect.com/topics/materials-science/alloying
  3. See https://www.microalloying.com
  4. P.S. Kharlashin, G.S. Ershov, and G.V. Gavrilyuk, Vestnik Priazovskogo Gosudarstvennogo Tekhnicheskogo Universiteta: Sbornik Nauchnykh Trudov [Bulletin of the Priazovsky State Technical University: Collection of Scientific Papers], No. 1: 21 (1995) (in Russian).
  5. A.D. Verkhoturov, E.S. Panin, and N.S. Andrianova, Uprochnyayushchie Tekhnologii i Pokrytiya [Hardening Technologies and Coatings], No. 8 (140): 25 (2016) (in Russian).
  6. E.A. Yasinskaya, Metall i Litye Ukrainy [Metal and Casting of Ukraine], No. 8 (255): 24 (2014) (in Russian).
  7. S.M. Grigoriev and A.S. Petrishchev, Novye Materialy i Tekhnologii v Metallurgii i Mashinostroenii [New Materials and Technologies in Metallurgy and Machine-Building], No. 2: 61 (2008) (in Russian).
  8. V.V. Borysov, A.S. Lytvynov, N.V. Braginets, A.S. Petryshchev, S.R. Artemev, B.M. Tsymbal, A.N. Poliakov, V.V. Bratishko, V.F. Kuzmenko, and O.V. Kholodiuk, Eastern-European Journal of Enterprise Technologies, 3, No. 10 (105): 48 (2020); https://doi.org/10.15587/1729-4061.2020.205779
  9. V.V. Borysov, I.V. Hevko, O.N. Torubara, S.V. Borysova, D.A. Milko, D.P. Zhuravel, B.M. Tsymbal, V.V. Bratishko, K.O. Samoichuk, and Yu.A. Postol Eastern-European Journal of Enterprise Technologies, 1, No. 12 (103): 24 (2020); https://doi.org/10.15587/1729-4061.2020.196653
  10. I.A. Mezentseva and V.V. Gorbenko, Materials of the VI International Conference ‘Cooperation for Solving the Problem of Waste’ (Kharkov: 2009), p. 92 (in Russian).
  11. A.P. Laskovnev and A.I. Garost, Izvestiya Natsionalnoy Akademii Nauk Belarusi. Seriya Fiziko-Tekhnicheskikh Nauk [Bulletin of the National Academy of Sciences of Belarus. Series of Physical and Technical Sciences], No. 3: 88 (2015) (in Russian).
  12. G.S. Gakheladze, A.F. Dolgopolov, and V.K. Salty, Ekologiya i Promyshlennost [Ecology and Industry], No. 1: 44 (2006) (in Russian).
  13. V.A. Garmat, A.N. Petrunko, N.V. Galitsky, Yu.G. Olesov, and R.A. Sandler, Titan (Moscow: Metallurgiya: 1983) (in Russian).
  14. A.L. Andreev, N.F. Anoshkin, and G.A. Bochvar, Plavka i Litye Titanovykh Splavov [Melting and Casting of Titanium Alloys] (Moscow: Metallurgiya: 1994) (in Russian).
  15. V.V. Tetyukhin, I.V. Levin, I.Yu. Puzakov, and N.Yu. Tarenkov, Patent RU2425164C1. Otkrytiya i Izobreteniya, 54, No. 12: 45 (2011) (in Russian).
  16. K.R. Shaimardanov, Diss. for Cand. Tech. Sci. ‘Razrabotka SVS-Tekhnologii Polucheniya Silikotitanovykh Splavov dlya Legirovaniya Stali’ [Development of SHS Technology for Producing Silicotitanium Alloys for Alloying Steel] (Magnitogorsk: 2014) (in Russian).
  17. See https://magtu.ru/sveden/struct/instituty-fakultety-kafedry/institut-metallurgii-mashinostroeniya-i-materialoobrabotki
  18. See https://magtu.ru/sveden/struct/instituty-fakultety-kafedry/institut-metallurgii-mashinostroeniya-i-materialoobrabotki/инновационные-разработки.html
  19. L.V. Tribushevsky, B.M. Nemenenok, and G.A. Rumyantseva, Mezhregionalnyy Sbornik Nauchnykh Trudov ‘Liteynyye Protsessy’, No. 15: 146 (2016) (in Russian).
  20. N.N. Zagirov, A.A. Kovaleva, A.Ya. Olkhovik, and O.E. Koval, Bulletin of G.I. Nosov Magnitogorsk State Technical University, No. 2: 59 (2015) (in Russian).
  21. E.F. Panteleenko and V.G. Shcherbakov, Litye i Metallurgiya [Casting and Metallurgy], No. 1 (50): 176 (2009) (in Russian).
  22. A.I. Garost, E.V. Krivonosova, A.I. Surus, K.D. Posledovich, N.I. Urbanovich, M.M. Garost, and G.P. Goretsky, Int. Conf. ‘Resource- and Energy-Saving Technologies and Equipment, Environmentally Friendly Technologies’ (November 26–28, 2014, Minsk) (Belarus State Technology Univ.: 2014). Pt. 1, p. 113 (in Russian).
  23. V.A. Fed’kov, A.V. Fed’kov, Ye.I. Menyajlo, and V.I. Minakova, New Materials and Technologies in Metallurgy and Mechanical Engineering, No. 1: 85 (2011) (in Russian).
  24. V.V. Sidorov, V.E. Rigin, A.V. Gorunov, and P.G. Min, Ehlektronny Nauchny Zhurnal ‘Trudy VIAM’ [Electronic Scientific Journal ‘Trudy VIAM’], No. 6 (2014) (in Russian); https://doi.org/10.18577/2307-6046-2014-0-6-1-1
  25. L.V. Omel’chenko, Tekhnicheskiy Servis Agropromyshlennogo, Lesnogo i Transportnogo Kompleksov [Technical Service of the Agro-Industrial, Forestry and Transport Complexes], No. 11: 301 (2018) (in Russian).
  26. V.G. Shcherbakov, Metallurgiya: Respublikanskiy Mezhvedomstvenny Sbornik Nauchnykh Trudov, No. 36: 243 (2015) (in Russian).
  27. P.G. Min, V.E. Vadeev, and V.V. Kramer, All-Russ. Sci. and Tech. Conf. ‘Promising Heat-Resistant Nickel Wrought Alloys and Technologies for Their Processing’ (FSUE ‘VIAM’: 2018), p. 102 (in Russian).
  28. F. Pahlevani, R. Kumar, N. Gorjizadeh, R. Hossain, S.T Cholake, K. Privat, and V. Sahajwalla, Scientific Reports, 6: 38740 (2016); https://doi.org/10.1038/srep38740
  29. Polymer Engineering Composites (Ed. M.O.W. Richardson) (London: Applied Science Publishers: 1977).
  30. Napolniteli dlya Polimernykh Kompozitsionnykh Materialov [Fillers for Polymer Composite Materials] (Eds. G.S. Kats and D.V. Milevski) (Moscow: Chemistry: 1981) (Russian translation).
  31. Polimernye Kompozitsionnye Materialy. Svoystva. Struktura. Tekhnologii [Polymer Composite Materials. Properties. Structure. Technologies] (Ed. A.A. Berlin) (Moscow: Professiya: 2009) (in Russian).
  32. See https://sochisirius.ru/obuchenie/project/smena399/1988
  33. See https://opex-ltd.satu.kz/p17096131-mikrokremnezem-kondensirovannyj-mikrosilika.html
  34. V.S. Zolotorevsky and N.A. Belov, Metallovedenie Liteynykh Alyuminievykh Splavov [Metallurgy of Foundry Aluminium Alloys] (Moscow: MISiS: 2005) (in Russian).
  35. T.A. Bogdanova, S.V. Melnikov, N.N. Dovzhenko, V.A. Padalka, M.M. Antonov, and T.R. Gil’manshina, Metallurgiya Mashinostroeniya, No. 2: 12 (2014) (in Russian).
  36. V.Yu. Bazhin, V.M. Sizyakov, A.A. Vlasov, and R.Yu. Feshchenko, Metallurgist, 56: 863 (2013); https://doi.org/10.1007/s11015-013-9663-7
  37. I.V. Uskov, S.V. Belyaev, D.I. Uskov, V.I. Kirko, and N.P. Koptseva, ARPN Journal of Engineering and Applied Sciences, 11, No. 21: 12367 (2016).
  38. K.V. Nikitin, V.I. Nikitin, and I.Yu. Timoshkin, Russian Journal of Non-Ferrous Metals, 58: 378 (2017); https://doi.org/10.3103/S1067821217040125
  39. L.I. Mamina, T.R. Gil’manshina, V.I. Anikina, V.N. Baranov, S.I. Lytkina, A.K. Abkaryan, and S.A. Khudonogov, Russian Journal of Non-Ferrous Metals, 57: 52 (2016); https://doi.org/10.3103/S1067821216010119
  40. T.M. Radchenko, V.A. Tatarenko, H. Zapolsky, and D. Blavette, Journal of Alloys and Compounds, 452, No. 1: 122 (2008); https://doi.org/10.1016/j.jallcom.2006.12.149
  41. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Defect and Diffusion Forum, 273–276: 520 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.520
  42. D.S. Leonov, T.M. Radchenko, V.A. Tatarenko, and Yu.A. Kunitsky, Metallofizika i Noveishie Tekhnologii, 29, No. 12: 1587 (2007) (in Russian).
  43. T.M. Radchenko, V.A. Tatarenko, and H. Zapolsky, Solid State Phenomena, 138: 283 (2008); https://doi.org/10.4028/www.scientific.net/SSP.138.283
  44. N.F. Bolkhovitinov, Metallovedenie i Termicheskaya Obrabotka [Metallurgy and Heat Treatment] (Moscow: Mechanical Engineering: 1965) (in Russian).
  45. K. Tuyskhan, G.E. Akhmetova, G.A. Ulyeva, D.S. Saparov, and K.S. Tolubaev, Vestnik KazNRTU, 143, No. 1: 233 (2021); https://doi.org/10.51301/vest.su.2021.v143.i1.29
  46. L.F. Mondolfo, Aluminum Alloys: Structure and Properties (London: Butterworths and Co., Ltd.: 1976), p. 806; https://doi.org/10.1016/B978-0-408-70932-3.50404-6
  47. A.I. Malakhov and A.P. Zhukov, Osnovy Metallovedeniya i Teorii Korrozii [Fundamentals of Metal Science and Theory of Corrosion] (Moscow: Vysshaya Shkola: 1978) (in Russian).
  48. M.A. Gureyeva, Fundamental’nye i Prikladnye Problemy Tekhniki i Tekhnologii [Fundamental and Applied Problems of Engineering and Technology], No. 5 (313): 46 (2015) (in Russian).
  49. A.I. Trotsan, V.V. Kaverinsky, I.L. Brodetsky, and V.A. Voronich, Visnyk Pryazovs’kogo Derzhavnogo Tekhnichnogo Universitetu, No. 26: 116 (2013) (in Russian).
  50. T.M. Radchenko and V.A. Tatarenko, Defect and Diffusion Forum, 273–276: 525 (2008); https://doi.org/10.4028/www.scientific.net/DDF.273-276.525
  51. V.A. Tatarenko and T.M. Radchenko, Intermetallics, 11, Nos. 11–12: 1319–1326 (2003); https://doi.org/10.1016/S0966-9795(03)00174-2
  52. T.M. Radchenko, V.A. Tatarenko, and S.M. Bokoch, Metallofizika i Noveishie Tekhnologii, 28, No. 12: 1699 (2006).
  53. V.A. Tatarenko, S.M. Bokoch, V.M. Nadutov, T.M. Radchenko, and Y.B. Park, Defect and Diffusion Forum, 280–281: 29 (2008); https://doi.org/10.4028/www.scientific.net/DDF.280-281.29
  54. T.M. Radchenko, O.S. Gatsenko, V.V. Lizunov, and V.A. Tatarenko, Progress in Physics of Metals, 21, No. 4: 580 (2020); https://doi.org/10.15407/ufm.21.04.580
  55. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, EPL (Europhysics Letters), 132, No. 4: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  56. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Physica Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
  57. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Materials Today: Proceedings, 35, Part 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  58. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Annals of Physics, 398: 80 (2018); https://doi.org/10.1016/j.aop.2018.09.004
  59. T.P. Hovorun, K.V. Berladir, V.I. Pererva, S.G. Rudenko, and A.I. Martynov, Journal of Engineering Sciences, 4, No. 2: F8 (2017); https://doi.org/10.21272/jes.2017.4(2).f8
  60. See https://ec.europa.eu/growth/sectors/raw-materials/industries_en