Physical Regularities for Cellular Precipitation of Co-, Cu-, and Pb-Based Supersaturated Solid Solutions

M. I. Savchuk, O. V. Filatov, and O. A. Shmatko

G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 02.03.2021; final version — 15.06.2021 Download PDF logo PDF

Abstract
The decomposition of supersaturated solid solutions through the cellular mechanism is considered in terms of physical regularities of this phenomenon. The general characteristics of this process are described. The mechanisms of nucleation and subsequent cell growth as well as kinetic parameters of processes are partially described. The influences of some external factors on cellular precipitation process and its stages are characterized. Particularly, the effects of annealing temperature and a third element on the cellular precipitation process are studied.

Keywords: supersaturated solid solutions, ageing, cellular decomposition, lamellar structure, kinetic parameters, staged precipitation.

DOI: https://doi.org/10.15407/ufm.22.02.250

Citation: M. I. Savchuk, O. V. Filatov, and O. A. Shmatko, Physical Regularities for Cellular Precipitation of Co-, Cu-, and Pb-Based Supersaturated Solid Solutions, Prog. Phys. Met., 22, No. 2: 250–270 (2021)


References  
  1. L.N. Larikov and O.A. Shmatko, Yacheistyy Raspad Peresyshchennykh Tverdykh Rastvorov [Cellular Precipitation of Supersaturated Solid Solutions] (Kiev: Naukova Dumka: 1976) (in Russian).
  2. N. Ageev, M. Hansen, and G. Sachs, Z. Phys., 66: 350 (1930); https://doi.org/10.1007/BF01390914
  3. A.H. Geisler, Phase Transformations in Solids (New York: John Wiley & Sons: 1951).
  4. H.K. Hardy and T.J. Heal, Progress in Metal Physics, 5: 143 (1954); https://doi.org/10.1016/0502-8205(54)90006-4
  5. L.N. Larikov and O.A. Shmatko, Metallofizika, 33: 5 (1971) (in Russian).
  6. R. Watanabe, Bull. Japan Inst. Metals, 6, No. 6: 435 (1967) (in Japanese).
  7. D. Turnbull, Acta. Metall., 3, No. 1: 55 (1955); https://doi.org/10.1016/0001-6160(55)90012-2
  8. K.N. Tu and D.B. Turnbull, Acta Metall., 15, No. 2: 369 (1967); https://doi.org/10.1016/0001-6160(67)90214-3
  9. K.N. Tu and D.B. Turnbull, Acta. Metall., 15, No. 8: 1317 (1967); https://doi.org/10.1016/0001-6160(67)90007-7
  10. K.N. Tu and D.B. Turnbull, Acta. Metall., 17, No. 10: 1263 (1969); https://doi.org/10.1016/0001-6160(69)90142-4
  11. N.F. Voronina, P. Zięmba, A. Pawlowski, and O.A. Shmatko, Met. Phys. Adv. Tech., 18: 391 (1999).
  12. A. Kelly and R.B. Nicholson, Progress in Materials Science (Oxford: Pergamon Press: 1963), vol. 10, No. 3 p. 149.
  13. S. Ibarra, Jr., The Morphology of Cellular Precipitation in Aluminum Rich Aluminum–Silver Alloys (Doctoral Dissertation: 1972); https://scholarsmine.mst.edu/doctoral_dissertations/193
  14. R. Schaller and W. Benoit, J. Phys. Colloques, 42, No. C5: 881 (1981); https://doi.org/10.1051/jphyscol:19815135
  15. W. Gruhl and H. Kramer, Metall, 12, No. 8: 707 (1958).
  16. C.S. Smith, Trans. ASM., 45: 533 (1953).
  17. V.M. Baranovskiy, M.E. Gurevich, L.N. Larikov, B.S. Khomenko, and O.A. Shmatko, Metallofizika, 27: 65 (1970) (in Russian).
  18. S.V. Divinski, S.M. Zakharov, and O.A. Shmatko, Usp. Fiz. Met., 7, No. 1: 1 (2006) (in Russian); https://doi.org/10.15407/ufm.07.01.001
  19. L.N. Larikov, Yu.N. Petrov and S.T. Borimskaya, Voprosy Fiziki Metallov i Metallovedeniya, 19: 148 (1964) (in Russian).
  20. L.N. Larіkov and Yu.F. Yurchenko, Ukr. Fiz. Zhurnal, 9, No. 12: 1345 (1964) (in Ukrainian).
  21. L.N. Larіkov and Yu.F. Yurchenko, Teplovyye Svoistva Metallov i Splavov: Spravochnik [Heat Properties of Metals and Alloys: Handbook] (Kiev: Naukova Dumka: 1985) (in Russian).
  22. R.A. Fournelle and J.B. Clark, Metal Trans., 3, No. 11: 2757 (1972); https://doi.org/10.1007/BF02652842
  23. M.V. Itkin, V.S. Krasil’nikov, and O.A. Shmatko, Metallofizika, 7, No. 6: 27 (1985) (in Russian).
  24. N.I. Afanas’ev and T.F. Elsukova, Fiz. Met. Metalloved., 53, No. 2: 341 (1982) (in Russian).
  25. D. Turnbull and H.N. Treaftis, Acta Metall., 3, No. 1: 43 (1955); https://doi.org/10.1016/0001-6160(55)90011-0
  26. G.R. Speich, Trans. AIME, 227, No. 3: 754 (1963).
  27. R.A. Fournelle, Acta Metall., 27, No. 7: 1135 (1979); https://doi.org/10.1016/0001-6160(79)90131-7
  28. R.A. Fournelle, Acta Metall., 27, No. 7: 1147 (1979); https://doi.org/10.1016/0001-6160(79)90132-9
  29. H. Tsubakino, Mater. Sci. Lett., 1, No. 7: 306 (1982); https://doi.org/10.1007/BF00728862
  30. K. Detert und H. Pohl, Z. Metallkunde, 57, No. 2: 130 (1966).
  31. P.J. Clemm and J.C. Fisher, Acta Metall., 3, No. 1: 70 (1955); https://doi.org/10.1016/0001-6160(55)90014-6
  32. M. Avrami, Chem. Phys., 7: 1103 (1939); https://doi.org/10.1063/1.1750380
  33. T.S. Gatsenko, Metallofiz. Noveishie Tekhnol., 36, No. 5: 705 (2014) (in Ukrainian); https://doi.org/10.15407/mfint.36.05.0705
  34. M.V. Іtkіn and O.A. Shmatko, Doklady AN Ukr.RSR, Ser. A., Phys.-Math. Tech. Sci., No. 7: 66 (1980) (in Ukrainian).
  35. Ya.B. Zel’dovich, Zh. Eksp. Teor. Fiz., 12, Nos. 11–12: 525 (1942) (in Russian).
  36. W.A. Anderson and R.F. Mehl, Trans. AIME, 161: 140 (1945).
  37. M. Hillert, The Mechanism of Phase Transformations in Crystalline Solids (London: Institute of Metals: 1969), Monograph No. 33, p. 231.
  38. M. Hillert, Met. Trans., 3, No. 11: 2729 (1972); https://doi.org/10.1007/BF02652840
  39. C. Zener, Trans. AIME, 167, No. 5: 550 (1946).
  40. J.W. Cahn, Acta. Metall., 7, No. 1: 18 (1959); https://doi.org/10.1016/0001-6160(59)90164-6
  41. R.G. Rose, Acta Metall., 5, No. 7: 404 (1957); https://doi.org/10.1016/0001-6160(57)90010-X
  42. M. Hillert and G.R. Purdy, Acta Met., 26, No. 2: 333 (1978); https://doi.org/10.1016/0001-6160(78)90132-3
  43. T.S. Gatsenko, E.O. Maksimenko, M.І. Savchuk and O.A. Shmatko, Metallofiz. Noveishie Tekhnol., 34, No. 5: 51 (2012) (in Ukrainian).
  44. H.I. Aaronson and Y.C. Liu, Scr. Met., 2, No. 1: 1 (1968); https://doi.org/10.1016/0036-9748(68)90157-9
  45. J. Petermann und E. Hornbogen, Z. Metallkunde, 59, No. 11: 814 (1968).
  46. B. Sunquist, Acta Met., 16, No. 12: 1413 (1968); https://doi.org/10.1016/0001-6160(68)90037-0
  47. F.M. Carpay, Acta Met., 19, No. 12: 1279 (1971); https://doi.org/10.1016/0001-6160(71)90061-7
  48. M.І. Savchuk, T.S. Gatsenko, M.І. Dzyublenko, and O.A. Shmatko, Metallofiz. Noveishie Tekhnol., 34, No. 2: 189 (2012) (in Ukrainian).
  49. J.W. Cahn, Acta Met., 4, No. 5: 449 (1956); https://doi.org/10.1016/0001-6160(56)90041-4
  50. D. Turnbull and H.N. Treaftis, Trans. Met. Soc. AIME, 212, No. 1: 33 (1958).
  51. L.N. Larikov, B.I. Nikolin, N.N. Shevchenko, and O.A. Shmatko, Metallofizika, 3, No. 2: 40 (1981) (in Russian).
  52. S.M. Kedrovsky, Yu.M. Koval, V.M. Slipchenko, K.V. Slipchenko, and O.V. Filatov, Metallofiz. Noveishie Tekhnol., 37, No. 2: 199 (2015) (in Russian); https://doi.org/10.15407/mfint.37.02.0199
  53. L.N. Larikov and O.A. Shmatko, Metallofizika, 37: 63 (1971) (in Russian).
  54. A. Filatov, A. Pogorelov, D. Kropachev, and O. Dmitrichenko, Defect Diffus. Forum, 363: 173 (2015); https://doi.org/10.4028/www.scientific.net/DDF.363.173
  55. A.V. Filatov, D.A. Kropachev, and A.E. Pogorelov, Metallofiz. Noveishie Tekhnol., 35, No. 6: 793 (2013) (in Russian).
  56. O.V. Filatov and O.M. Soldatenko, Metallofiz. Noveishie Tekhnol., 42, No. 1: 1 (2020); https://doi.org/10.15407/mfint.42.01.0001
  57. V.E. Danilchenko, A.V. Filatov, V.F. Mazanko, and V.E. Iakovlev, Nanoscale Res. Lett., 12: 194. (2017); https://doi.org/10.1186/s11671-017-1978-z
  58. V.Y. Bondar, V.E. Danilchenko, V.F. Mazanko, O.V. Filatov, and V.E. Iakovlev, Usp. Fiz. Met., 19, No. 1: 70 (2018); https://doi.org/10.15407/ufm.19.01.070
  59. V.Yu. Danilchenko, V.F. Mazanko, O.V. Filatov, and V.E. Iakovlev, Usp. Fiz. Met., 20, No. 3: 426 (2019); https://doi.org/10.15407/ufm.20.03.426
  60. Yu.M. Koval’, A.M. Bezugliy, M.І. Dіdik, N.V. Zaytseva, and O.A. Shmatko, Dopovіdі NAN Ukr., 2: 102 (2004) (in Ukrainian).
  61. S.P. Vorona, V.F. Mazanko, M.I. Savchuk, K.M. Khranovska, I.O. Shmatko, and O.A. Shmatko, Metallofiz. Noveishie Tekhnol., 37, No. 1: 103 (2015) (in Ukrainian); https://doi.org/10.15407/mfint.37.01.0103
  62. M.I. Savchuk, I.O. Shmatko, and O.A. Shmatko, Abstr. Int. Conf. MRF (October 14–17, 2014, Kharkiv) (Kharkiv: 2014), p. 38.
  63. M.І. Savchuk, Stadіynіst’ ta Kіnetiko-Termodynamіchnі Zakonomіrnostі Komіrkovykh Reaktsіy v Splavakh Svynets’–Olovo (Author’s Abstract of Disser. for Cand. Sci. (Phys.-Math.)) (Kyiv: G.V. Kurdyumov Institute for Metal Physics, N.A.S.U.: 2016) (in Ukrainian).
  64. A.K. Kuznyak, M.І. Savchuk, І.O. Shmatko, and O.A. Shmatko, Abstr. Int. Conf. ‘Evrika’ (May. 16–18, 2017, Lviv) (Lviv: 2017), p. D7.
  65. M.І. Savchuk and O.A. Shmatko, Abstr. Int. Conf. ‘Evrika’ (May 15–17, 2018, Lviv) (Lviv: 2018), p. D9.
  66. M.І. Savchuk and O.A.Shmatko, Abstr. Int. Conf. (October 11, 2019, Kyiv) (Kyiv: 2019), p. 10.
  67. M.І. Savchuk and O.A.Shmatko, Abstr. Int. Conf. (September 8–9, 2018, Kiev) (Kiev: 2018), p. 48.
  68. T.V. Efimova, A.L. Larikov, V.G. Tinyaev, I.O. Shmatko, and O.A. Shmatko, Metallofizika, 6, No. 5: 67 (1984) (in Russian).
  69. N.I. Afanas’ev and T.F. Elsukova, Fiz. Met. Metalloved., 57, No. 1: 96 (1984) (in Russian).
  70. T.S. Gatsenko, Yu.O. Lyashenko, and O.A. Shmatko, Vіsnyk Cherkas’kogo Natsіonal’nogo Unіversytetu, 269: 31 (2013) (in Ukrainian).
  71. S.N. Zadumkin, Zhurnal Neorganicheskoy Khimii, 5: No. 8: 1892 (1960) (in Russian).
  72. V.I. Arkharov, Teoriya Mikrolegirovaniya Splavov [Theory of Microalloying] (Moscow: Mashinostroenie: 1975) (in Russian).