Fundamental Research on the Structure and Properties of Electroerosion-Resistant Coatings on Copper

D. A. Romanov, V. V. Pochetukha, V. E. Gromov, and K. V. Sosnin

Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russian Federation

Received 05.02.2021; final version — 18.06.2021 Download PDF logo PDF

Abstract
The electroerosion-resistant coatings of CuO–Ag and ZnO–Ag systems were obtained on the Cu surface. Formation of coating was caused by the processing of copper surface with plasma formed in electrical explosion of silver foil with weighed sample of copper oxide or zinc oxide. After electroexplosion spraying, the electron-beam treatment of coatings was performed. The nanohardness, Young modulus, wear resistance, friction coefficient, and electrical erosion resistance of the formed coatings were studied. All studied properties exceed those of copper. Electrical erosion coatings were studied by the methods of scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. It became possible to achieve the high level of operational properties of electrical erosion coatings due to their nanostructurization. Structure of coating is formed by cells of high-speed crystallization. The size of cells varies within the range from 150 nm to 400 nm. The cells are separated by interlayers of the second phase whose thickness varies as 15–50 nm. By method of atomic force microscopy, the separate particles of ZnO or CuO of different shapes and 10–15 nm in size chaotically located in silver matrix were revealed as well as spherical particles of ZnO or CuO in size of 2–5 nm. The total thickness of coatings is 60 μm. The complex of studies we have carried out permits to recommend the integrated processing for strengthening the switch copper contacts of powerful electrical networks.

Keywords: composite coating, CuO–Ag, ZnO–Ag, copper contact wires, electron beam processing, electroexplosion spraying, erosion resistant, nanostructurization.

DOI: https://doi.org/10.15407/ufm.22.02.204

Citation: D. A. Romanov, V. V. Pochetukha, V. E. Gromov, and K. V. Sosnin, Fundamental Research on the Structure and Properties of Electroerosion-Resistant Coatings on Copper, Progress in Physics of Metals, 22, No. 2: 204–249 (2021)


References  
  1. S.J. Baek, M.S. Kim, W.J. An, and J.H. Choi, Compos. Struct., 220: 179 (2019); https://doi.org/10.1016/j.compstruct.2019.03.081
  2. B. Tayebani and D. Mostofinejad, Compos. Struct., 208: 75 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.172
  3. H.D. Roh, S.Y. Lee, E. Jo, H. Kim, W. Ji, and Y.B. Park, Compos. Struct., 216: 142 (2019); https://doi.org/10.1016/j.compstruct.2019.02.100
  4. Y. Zhang, T. Hang, M. Dong, Y. Wu, H. Ling, A. Hu, and M. Li, Thin Solid Films, 677: 39 (2019); https://doi.org/10.1016/j.tsf.2019.03.012
  5. Y. Zhu, Y. Xu, K. Li, X. Wang, G. Liu, and Y. Huang, Measurement, 138: 8 (2019); https://doi.org/10.1016/j.measurement.2019.02.035
  6. Y.I. Kim, S. An, M.W. Kim, H.S. Jo, T.G. Kim, M.T. Swihart, A.L. Yarin, and S.S. Yoon, J. Alloys Compd., 790: 1127 (2019); https://doi.org/10.1016/j.jallcom.2019.03.154
  7. A. Das, T.R. Ashwin, and A. Barai, J. of Energy Storage, 22: 239 (2019); https://doi.org/10.1016/j.est.2019.02.017
  8. A.G. Mohammed, G. Ozgur, and E. Sevkat, Cold Regions Sci. Technol., 160: 128 (2019); https://doi.org/10.1016/j.coldregions.2019.02.004
  9. R. Astacio, J.M. Gallardo, J. Cintas, J.M. Montes, F.G. Cuevas, L. Prakash, and Y. Torres, Int. J. Refract. Met. Hard Mater., 80: 259 (2019); https://doi.org/10.1016/j.ijrmhm.2019.02.002
  10. D. Zhang, P. Yi, L. Peng, X. Lai, and J. Pu, Carbon, 145: 333 (2019); https://doi.org/10.1016/j.carbon.2019.01.050
  11. D. Mombrú, M. Romero, R. Faccio, and A.W. Mombrú, J. of Mater. Sci.: Mater. Electron., 30: 5959 (2019); https://doi.org/10.1007/s10854-019-00895-z
  12. A. Kazemzadeh, F. Ein-Mozaffari, and A. Lohi, Chem. Eng. Res. Des., 143: 226 (2019); https://doi.org/10.1016/j.cherd.2019.01.018
  13. T. Zhao, Y. Iso, R. Ikeda, K. Okawa, and M. Takei, Flow Meas. and Instrum., 65: 90 (2019); https://doi.org/10.1016/j.flowmeasinst.2018.11.010
  14. Z.M. Sun, Int. Mater. Rev., 56, No. 3: 143 (2011); https://doi.org/10.1179/1743280410Y.0000000001
  15. L. Peng, Scr. Mater., 56, No. 9: 729 (2007); https://doi.org/10.1016/j.scriptamat.2007.01.027
  16. P. Zhang, T.L. Ngai, A. Wang, and Z. Ye, Vacuum, 141: 235 (2017); https://doi.org/10.1016/j.vacuum.2017.04.023
  17. M. Liu, J. Chen, H. Cui, X. Sun, S. Liu, and M. Xie, Mater. Lett., 213: 269 (2018); https://doi.org/10.1016/j.matlet.2017.11.038
  18. J. Ding, W.B. Tian, and P. Zhang, J. Alloys Compd., 740: 669 (2018); https://doi.org/10.1016/j.jallcom.2018.01.015
  19. H. Li, X. Wang, X. Guo, X. Yang, and S. Liang, Mater. Des., 114: 139 (2017); https://doi.org/10.1016/j.matdes.2016.10.056
  20. N. Ray, B. Kempf, T. Mützel, L. Froyen, K. Vanmeensel, and J. Vleugels, Mater. Des., 85: 412 (2015); https://doi.org/10.1016/j.matdes.2015.07.006
  21. N. Ray, B. Kempf, G. Wiehl, T. Mützel, F. Heringhaus, L. Froyen, K. Vanmeensel, and J. Vleugels, Mater. Des., 121: 261 (2017); https://doi.org/10.1016/j.matdes.2017.02.070
  22. M.P. Afonin and A.V. Boiko, Powder Metall. Met. Ceram., 44: 84 (2005); https://doi.org/10.1007/s11106-005-0061-y
  23. E. Vinaricky and V. Behrens, Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts (1998).
  24. V. Behrens, Th. Honig, A. Kraus, E. Mahle, R. Michal, and K.E. Saeger, Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts (1995).
  25. Y.-L. Chen, C.-F. Yang, J.-W. Yeh, S.-S. Hung, and S.-W. Lee, Metall. Mater. Trans. A, 36: 2441 (2005); https://doi.org/10.1007/s11661-005-0117-0
  26. C.-P. Wu, D.-Q. Yi, W. Weng, S.-H. Li, J.-M. Zhou, Trans. Nonferrous Met. Soc. China, 26: 185 (2016); https://doi.org/10.1016/S1003-6326(16)64105-5
  27. D. Wang, W. Tian, A. Ma, J. Ding, C. Wang, Y. You, P. Zhang, J. Chen, Y. Zhang, and Z. Sun, J. Alloys Compd., 784: 431 (2019); https://doi.org/10.1016/j.jallcom.2019.01.083
  28. J. Ding, W. Tian, D. Wang, P. Zhang, J. Chen, Y. Zhang, and Z. Sun, Corros. Sci., 156: 147 (2019); https://doi.org/10.1016/j.corsci.2019.05.005
  29. J. Ding, W. Tian, D. Wang, P. Zhang, J. Chen, Y. Zhang, and Z. Sun, J. Alloys Compd., 785: 1086 (2019); https://doi.org/10.1016/j.jallcom.2019.01.252
  30. X. Wang, S. Wei, L. Xu, F. Fang, J. Li, K. Pan, and B. Peng, Mater. Charact., 153: 121 (2019); https://doi.org/10.1016/j.matchar.2019.04.017
  31. B. Li, Z. Sun, G. Hou, P. Hu, and F. Yuan, J. Alloys Compd., 766: 204 (2018); https://doi.org/10.1016/j.jallcom.2018.06.338
  32. Y. Guo, D. Guo, S. Wang, B. Gao, X. Wang, and Z. Shi, Mater. Express, 8, No. 6: 547 (2018); https://doi.org/10.1166/mex.2018.1462
  33. X. Wen, F. Yuwen, Z. Ding, W. Zhang, R. Yao, and J. Lu, Tribology Int., 135: 269 (2019); https://doi.org/10.1016/j.triboint.2019.03.019
  34. W. Huang, L. Kong, and X. Wang, Tribology Lett., 65: 17 (2017); https://doi.org/10.1007/s11249-016-0802-8
  35. Y. Wang, G. Zhang, W. Wang, L. Si, and F. Liu, AIP Adv., 8, No. 11: 115020 (2018); https://doi.org/10.1063/1.5050327
  36. Z. Lin, S. Fan, M. Liu, S. Liu, J.G. Li, J. Li, M. Xie, J. Chen, and X. Sun, J. Alloys Compd., 788: 163 (2019); https://doi.org/10.1016/j.jallcom.2019.02.085
  37. Z. Lin, S. Liu, J.G. Li, J. Chen, M. Xie, X. Li, M. Zhang, Q. Zhu, D. Huo, and X. Sun, Mater. Des., 108: 640 (2016); https://doi.org/10.1016/j.matdes.2016.06.123
  38. K. Zhang, G.Y. Qin, S.Y. Xu, J.X. Guo, and G. Ma, Metall. Mater. Trans. A, 46: 880 (2015); https://doi.org/10.1007/s11661-014-2642-1
  39. X. Zhang, Y. Zhang, B. Tian, Y. Jia, Y. Liu, K. Song, and A.A. Volinsky, Vacuum, 164: 361 (2019); https://doi.org/10.1016/j.vacuum.2019.03.054
  40. X. Zhang, Y. Zhang, B. Tian, J. An, Z. Zhao, A.A. Volinsky, Y. Liu, and K. Song, Composites Part B, 160: 110 (2019); https://doi.org/10.1016/j.compositesb.2018.10.040
  41. W.J. Li, W.Z. Shao, N. Xie, L. Zhang, Y.R. Li, M.S. Yang, B.A. Chen, Q. Zhang, Q. Wang, and L. Zhen, J. Alloys Compd., 743: 697 (2018); https://doi.org/10.1016/j.jallcom.2018.01.326
  42. Y.X. Zhou, Y.L. Xue, and K. Zhou, Vacuum, 164: 390 (2019); https://doi.org/10.1016/j.vacuum.2019.03.052
  43. S. Biyik, Acta Phys. Pol. A, 134, No. 1: 208 (2018); https://doi.org/10.12693/APhysPolA.134.208
  44. K. Zhou, W.G. Chen, J.J. Wang, G.J. Yan, and Y.Q. Fu, Int. J. Refract. Met. Hard Mater., 82: 91 (2019); https://doi.org/10.1016/j.ijrmhm.2019.03.026
  45. D. Poljanec and M. Kalin, Wear, 426–427, Part B: 1163 (2019); https://doi.org/10.1016/j.wear.2019.01.002
  46. M. Kalin and D. Poljanec, Tribology Int., 126: 192 (2018); https://doi.org/10.1016/j.triboint.2018.05.024
  47. D. Poljanec, M. Kalin, and L. Kumar, Wear, 406–407: 75 (2018); https://doi.org/10.1016/j.wear.2018.03.022
  48. M. Wu, B. Hou, S. Shu, A. Li, Q. Geng, H. Li, Y. Shi, M. Yang, S. Du, J.Q. Wang, S. Liao, N. Jiang, D. Dai, and C.T. Lin, Nanomaterials, 9, No. 4: 498 (2019); https://doi.org/10.3390/nano9040498
  49. S. Li, B. Hou, D. Dai, S. Shu, M. Wu, A. Li, Y. Han, Z. Zhu, B. Chen, Y. Ding, Q. Zhang, Q. Wang, N. Jiang, and C.T. Lin, Materials, 11, No. 8: 1459 (2018); https://doi.org/10.3390/ma11081459
  50. S. Li, A. Li, D. Dai, Y. Liu, Y. Wu, H. Bai, C.T. Lin, and N. Jiang, Gongneng Cailiao J. Funct. Mater., 48, 9 (2017).
  51. A. Bahramian, M. Eyraud, S. Maria, F. Vacandio, T. Djenizian, and P. Knauth, Corrosion Sci., 149: 75 (2019); https://doi.org/10.1016/j.corsci.2018.12.026
  52. A. Bahramian, M. Eyraud, F. Vacandio, and P. Knauth, Microelectron. Eng., 206: 25 (2019); https://doi.org/10.1016/j.mee.2018.12.008
  53. A. Bahramian, M. Eyraud, F. Vacandio, and P. Knauth, Surf. Coat. Technol., 345: 40 (2018); https://doi.org/10.1016/j.surfcoat.2018.03.075
  54. M. Tokarska and M. Orpel, Textile Res. J., 89, No. 6: 1073 (2019); https://doi.org/10.1177/0040517518763978
  55. B.K. Singh, E. Jain, and V.V. Buwa, Chem. Eng. J., 358: 564 (2019); https://doi.org/10.1016/j.cej.2018.10.009
  56. S. Park, H.S. Kil, D. Choi, S.K. Song, and S. Lee, J. Industrial Eng. Chem., 69: 449 (2019); https://doi.org/10.1016/j.jiec.2018.10.008
  57. A.V. Batrakov, S.A. Onischenko, I.K. Kurkan, V.V. Rostov, E.V. Yakovlev, E.V. Nefedtsev, and R.V. Tsygankov, 2018 28th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV) (2018), p. 77; https://doi.org/10.1109/DEIV.2018.8537014
  58. A.V. Batrakov, S.A. Onischenko, I.K. Kurkan, V.V. Rostov, E.V. Yakovlev, E.V. Nefedtsev, and R.V. Tsygankov, 2018 20th International Symposium on High-Current Electronics (ISHCE) (2018), p. 126; https://doi.org/10.1109/ISHCE.2018.8521188
  59. A.I. Sidorov, U.V. Yurina, G.R. Rakhmanova, M.N. Shinkarenko, O.A. Podsvirov, Y.K. Fedorov, and A.V. Nashchekin, J. Non-Cryst. Solids, 499: 278 (2018); https://doi.org/10.1016/j.jnoncrysol.2018.07.053
  60. D.A. Romanov, S.V. Moskovskii, K.V. Sosnin, V.E. Gromov, and V.A. Bataev, Mater. Res. Express, 6, No. 5: 055042 (2019); https://doi.org/10.1088/2053-1591/ab0672
  61. V.V. Evstigneev, V.Ju. Filimonov, K.B. Koshelev, V.I. Jakovlev, and A.E. Zhakupova, Fundamental’nyye Problemy Sovremennogo Materialovedeniya, 2, No. 3: 98 (2005) (in Russian).
  62. L. Ehngel and G. Klingele, Rastrovaya Ehlektronnaya Mikroskopiya. Razrushenie [Scanning Electron Microscopy. Destruction] (Moscow: Metallurgiya: 1986) (Russian translation).
  63. M.M. Krishtal, I.S. Yasnikov, V.I. Polunin, A.M. Filatov, and A.G. Ulyanenkov, Skaniruyushchaya Ehlektronnaya Mikroskopiya i Rentgenospektral’nyy Analiz [Scanning Electron Microscopy and X-ray Spectral Analysis] (Moscow: Tehnosfera: 2009) (in Russian).
  64. G.M. Moatimid, M.H. Obied Allah, and M.A. Hassan, Physics of Plasmas, 20, No. 10: 102111 (2013); https://doi.org/10.1063/1.4825146
  65. M. Wang, W. Mei, and Y. Wang, Optics & Laser Technology, 113: 123 (2019); https://doi.org/10.1016/j.optlastec.2018.12.007
  66. C. Mallick, M. Bandyopadhyay, and R. Kumar, Review of Scientific Instruments, 89, No. 12: 125112 (2018); https://doi.org/10.1063/1.5048292
  67. R. Venkata Krishna Rao, K. Venkata Abhinav, P.S. Karthik, and S.P. Singh, RSC Adv., 5: 77760 (2019); https://doi.org/10.1039/C5RA12013F
  68. D.A. Romanov, S.V. Moskovskii, A.M. Glezer, V.E. Gromov, and K.V. Sosnin, Bull. RAS: Phys., 83: 1270 (2019); https://doi.org/10.3103/S1062873819100174
  69. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, and M.J. Whelan, Electron Microscopy of Thin Crystals (London: Butterwoths: 1965).
  70. Yu.F. Ivanov, V.E. Gromov, N.A. Popova, S.V. Konovalov, and N.A. Koneva, Strukturno-Fazovye Sostoyaniya i Mehanizmy Uprochneniya Deformirovannoy Stali [Structural-Phase States and Mechanisms of Hardening of Strained Steel] (Novokuznetsk: Poligrafist: 2016) (in Russian).
  71. A.P. Babichev, N.A. Babushkina, A.M. Bratkovskiy, Fizicheskie Velichiny: Spravochnik [Physical Quantities: A Handbook] (Eds. I.S. Grigoriev and E.Z. Meilikhova) (Moscow: Ehnergoatomizdat: 1991) (in Russian).
  72. GOST 2933-83, Ispytanie na Mehanicheskuyu i Kommutatsionnuyu Iznosostojkost’. Apparaty Ehlektricheskie Nizkovol’tnye Metody Ispytaniy [Test for Mechanical and Switching Durability. Electrical Low-Voltage Test Methods] (Moscow: Izdatel’stvo Standartov: 1983) (in Russian).