Nanoscale Materials for State-of-the-Art Magnetic Memory Technologies

A. E. Hafarov$^1$, S. M. Voloshko$^1$, A. Kaidatzis$^2$, and I. A. Vladymyrskyi$^1$

$^1$Metal Physics Department, National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, Prospect Peremohy 37, UA-03056 Kyiv, Ukraine
$^2$Institute of Nanoscience and Nanotechnology, N.C.S.R. Demokritos, Agia Paraskevi Attikis, 15310 Athens, Greece

Received 10.03.2021; final version — 09.06.2021 Download PDF logo PDF

Abstract
The review deals with different materials science aspects of the state-of-the-art magnetic memory technologies, such as magnetoresistive random-access memory (MRAM), antiferromagnetic (AFM) memory, and skyrmion racetrack memory. Particularly, the materials with high perpendicular magnetic anisotropy (PMA), such as CoFeB, L10-ordered Mn- and Fe-based alloys, are considered (Sec. 1) regarding their applications in MRAM technology. Furthermore, studies of AFM alloys, such as FeRh, CuMnAs, Mn2Au, are reviewed (Sec. 2) with an emphasis on application of these materials in AFM-memory technology. Finally, the last (3rd) section of the review is concerning materials that could be used in skyrmion racetrack memory.

Keywords: MRAM, spintronics, magnetic materials, antiferromagnets, skyrmion.

DOI: https://doi.org/10.15407/ufm.22.02.175

Citation: A. E. Hafarov, S. M. Voloshko, A. Kaidatzis, and I. A. Vladymyrskyi, Nanoscale Materials for State-of-the-Art Magnetic Memory Technologies, Progress in Physics of Metals, 22, No. 2: 175–203 (2021)


References  
  1. D. Edelstein, M. Rizzolo, D. Sil, A. Dutta, J. DeBrosse, M. Wordeman, A. Arceo, I.C. Chu, J. Demarest, E.R.J. Edwards, E.R. Evarts, J. Fullam, A. Gasasira, G. Hu, M. Iwatake, R. Johnson, V. Katragadda, T. Levin, J. Li, Y. Liu, C. Long, T. Maffitt, S. McDermott, S. Mehta, V. Mehta, D. Metzler, J. Morillo, Y. Nakamura, S. Nguyen, P. Nieves, V. Pai, R. Patlolla, R. Pujari, R. Southwick, T. Standaert, O. van der Straten, H. Wu, C.-C. Yang, D. Houssameddine, J.M. Slaughter, and D.C. Worledge, A 14 nm Embedded STT-MRAM CMOS Technology, Proc. 2020 IEEE International Electron Devices Meeting (IEDM) (December 12–18, 2020); https://www.ieee-iedm.org/iedm-archive
  2. J.C. Slonczewski, J. Magn. Magn. Mater., 159, Nos. 1–2: L1 (1996); https://doi.org/10.1016/0304-8853(96)00062-5
  3. L. Berger, Phys. Rev. B, 54, No. 13: 9353 (1996); https://doi.org/10.1103/PhysRevB.54.9353
  4. L. Zhu, S. Nie, K. Meng, D. Pan, J. Zhao, and H. Zheng, Adv. Mater., 24, No. 33: 4547 (2012); https://doi.org/10.1002/adma.201200805
  5. J.H. Park, Y.K. Hong, S. Bae, J.J. Lee, J. Jalli, G.S. Abo, and J.G. Lee, J. Appl. Phys., 107, No. 9: 09A731 (2010); https://doi.org/10.1063/1.3337640
  6. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, and H. Ohno, Nature Mater., 9, No. 9: 721 (2010); https://doi.org/10.1038/nmat2804
  7. S.J. Yun, S.H. Lim, and S.R. Lee, Appl. Phys. Lett., 106, No. 13, 132401 (2015); https://doi.org/10.1063/1.4916731
  8. J. Cao, J. Kanak, T. Stobiecki, P. Wisniowski, and P.P. Freitas, 45, No. 10: 3464 (2009); https://doi.org/10.1109/TMAG.2009.2025382
  9. K. Okamoto, Y. Fuji, Y. Higashi, S. Kaji, T. Nagata, S. Baba, and M. Hara, IEEE Transactions on Magnetics, 54, No. 11: 1 (2018); https://doi.org/10.1109/TMAG.2018.2835842
  10. T. Liu, Y. Zhang, J.W. Cai, and H.Y. Pan, Sci. Rep., 4: 5895 (2014); https://doi.org/10.1038/srep05895
  11. P. Khalili Amiri, Z.M. Zeng, J. Langer, H. Zhao, G. Rowlands, Y.J. Chen, and Y. Huai, Appl. Phys. Lett., 98, No. 11: 112507 (2011); https://doi.org/10.1063/1.3567780
  12. Y. Zhang, W. Zhao, Y. Lakys, J.O. Klein, J.V. Kim, D. Ravelosona, and C. Chappert, IEEE Transactions on Electron Devices, 59, No. 3: 819 (2012); https://doi.org/10.1109/TED.2011.2178416
  13. V.B. Naik, H. Meng, and R. Sbiaa, AIP Advances, 2, No. 4: 042182 (2012); https://doi.org/10.1063/1.4771996
  14. T. Ogasawara, M. Oogane, M. Al-Mahdawi, M. Tsunoda, and Y. Ando, Sci. Rep., 9: 1 (2019); https://doi.org/10.1038/s41598-019-53439-0
  15. Y.J. Chang, A. Canizo-Cabrera, V. Garcia-Vazquez, Y.H. Chang, and T.H. Wu, J. Appl. Phys., 114, No. 18: 184303 (2013); https://doi.org/10.1063/1.4829915
  16. H. Sato, M. Yamanouchi, S. Ikeda, S. Fukami, F. Matsukura, and H. Ohno, Appl. Phys. Lett., 101, No. 2: 022414 (2012); https://doi.org/10.1063/1.4736727
  17. F.T. Yuan, Y.H. Lin, J.K. Mei, J.H. Hsu, and P.C. Kuo, J. Appl. Phys., 111, No. 7: 07C111 (2012); https://doi.org/10.1063/1.3673408
  18. C.W. Cheng, W. Feng, G. Chern, C.M. Lee, and T.H. Wu, J. Appl. Phys., 110, No. 3: 033916 (2011); https://doi.org/10.1063/1.3621353
  19. T. Liu, J.W. Cai, and L. Sun, AIP Advances, 2, No. 3: 032151 (2012); https://doi.org/10.1063/1.4748337
  20. W. Skowroński, T. Nozaki, D.D. Lam, Y. Shiota, K. Yakushiji, H. Kubota, and Y. Suzuki, Phys. Rev. B, 91, No. 8: 184410 (2015); https://doi.org/10.1103/PhysRevB.91.184410
  21. C. Bilzer, T. Devolder, J.V. Kim, G. Counil, C. Chappert, S. Cardoso, and P.P. Freitas, J. Appl. Phys., 100, No. 5: 053903 (2006); https://doi.org/10.1063/1.2337165
  22. C.L. Wang, S.H. Huang, C.H. Lai, W.C. Chen, S.Y. Yang, K.H. Shen, and H.Y. Bor, J. Phys. D: Appl. Phys., 42, 11: 115006 (2009); https://doi.org/10.1088/0022-3727/42/11/115006
  23. D. S. Wang, S.Y. Lai, T.Y. Lin, C.W. Chien, D. Ellsworth, L.W. Wang, and C.H. Lai, Appl. Phys. Lett., 104, No. 14: 142402 (2014); https://doi.org/10.1063/1.4870770
  24. A. Natarajarathinam, Z.R. Tadisina, T. Mewes, S. Watts, E. Chen, and S. Gupta, J. Appl. Phys., 112, No. 5: 053909 (2012); https://doi.org/10.1063/1.4749412
  25. S. Chen, M. Tang, Z. Zhang, B. Ma, S.T. Lou, and Q.Y. Jin, Appl. Phys. Lett., 103, No. 3: 032402 (2013); https://doi.org/10.1063/1.4813763
  26. A. Conca, E.T. Papaioannou, S. Klingler, J. Greser, T. Sebastian, B. Leven, and B. Hillebrands, Appl. Phys. Lett., 104, No. 18: 182407 (2014); https://doi.org/10.1063/1.4875927
  27. D. Jhajhria, D.K. Pandya, and S. Chaudhary, AIP Conf. Proc., 1953, No. 1: 120034 (2018); https://doi.org/10.1063/1.5033099
  28. K. Kamino, T. Kawaguchi, and M. Nagakura, IEEE Transactions on Magnetics, 2: 506 (1966); https://doi.org/10.1109/TMAG.1966.1065887
  29. M. Oogane, K. Watanabe, H. Saruyama, M. Hosoda, P. Shahnaz, Y. Kurimotom, and Y. M. Ando, Jpn. J. Appl. Phys., 56: 0802A2 (2017); https://doi.org/10.7567/JJAP.56.0802A2
  30. S.H. Nie, L.J. Zhu, J. Lu, D. Pan, H.L. Wang, X.Z. Yu, J.X. Xiao, and J.H. Zhao, Appl. Phys. Lett., 102, No. 15: 152405 (2013); https://doi.org/10.1063/1.4801932
  31. T. Sato, T. Ohsuna, and Y. Kaneko, J. Appl. Phys., 120: 243903 (2016); https://doi.org/10.1063/1.4972972
  32. G.A. Fischer and M. L. Rudee, J. Magn. Magn. Mater., 213: 335 (2000); https://doi.org/10.1016/S0304-8853(00)00007-X
  33. L. Zhu, S. Nie, K. Meng, D. Pan, J. Zhao, H. Zheng, Adv. Mater., 24: 4547 (2012); https://doi.org/10.1002/adma.201200805
  34. S. Mao, J. Lu, X. Zhao, X. Wang, D. Wei, J. Liu, and J. Zhao, Sci. Rep., 7: 43064 (2017); https://doi.org/10.1038/srep43064
  35. A. Ono, K.Z. Suzuki, R. Ranjbar, A. Sugihara, and S. Mizukami, Appl. Phys. Express, 10: 023005 (2017); https://doi.org/10.7567/APEX.10.023005
  36. K. Sato, Y. Takahashi, H. Makuta, T. Shima, and M. Doi, J. Magn. Soc. Jpn., 2: 48 (2018); https://doi.org/10.20819/msjtmsj.18TR211
  37. Y. Takahashi, H. Makuta, T. Shima, and M. Doi, Trans. Magn. Soc. Jpn., 1: 30 (2017); https://doi.org/10.20819/msjtmsj.17TR107
  38. X. Zhang, L.L. Tao, J. Zhang, S. H. Liang, L. Jiang, and X. F. Han, Appl. Phys. Lett., 110: 252403 (2017); https://doi.org/10.1063/1.4986449
  39. H. Saruyama, M. Oogane, Y. Kurimoto, H. Naganuma, and Y. Ando, Jpn. J. Appl. Phys., 52: 063003 (2013); https://doi.org/10.7567/JJAP.52.063003
  40. S. Mao, J. Lu, H. Wang, X. Zhao, D. Wei, and J. Zhao, J. Phys. D: Appl. Phys., 52: 405002 (2019); https://doi.org/10.1088/1361-6463/ab300a
  41. T. Kubota, Q. Ma, S. Mizukami, X. Zhang, H. Naganuma, M. Oogane, Y. Ando, and T. Miyazaki, Appl. Phys. Express, 5: 043003 (2012); https://doi.org/10.1143/APEX.5.043003
  42. K.Z. Suzuki, R. Ranjbar, J. Okabayashi, Y. Miura, A. Sugihara, H. Tsuchiura, and S. Mizukami, Sci. Rep., 6: 30249 (2016); https://doi.org/10.1038/srep30249
  43. Q. L. Ma, T. Kubota, S. Mizukami, X. M. Zhang, H. Naganuma, M. Oogane, Y. Ando, and T. Miyazaki, Appl. Phys. Lett., 101: 032402 (2012); https://doi.org/10.1063/1.4737000
  44. S. Mizukami, A. Sugihara, S. Iihama, Y. Sasaki, K. Z. Suzuki, and T. Miyazaki, Appl. Phys. Lett., 108: 012404 (2016); https://doi.org/10.1063/1.4939447
  45. J.H. Park, Y.K. Hong, S. Bae, J.J. Lee, J. Jalli, G.S. Abo, N. Neveu, S.G. Kim, C.J. Choi, and J.G. Lee, J. Appl. Phys., 107: 09A731 (2010); https://doi.org/10.1063/1.3337640
  46. K. Watanabe, M. Oogane, and Y. Ando, Jpn. J. Appl. Phys., 56: 0802B1 (2017); https://doi.org/10.7567/JJAP.56.0802B1
  47. L. Hou-Fang, S.S. Ali, and H. Xiu-Feng, Chinese Phys. B, 23: 077501 (2014); https://doi.org/10.1088/1674-1056/23/7/077501
  48. K.Z. Suzuki, Y. Miura, R. Ranjbar, L. Bainsla, A. Ono, Y.Sasaki, and S. Mizukami, Appl. Phys. Lett., 112: 062402 (2018); https://doi.org/10.1063/1.5002616
  49. N. Inami, G. Kim, T. Hiratuka, H. Naganuma, M. Oogane and Y. Ando, J. Phys.: Conf. Ser., 200: 052008 (2010); https://doi.org/10.1088/1742-6596/200/5/052008
  50. G. Yang, D.L. Li, S.G. Wang, Q.L. Ma, S.H. Liang, H.X. Wei, X.F. Han, T. Hesjedal, R.C.C. Ward, A. Kohn, A. Elkayam, N. Tal, and X.-G. Zhang, J. Appl. Phys., 117: 083904 (2015); https://doi.org/10.1063/1.4913265
  51. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nat. Mater., 9: 721 (2010); https://doi.org/10.1038/nmat2804
  52. S. Iihama, A. Sakuma, H. Naganuma, M. Oogane, S. Mizukami, and Y. Ando, Phys. Rev. B, 94: 174425 (2016); https://doi.org/10.1103/PhysRevB.94.174425
  53. S. Iihama, M. Khan, H. Naganuma, M. Oogane, T. Miyazaki, S. Mizukami, and Y. Ando, J. Magn. Soc. Jpn., 39: 57 (2015); https://doi.org/10.3379/msjmag.1501R004
  54. T. Bae, J. Ko, S. Lee, J. Cha, and J. Hong, Jpn. J. Appl. Phys., 55, No. 1: 013001 (2015); https://doi.org/10.7567/JJAP.55.013001
  55. D. Zhang, D. Huang, R.J. Wu, D. Lattery, J. Liu, X. Wang, and X. Wang, Appl. Phys. Lett., 117, No. 8: 082405 (2020); https://doi.org/10.1063/5.0016100
  56. D.L. Zhang, K.B. Schliep, R.J. Wu, P. Quarterman, D. Reifsnyder Hickey, Y. Lv, and J.P. Wang, Appl. Phys. Lett., 112, No. 15: 152401 (2018); https://doi.org/10.1063/1.5019193
  57. F. Máca, J. Kudrnovský, P. Baláž, V. Drchal, K. Carva, and I. Turek, J. Magn. Magn. Mater., 474: 467 (2019); https://doi.org/10.1016/j.jmmm.2018.10.145
  58. K. Uhlířová, E. Duverger-Nédellec, R.H. Colman, J. Volný, B. Vondráčková, and K. Carva, J. Alloys Compd., 771: 680 (2019); https://doi.org/10.1016/j.jallcom.2018.08.199
  59. X. Marti, I. Fina, C. Frontera, J. Liu, P. Wadley, Q. He, and J. Kuneš, Nature Mater., 13, No. 4: 367 (2014); https://doi.org/10.1038/nmat3861
  60. J. Železný, P. Wadley, K. Olejník, A. Hoffmann, and H. Ohno, Nature Phys., 14, No. 3: 220 (2018); https://doi.org/10.1038/s41567-018-0062-7
  61. H. Kumar, D.R. Cornejo, S.L. Morelhao, S. Kycia, I.M. Montellano, N.R. Álvarez, and A. Butera, J. Appl. Phys., 124, No. 8: 085306 (2018); https://doi.org/10.1063/1.5020160
  62. Z. Liu, Z. Feng, H. Yan, X. Wang, X. Zhou, P. Qin, and C. Jiang, Adv. Electron. Mater., 5, No. 7: 1900176 (2019).
  63. T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Mährlein, T. Dekorsy, and R. Huber, Nature Photonics, 5, No. 1: 31 (2011); https://doi.org/10.1038/nphoton.2010.259
  64. K. Olejník, T. Seifert, Z. Kašpar, V. Novák, P. Wadley, R.P. Campion, and J. Sinova, Science Adv., 4, No. 3: eaar3566 (2018); https://doi.org/10.1126/sciadv.aar3566
  65. P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R.P. Campion, and S.Y. Martin, Science, 351, No. 6273: 587 (2016); https://doi.org/10.1126/science.aab1031
  66. S.Y. Bodnar, L. Šmejkal, I. Turek, T. Jungwirth, O. Gomonay, J. Sinova, and M. Jourdan, Nature Commun., 9, No. 1: 1 (2018); https://doi.org/10.1007/978-3-319-97334-0_9
  67. H. Yan, Z. Feng, S. Shang, X. Wang, Z. Hu, J. Wang, and W. Lu, Nature Nanotechnol., 14: 131 (2019); https://doi.org/10.1038/s41565-018-0339-0
  68. A. Ceballos, Z. Chen, O. Schneider, C. Bordel, L.W. Wang, and F. Hellman, Appl. Phys. Lett., 111, No. 17: 172401 (2017); https://doi.org/10.1063/1.4997901
  69. I. Suzuki, T. Koike, M. Itoh, T. Taniyama, and T. Sato, J. Appl. Phys., 105, No. 7: 07E501 (2009); https://doi.org/10.1063/1.3054386
  70. A. Ceballos, Z. Chen, O. Schneider, C. Bordel, L.W. Wang, and F. Hellman, Appl. Phys. Lett., 111, No. 17: 172401 (2017); https://doi.org/10.1063/1.4997901
  71. R.F. Need, J. Lauzier, L. Sutton, B.J. Kirby, and J. De La Venta, APL Materials, 7, No. 10: 101115 (2019); https://doi.org/10.1063/1.5118893
  72. P. Wadley, V. Novák, R.P. Campion, C. Rinaldi, X. Martí, H. Reichlová, and D. Khalyavin, Nature Commun., 4, No. 1: 1 (2013); https://doi.org/10.1038/ncomms3322
  73. K.A. Omari, L.X. Barton, O. Amin, R.P. Campion, A.W. Rushforth, A.J. Kent, and K.W. Edmonds, J. Appl. Phys., 127, No. 19: 193906 (2020); https://doi.org/10.1063/5.0006183
  74. F. Máca, J. Mašek, O. Stelmakhovych, X. Martí, H. Reichlová, K. Uhlířová, and T. Jungwirth, J. Magn. Magn. Mater., 324, No. 8: 1606 (2012); https://doi.org/10.1016/j.jmmm.2011.12.017
  75. T. Matalla-Wagner, M.F. Rath, D. Graulich, J.M. Schmalhorst, G. Reiss, and M. Meinert, Phys. Rev. Appl., 12, No. 6: 064003 (2019); https://doi.org/10.1103/PhysRevApplied.12.064003
  76. P. Wadley, V. Hills, M.R. Shahedkhah, K.W. Edmonds, R.P. Campion, V. Novák, and P. Nemec, Sci. Rep., 5: 17079 (2015); https://doi.org/10.1038/srep17079
  77. H.C. Wu, Z.M. Liao, R.S. Sofin, G. Feng, X.M. Ma, A.B. Shick, and I.V. Shvets, Adv. Mater., 24, No. 47: 6374 (2012); https://doi.org/10.1002/adma.201202273
  78. M. Meinert, D. Graulich, and T. Matalla-Wagner, Phys. Rev. Appl., 9, No. 6: 064040 (2018); https://doi.org/10.1103/PhysRevApplied.9.064040
  79. S. Khmelevskyi and P. Mohn, Appl. Phys. Lett., 93, No. 16: 162503 (2008); https://doi.org/10.1063/1.3003878
  80. V.M.T.S. Barthem, C.V. Colin, H. Mayaffre, M.H. Julien, and D. Givord, Nature Commun., 4, No. 1: 1 (2013); https://doi.org/10.1038/ncomms3892
  81. M. Jourdan, H. Bräuning, A. Sapozhnik, H.J. Elmers, H. Zabel, and M. Kläui, J. Phys. D: Appl. Phys., 48, No. 38: 385001 (2015); https://doi.org/10.1088/0022-3727/48/38/385001
  82. A.A. Sapozhnik, M. Filianina, S.Y. Bodnar, A. Lamirand, M.A. Mawass, Y. Skourski, and M. Jourdan, Phys. Rev. B, 97, No. 13: 134429 (2018); https://doi.org/10.1103/PhysRevB.97.134429
  83. S.Y. Bodnar, M. Filianina, S.P. Bommanaboyena, T. Forrest, F. Maccherozzi, A.A. Sapozhnik, and M. Jourdan, Phys. Rev. B, 99, No. 14: 140409 (2019); https://doi.org/10.1103/PhysRevB.99.140409
  84. D. Zhu, W. Kang, S. Li, Y. Huang, X. Zhang, Y. Zhou, and W. Zhao, IEEE Transactions on Electron Devices, 65, No. 1: 87 (2017); https://doi.org/10.1109/TED.2017.2769672
  85. K. Wang, L. Qian, S.C. Ying, G. Xiao, and X. Wu, Nanoscale, 11, No. 14: 6952 (2019); https://doi.org/10.1039/C9NR00909D
  86. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature Nanotechnol., 8, No. 11: 839 (2013); https://doi.org/10.1038/nnano.2013.210
  87. S. Rohart and A. Thiaville, Phys. Rev. B, 88, No. 18: 184422 (2013); https://doi.org/10.1103/PhysRevB.88.184422
  88. P. Ferriani, K. Von Bergmann, E.Y. Vedmedenko, S. Heinze, M. Bode, M. Heide, and R. Wiesendanger, Phys. Rev. Lett., 101, No. 2: 027201 (2008); https://doi.org/10.1103/PhysRevLett.101.027201
  89. M. Bode, M. Heide, K. Von Bergmann, P. Ferriani, S. Heinze, G. Bihlmayer, and R. Wiesendanger, Nature, 447, No. 7141: 190 (2007); https://doi.org/10.1038/nature05802
  90. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, and P. Böni, Science, 323, No. 5916: 915 (2009); https://doi.org/10.1126/science.1166767
  91. S.X. Huang and C.L. Chien, Phys. Rev. Lett., 108, No. 26: 267201 (2012); https://doi.org/10.1103/PhysRevLett.108.267201
  92. F. Albert, R. Nicolas, and C. Vincent, Nature Rev. Mater., 2: 17031 (2017); https://doi.org/10.1038/natrevmats.2017.31
  93. W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, and A. Rosch, Phys. Rev. B, 81, No. 4: 041203 (2010); https://doi.org/10.1103/PhysRevB.81.041203
  94. X.Z. Yu, Y. Onose, N. Kanazawa, J.H. Park, J.H. Han, Y. Matsui, and Y. Tokura, Nature, 465, No. 7300: 901 (2010); https://doi.org/10.1038/nature09124
  95. S. Heinze, K. Von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, and S. Blügel, Nature Phys., 7, No. 9: 713 (2011); https://doi.org/10.1038/nphys2045
  96. N. Romming, C. Hanneken, M. Menzel, J.E. Bickel, B. Wolter, K. von Bergmann, and R. Wiesendanger, Science, 341, No. 6146: 636 (2013); https://doi.org/10.1126/science.1240573
  97. W. Legrand, D. Maccariello, F. Ajejas, S. Collin, A. Vecchiola, K. Bouzehouane, and A. Fert, Nature Mater., 19, No. 1: 34 (2020); https://doi.org/10.1038/s41563-019-0468-3
  98. W. Legrand, D. Maccariello, N. Reyren, K. Garcia, C. Moutafis, C. Moreau-Luchaire, and A. Fert, Nano Lett., 17, No. 4: 2703 (2017); https://doi.org/10.1021/acs.nanolett.7b00649
  99. S.A. Montoya, R. Tolley, I. Gilbert, S.G. Je, M.Y. Im, and E.E. Fullerton, Phys. Rev. B, 98, No. 10: 104432 (2018); https://doi.org/10.1103/PhysRevB.98.104432
  100. R. Wiesendanger, Nature Rev. Mater., 1: 16044 (2016); https://doi.org/10.1038/natrevmats.2016.44
  101. C. Hanneken, F. Otte, A. Kubetzka, B. Dupé, N. Romming, K. Von Bergmann, and S. Heinze, Nature Nanotechnol., 10, No. 12: 1039 (2015); https://doi.org/10.1038/nnano.2015.218
  102. D.M. Crum, M. Bouhassoune, J. Bouaziz, B. Schweflinghaus, S. Blügel, and S. Lounis, Nature Commun., 6: 8541 (2015); https://doi.org/10.1038/ncomms9541
  103. K. Everschor, M. Garst, B. Binz, F. Jonietz, S. Mühlbauer, C. Pfleiderer, and A. Rosch, Phys. Rev. B, 86, No. 5: 054432 (2012); https://doi.org/10.1103/PhysRevB.86.054432
  104. J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nature Commun., 4: 1463 (2013); https://doi.org/10.1038/ncomms2442
  105. J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nature Nanotechnol., 8, No. 10: 742 (2013); https://doi.org/10.1038/nnano.2013.176
  106. J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nature Nanotechnol., 8, No. 11: 839 (2013); https://doi.org/10.1038/nnano.2013.210
  107. R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri, and G. Finocchio, Sci. Rep., 4: 6784 (2014); https://doi.org/10.1038/srep06784
  108. S. Woo, K. Litzius, B. Krüger, M.-Y. Im, L. Caretta, K. Richter, M. Mann, A. Krone, R.M. Reeve, M. Weigand, P. Agrawal, I. Lemesh, M.-A. Mawass, P. Fischer, M. Kläui, and G.S. D. Beach, Nature Mater., 15, No. 5: 501 (2016); https://doi.org/10.1038/nmat4593
  109. D. Stosic, J. Mulkers, B. Van Waeyenberge, T.B. Ludermir, and M.V. Milošević, Phys. Rev. B, 95, No. 21: 214418 (2017); https://doi.org/10.1103/PhysRevB.95.214418
  110. D. Stosic, T.B. Ludermir, and M.V. Milošević, Phys. Rev. B, 96, No. 21: 214403 (2017); https://doi.org/10.1103/PhysRevB.96.214403
  111. K. Di, V.L. Zhang, H.S. Lim, S.C. Ng, M.H. Kuok, X. Qiu, and H. Yang, Appl. Phys. Lett., 106, No. 5: 052403 (2015); https://doi.org/10.1063/1.4907173
  112. S. Jaiswal, K. Litzius, I. Lemesh, F. Büttner, S. Finizio, J. Raabe, M. Weigand, K. Lee, J. Langer, B. Ocker, G. Jakob, G.S.D. Beach, and M. Kläui, Appl. Phys. Lett., 111, No. 2: 022409 (2017); https://doi.org/10.1063/1.4991360
  113. R.A. Khan, P.M. Shepley, A. Hrabec, A.W.J. Wells, B. Ocker, C.H. Marrows, and T.A. Moore, Appl. Phys. Lett., 109, No. 13: 132404 (2016); https://doi.org/10.1063/1.4963731
  114. Z. Qin, C. Jin, H. Xie, X. Li, Y. Wang, J. Cao, and Q. Liu, J. Phys. D: Appl. Phys., 51, No. 42: 425001 (2018); https://doi.org/10.1088/1361-6463/aadd59
  115. H. Yin, X. Zheng, J. Wang, Y. Zhou, B. Kuerbanjiang, G. Li, X. Lu, Y. Wang, J. Wu, V.K. Lazarov, R.F.L. Evans, R. W. Chantre, J. Cai, B. Liu, H. Meng, and Y. Xu, arXiv:2006.02864 (2020).
  116. C. He, S.A. Razavi, G. Yu, X. Ma, H. Wu, Q. Shao, K.L. Wong, S. Shen, Y. Zhao, Y. Pei, Q. Chen, X. Li, S. Wang, and K.L. Wang, Appl. Phys. Lett., 116, No. 24: 242407 (2020); https://doi.org/10.1063/5.0006138
  117. G. Yu, A. Jenkins, X. Ma, S.A. Razav, C. He, G. Yin, Q. Shao, Q.L. He, H. Wu, W. Li, W. Jiang, X. Han, X. Li, A.C. Bleszynski Jayich, P.K. Amiri, and K.L. Wang, Nano Lett., 18, No. 2: 980 (2018); https://doi.org/10.1021/acs.nanolett.7b04400
  118. O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves, A. Locatelli, T.O. Menteş, A. Sala, L.D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigné, A. Stashkevich, S.M. Chérif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I.M. Miron, and G. Gaudin, Nature Nanotechnol., 11, No. 5: 449 (2016); https://doi.org/10.1038/nnano.2015.315
  119. A. Yagil, A. Almoalem, A. Soumyanarayanan, A.K. Tan, M. Raju, C. Panagopoulos, and O.M. Auslaender, Appl. Phys. Lett., 112, No. 19: 192403 (2018); https://doi.org/10.1063/1.5027602
  120. A. Soumyanarayanan, M. Raju, A.L. Gonzalez Oyarce, A.K.C. Tan, M. Im, A.P. Petrović, P. Ho, K.H. Khoo, M. Tran, C.K. Gan, F. Ernult, and C. Panagopoulo, Nature Mater., 16, No. 9: 898 (2017); https://doi.org/10.1038/nmat4934
  121. M. Raju, A. Yagil, A. Soumyanarayanan, A.K. Tan, A. Almoalem, F. Ma, and C. Panagopoulos, Nature Commun., 10: 696 (2019); https://doi.org/10.1038/s41467-018-08041-9
  122. N.K. Duong, M. Raju, A.P. Petrović, R. Tomasello, G. Finocchio, and C. Panagopoulos, Appl. Phys. Lett., 114, No. 7: 072401 (2019); https://doi.org/10.1063/1.5080713
  123. D. Maccariello, W. Legrand, N. Reyren, K. Garcia, K. Bouzehouane, S. Collin, and A. Fert, Nature Nanotechnol., 13, No. 3: 233 (2018); https://doi.org/10.1038/s41565-017-0044-4
  124. J.-H. Park, C. Park, T. Jeong, M.T. Moneck, N.T. Nufer, and J.-G. Zhu, J. Appl. Phys., 103, No. 7: 07A917 (2008); https://doi.org/10.1063/1.2838754
  125. V. Baltz, A. Marty, B. Rodmacq, and B. Dieny, Phys. Rev. B, 75, No. 1: 014406 (2007); https://doi.org/10.1103/PhysRevB.75.014406
  126. J. Sort, A. Popa, B. Rodmacq, and B. Dieny, Phys. Rev. B, 70, No. 17: 174431 (2004); https://doi.org/10.1103/PhysRevB.70.174431
  127. R. Juge, S.-G. Je, D. de Souza Chaves, L.D. Buda-Prejbeanu, J. Peña-Garcia, J. Nath, I.M. Miron, K.G. Rana, L. Aballe, M. Foerster, F. Genuzio, T.O. Mentes, A. Locatelli, F. Maccherozzi, S.S. Dhesi, M. Belmeguenai, Y. Roussigné, S. Auffret, S. Pizzini, G. Gaudin, J. Vogel, and O. Boulle, Phys. Rev. Appl., 12, No. 4: 044007 (2019); https://doi.org/10.1103/PhysRevApplied.12.044007
  128. S. Rohart and A. Thiaville, Phys. Rev. B, 88, 18: 184422 (2013); https://doi.org/10.1103/PhysRevB.88.184422
  129. S. Zhang, J. Zhang, Y. Wen, E.M. Chudnovsky, and X. Zhang, Appl. Phys. Lett., 113, No. 19: 192403 (2018); https://doi.org/10.1063/1.5053983
  130. M. He, L. Peng, Z. Zhu, G. Li, J. Cai, J. Li, H. Wei, L. Gu, S. Wang, T. Zhao, B. Shen, and Y. Zhang, Appl. Phys. Lett., 111, No. 20: 202403 (2017); https://doi.org/10.1063/1.5001322