In situ Composites: A Review

O. V. Movchan and K. O. Chornoivanenko

National Metallurgical Academy of Ukraine, 4 Gagarin Av., UA-49600 Dnipro, Ukraine

Received 25.09.2020; final version — 29.01.2021 Download PDF logo PDF

Abstract
The review of the works on the fabrication-technology studies, patterns of structure formation, and properties of in situ composites is presented. The main advantage of in situ (natural) composites is the thermodynamic stability of their composition and the coherence (conjugation) of the lattices of the contacting phases. All these ones provide the composite with a high level of the physical and mechanical properties. As shown, composite materials of this type are formed in the process of directed phase transformations, such as eutectic crystallization, eutectoid decomposition, etc., caused by a temperature gradient, as well as a result of diffusional changes in composition. The conditions for the growth of in situ composites are formulated. The mechanisms of growth of composite structures of the eutectic type are considered. The factors influencing on the morphology of structures of the eutectic type are indicated. The considered technological methods make it possible to obtain materials with predetermined properties, in which the size, volumetric composition, and spatial arrangement of phases are characteristic of in situ composites. The paper provides a large number of examples of in situ composites: from low-melting Bi-based alloys to refractory eutectics based on Mo and W (Bi–MnBi, Cd–Zn, Al–Al3Ni, Al–Al4La, Al–Al10CaFe2, Al–Al9FeNi, Al–Al3Zr, Al–Al3Sc, Au–Co, Si–TaSi2, Cr–HfC, Cr–ZrC, Cr–NbC, Cr–NbC, Cr–TaC, Nb–Nb5Si3, Mo–ZrC, Mo–HfC, W–TiC, W–ZrC, W–HfC, etc.). Processes and aspects of structure formation are considered. The influence of additional doping on the structure and properties of composite materials of the eutectic type of binary systems, as well as the features of the structure formation of ternary colonies in the composite are considered.

Keywords: composite, eutectic, directional solidification, diffusion change in composition, structure formation.

DOI: https://doi.org/10.15407/ufm.22.01.058

Citation: O. V. Movchan and K. O. Chornoivanenko, In situ Composites: A Review, Progress in Physics of Metals, 22, No. 1: 58–77 (2021)


References  
  1. A. Ghadi, M. Soltanieh, H. Saghafian, and Z. Yang, Surf. Coating. Technol., 289: 1 (2016); https://doi.org/10.1016/j.surfcoat.2016.01.048.
  2. D. Miracle, Compos. Sci. Technol., 65: 2526 (2005); https://doi.org/10.1016/j.compscitech.2005.05.027.
  3. H. Cao, X. Donga, Z. Pan, X. Wu, Q. Huang, and Y. Pei, Materials & Design, 100: 223 (2016); https://doi.org/10.1016/j.matdes.2016.03.114.
  4. D. Casellas, J. Caro, S. Molas, J.M. Prado, and I. Valls, Acta Mater., 55: 4277 (2007); https://doi.org/10.1016/j.actamat.2007.03.028.
  5. Y.K. Jeong, Y.H. Choa, and K. Niihara, J. Am. Ceram. Soc., 81: 1453 (1998); https://doi.org/10.1111/j.1151-2916.1998.tb02503.x.
  6. J. Zhu, L. Zhong, Y. Xu, S. Zhang, and Z. Lu, Vacuum, 168: 108862 (2019); https://doi.org/10.1016/j.vacuum.2019.108862.
  7. A.A. Minaev, O.T. Alimova, and M.S. Grishanova, Materials of the 77th Int. Sci.-Tech. Conf. ‘Avtomobile- i Traktorostroenie v Rossii: Prioritety Razvitiya i Podgotovka Kadrov’. Sektsiya 6 ‘Mashiny i Tekhnologii Zagotovitel’nogo Proizvodstva’ (Moscow: MGTU ‘MAMI’: 2012), p. 28 (in Russian).
  8. R. Elliott, Eutectic Solidification Processing: Crystalline and Glassy Alloys, (London: Butterworth-Heinemann: 1983), 378 p.
  9. F.L. Kennard, R.C. Bradt, and V.S. Stubican, J. Am. Ceram. Soc., 59: 160 (1976); https://doi.org/10.1111/j.1151-2916.1976.tb09457.x.
  10. I. Bogomol, T. Nishimura, O. Vasylkiv, Y. Sakka, and P. Loboda, J. Alloys and Compd., 509: 6123 (2011); https://doi.org/10.1016/j.jallcom.2011.02.176.
  11. I. Bogomol, T. Nishimura, O. Vasylkiv, Y. Sakka, and P. Loboda, J. Alloys and Compd., 485: 677 (2009); https://doi.org/10.1016/j.jallcom.2009.06.044.
  12. I. Bogomol, S. Grasso, T. Nishimura, Y. Sakka, P. Loboda, and O. Vasylkiv, Ceram. Int., 38: 3947 (2012); https://doi.org/10.1016/j.ceramint.2012.01.048.
  13. I. Bogomol, P. Badica, Y.Q. Shen, T. Nishimura, P. Loboda, and O. Vasylkiv, J. Alloys and Compd., 570: 94 (2013); https://doi.org/10.1016/j.jallcom.2013.03.084.
  14. D. Demirskyi and Y. Sakka, J. Am. Ceram. Soc., 97: 2376 (2014); https://doi.org/10.1111/jace.13083.
  15. D. Demirskyi and Y. Sakka, J. Ceram. Soc. Jpn., 123: 33 (2015); https://doi.org/10.2109/jcersj2.123.33.
  16. D. Demirskyi, Y. Sakka, and O. Vasylkiv, J. Asian Ceram. Soc., 3: 369 (2015); https://doi.org/10.1016/j.jascer.2015.08.001.
  17. D. Demirskyi, Y. Sakka, and O. Vasylkiv, J. Ceram. Soc. Jpn., 123: 1051 (2015); https://doi.org/10.2109/jcersj2.123.1051.
  18. D. Demirskyi, Y. Sakka, and O. Vasylkiv, J. Am. Ceram. Soc., 99: 2436 (2016); https://doi.org/10.1111/jace.14235.
  19. S.S. Ordan’yan, A.I. Dmitriev, K.T. Bizhev, and E.K. Stepanenko, Sov. Powder Metall. Met. Ceram., 26: 834 (1987).
  20. K.K. Chawla, Composite Materials. Science and Engineering (New York: Springer-Verlag: 1998); https://doi.org/10.1007/978-1-4757-2966-5.
  21. L.E. Murr, Handbook of Materials Structures, Properties, Processing and Performance (Springer International Publishing Switzerland: 2015), p. 419; https://doi.org/10.1007/978-3-319-01815-7_24.
  22. R.W. Hertzberg, Fiber Composite Materials (Ohio: ASM, Metals Park, 1965), p. 77.
  23. J.F. Li and Y.H. Zhou, Acta Mater., 53: 2351 (2005); https://doi.org/10.1016/j.actamat.2005.01.042.
  24. S.M. Li, Q.R. Quan, X.L. Li, and H.Z. Fu, J. Cryst. Growth, 314: 279 (2011); https://doi.org/10.1016/j.jcrysgro.2010.10.164.
  25. A. Parisi and M. Plapp, Acta Mater., 56: 1348 (2008); https://doi.org/10.1016/j.actamat.2007.11.037.
  26. C.J. Cui, J. Zhang, H.J. Su, L. Liu, and H.Z. Fu, J. Cryst. Growth, 311: 2555 (2009); https://doi.org/10.1016/j.jcrysgro.2009.02.014.
  27. A.E. Ares, S.F. Gueijman, and C.E. Schvezov, J. Cryst. Growth, 14: 2154 (2010); https://doi.org/10.1016/j.jcrysgro.2010.04.040.
  28. K.A. Jackson and J.D. Hunt, Trans. Metal. Soc. AIME, 236: 1129 (1966).
  29. J. Zhang, J. Shen, Z. Shang, Z. Feng, L. Wang, and H. Fu, J. Cryst. Growth, 329: 77 (2011); https://doi.org/10.1016/j.jcrysgro.2011.06.049.
  30. Y.X. Zhuang and X.M. Zhang, Sci. Tech. Adv. Mater., 2: 37 (2001); https://doi.org/10.1016/S1468-6996(01)00023-7.
  31. J.C. Liu and R. Elliott, Met. Trans. A, 26: 471 (1995); https://doi.org/10.1007/BF02664683.
  32. R. Trivedi, J.T. Mason, J.D. Vercheven, and W. Kurz, Met. Trans. A, 22: 2523 (1991); https://doi.org/10.1007/BF02665018.
  33. V. Seetharaman and R. Trivedi, Met. Trans. A, 19: 2955 (1988); https://doi.org/10.1007/BF02647722.
  34. J.D. Hunt and K.A. Jackson, Trans. Metal. Soc. AIME, 236: 843 (1966).
  35. J. Teng, S. Liu, and R. Trivedi, Acta Mater., 56: 2819 (2008); https://doi.org/10.1016/j.actamat.2008.02.011.
  36. M. Serefoglu and R.E. Napolitano, Acta Mater., 56: 3862 (2008); https://doi.org/10.1016/j.actamat.2008.02.050.
  37. J.D. Livingston, Composites, 4: 70 (1973); https://doi.org/10.1016/0010-4361(73)90752-0.
  38. K. Hirano and Q. Kосuli, 103-th Annual Meeting Exposition the American Ceramic Society Bulletin (Indianapolis, USA: 2001), р. 1304.
  39. V.V. Podolinskiy, Metallofiz. Noveishie Tekhnol., 1: 18 (1996) (in Russian).
  40. V.M. Azhazha, V.E. Semenenko, and P.N. Vjugov, Proceedings of ISPM-8, (Kharkiv: 2003), р. 27.
  41. V.E. Semenenko and N.N. Pilipenko, VANT: Ser. ‘Vakuum, Chistyye Materialy, Sverkhprovodniki’, 25: 117 (2003) (in Russian).
  42. O. Hiroshi, Теchnol. Repts. Tohoki Univ., 67: 67 (2002).
  43. Yu.P. Kurilo, A.I. Somov, and A.S. Tortika, Fizika Metallov i Metallovedenie, 34: 1291 (1972) (in Russian).
  44. G.P. Dmitrieva, Metallofiz. Noveishie Tekhnol., 38: 1407 (2016); https://doi.org/10.15407/mfint.38.10.1407.
  45. M.A. Tikhonovskiy, VANT: Ser. ‘Vakuum, Chistyye Materialy, Sverkhprovodniki’, 6: 115 (2004) (in Russian).
  46. M.A. Tikhonovskiy, A.I. Somov, and V.E. Semenenko, Materials of the 1st all-U.S.S.R. Conf. ‘Zakonomernosti Formirovaniya Struktury Splavov Evtekticheskogo Tipa’ (Dnepropetrovsk: DMeTI: 1979), p. 193.
  47. A.I. Somov and M.A. Tikhonovskiy, Evtekticheskie Kompozitsii (Moscow: Metallurgiya: 1975).
  48. A.I. Somov, M.A. Tikhonovskiy, and N.F. Andrievskaya, Fizika Metallov i Metallovedenie, 46: 1126 (1978).
  49. A.K. Shurin and G.P. Dmitrieva, Metallofizika, 51: 105 (1974) (in Russian).
  50. G.P. Dmitrieva, A.N. Rakitskiy, and A.K. Shurin, Konstruktsionnyye Splavy Khroma [Chrome Structural Alloys] (Kiev: Naukova Dumka: 1986) (in Russian).
  51. R.A. Alfintseva, V.N. Gridnev, G.P. Dmitrieva, A.N. Rakitskiy, V.I. Trefilov, and A.K. Shurin, Splav na Osnove Khroma [Chromium-Based Alloy]: Authors’ Certificate 749116 SSSR (Publ. March 21, 1980) (in Russian).
  52. S.F. Burlakov, G.P. Dmitrieva, V.A. Lizunov, V.N. Minakov, L.N. Postnov, V.I. Trefilov, A.P. Tribulkin, and A.K. Shurin, Splav na Osnove Molibdena [Molybdenum-Based Alloy], Authors’ Certificate No. 518976 SSSR (Publ. February 27, 1976) (in Russian).
  53. S.F. Burlakov, G.P. Dmitrieva, V.A. Lizunov, V.N. Minakov, L.N. Postnov, A. P. Tribulkin, V. I. Trefilov, and A. K. Shurin, Splav na Osnove Molibdena [Molybdenum-Based Alloy], Authors’ Certificate No. 535876 SSSR (Publ. July 22, 1976) (in Russian).
  54. V.A. Balashov, G.P. Dmitrieva, G.G. Kurdyumova, Yu.V. Mil’man,V.M. Postnov, V.I. Trefilov, I.M. Shumilova, and A.K. Shurin, Splav na Osnove Vol’frama [Tungsten-Based Alloy], Authors’ Certificate No. 666901 SSSR (Publ. February 15, 1979) (in Russian).
  55. G.P. Dmitrieva, A.N. Drachinsky, and A.K. Shurin, Metallofizika, 5: 72 (1983) (in Russian).
  56. I.J. Polmear, Light Metals: From Traditional Alloys to Nanocrystals. Fourth Edition (Elsevier–Butterworth-Heinemann: 2005); https://doi.org/10.1016/B978-0-7506-6371-7.X5000-2.
  57. A.K. Chaubey, S. Scudino, N.K. Mukhopadhyay, M. Samadi Khoshkhoo, B.K. Mishrac, and J. Eckerta, J. Alloys and Compd., 536: 134 (2012); https://doi.org/10.1016/j.jallcom.2011.12.075.
  58. N.A. Belov, E.A. Naumova, and D.G. Eskin, Mater. Sci. Eng. A, 271: 134 (1999); https://doi.org/10.1016/S0921-5093(99)00343-3.
  59. R. Kakitani, R.V. Reyes, A. Garcia, J.E. Spinelli, and N. Cheung, J. Alloys and Compd., 733: 59 (2018); https://doi.org/10.1016/j.jallcom.2017.10.288.
  60. K. Amouri, Sh. Kazemi, A. Momeni, and M. Kazazi, Mater. Sci. Eng. A, 674: 569 (2016); https://doi.org/10.1016/j.msea.2016.08.027.
  61. L. Jianke and L. Chuxuan, Mater. Lett., 206: 95 (2017); https://doi.org/10.1016/j.matlet.2017.06.129.
  62. I. Mobasherpour, A.A. Tofigh, and M. Ebrahimi, Mater. Chem. Phys., 138: 535 (2013); https://doi.org/10.1016/j.matchemphys.2012.12.015.
  63. Y. Xue, R. Shen, S. Ni, M. Song, and D. Xiao, J. Alloys and Compd., 618: 537 (2015); https://doi.org/10.1016/j.jallcom.2014.09.009.
  64. S.L. Pramod, S.R. Bakshi, and B.S. Murty, Journal of Materials Engineering and Performance, 24: 2185 (2015); https://doi.org/10.1007/s11665-015-1424-2.
  65. N.A. Belov, A.N. Alabin, and D.G. Eskin, Scr. Mater., 50: 89 (2004); https://doi.org/10.1016/j.scriptamat.2003.09.033.
  66. C. Suwanpreecha, P. Pandee, U. Patakham, and C. Limmaneevichitr, Mater. Sci. Eng. A, 709: 46 (2018); https://doi.org/10.1016/j.msea.2017.10.034.
  67. C.S. Tiwary, S. Kashyap, D.H. Kim, and K. Chattopadhyay, Mater. Sci. Eng. A, 639: 359 (2015); https://doi.org/10.1016/j.msea.2015.05.024.
  68. Y. Hea, J. Liua, S. Qiub, Z. Denga, J. Zhanga, and Y. Shena, Mater. Sci. Eng. A, 701: 134 (2017); https://doi.org/10.1016/j.msea.2017.06.023.
  69. I. Bacaicoa, M. Wicke, M. Luetje, F.Zeismann, A. Brueckner-Foit, A. Geisert, and M. Fehlbier, Eng. Fract. Mech., 183: 159 (2017); https://doi.org/10.1016/j.engfracmech.2017.03.015.
  70. Z. Ma, A.M. Samuel, H.W. Doty, S. Valtierra, and F.H. Samuel, Materials & Design, 57: 366 (2014); https://doi.org/10.1016/j.matdes.2014.01.037.
  71. C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, and A.B. Phillion, Acta Mater., 68: 42 (2014); https://doi.org/10.1016/j.actamat.2014.01.007.
  72. P.K. Shurkin, A.P. Dolbachev, E.A. Naumova, and V.V. Doroshenko, Tsvetnye Metally, 5: 69 (2018); https://doi.org/10.17580/tsm.2018.05.10.
  73. P.K. Shurkin, N.A. Belov, T.K. Akopyan, A.N. Alabin, A.S. Aleshchenko, and N.N. Avxentieva, Phys. Met. Metallogr., 118: 896 (2017); https://doi.org/10.1134/S0031918X17070109.
  74. N.A. Belov, E.A. Naumova, V.V. Doroshenko, and N.N. Avxentieva, Russ. J. Non-Ferrous Metals, 59: 67 (2018); https://doi.org/10.3103/S1067821218010054.
  75. V.Kh. Mann, A.N. Alabin, A.Yu. Krokhin, A.V. Frolov, and N.A. Belov, Light Metal Age, 73: 44 (2015).
  76. K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, and D.N. Seidman, Acta Mater., 58: 5184 (2010); https://doi.org/10.1016/j.actamat.2010.05.054.
  77. E. Clouet, A. Barbu, L. Lae, and G. Martin, Acta Mater., 53: 2313 (2005); https://doi.org/10.1016/j.actamat.2005.01.038.
  78. W.W. Zhou, B. Cai, W.J. Li, Z.X. Liu, and S. Yang, Mater. Sci. Eng. A, 553: 353 (2012); https://doi.org/10.1016/j.msea.2012.05.051.
  79. C. Booth-Morrison, Z. Mao, M. Diaz, D.C. Dunand, C. Wolverton, and D.N. Seidman, Acta Mater., 60: 4740 (2012); https://doi.org/10.1016/j.actamat.2012.05.036.
  80. S. Ikeshita, A. Strodahs, and Z. Saghi, Micron, 82: 1 (2016); https://doi.org/10.1016/j.micron.2015.12.002.
  81. W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, and K. Marthinsen, J. Alloys and Compd., 470: 107 (2009); https://doi.org/10.1016/j.jallcom.2008.02.043.
  82. N.A. Belov, K.A. Batyshev, and V.V. Doroshenko, Non-Ferrous Met., 43: 49 (2017); https://doi.org/10.17580/nfm.2017.02.09.
  83. N.A. Belov, A.N. Alabin, and D.G. Eskin, Scripta Mater., 50: 89 (2004); https://doi.org/10.1016/j.scriptamat.2003.09.033.
  84. T.K. Akopyan, N.V. Letyagin, and M.E. Samoshina, Russ. J. Non-Ferrous Metals, 60: 531(2019); https://doi.org/10.3103/S106782121905002X.
  85. T.K. Akopyan, N.A. Belov, E.A. Naumova, and N.V. Letyagin, Materials Letters, 245: 110 (2019); https://doi.org/10.1016/j.matlet.2019.02.112.
  86. K. Liu, D. Lu, H. Zhou, Y. Yang, A. Atrens, and J. Zou, J. Mater. Eng. Perform., 22: 3723 (2013); https://doi.org/10.1007/s11665-013-0698-5.
  87. B.P. Bewlay, M.R. Jackson, and J.A. Sutliffe, Mater. Sci. Eng. A, 192–193, Part 2: 534 (1995); https://doi.org/10.1016/0921-5093(95)03299-1.
  88. B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt, Metall. Mater. Trans. A, 27: 3801 (1996); https://doi.org/10.1007/BF02595629.
  89. B.P. Bewlay, M.R. Jackson, and M.F. X. Gigliotti, Intermetallic Compounds–Principles and Practice: Progress, Volume 3 (Eds. J.H. Westbro and R.I. Fleicher) (John Wiley & Sons, Ltd: 2002), Ch. 26, p. 541; https://doi.org/10.1002/0470845856.ch26.
  90. Yu.A. Bondarenko, A.B. Echin, M.Yu. Kolodyazhnyi, and A.R. Narskii, Russ. Metall., 2017: 1012 (2017); https://doi.org/10.1134/S0036029517120047.
  91. Yu.A. Bondarenko, A.B. Echin, and M.Yu. Kolodyazhnyi, Russ. Metall., 2017: 461 (2017); https://doi.org/10.1134/S0036029517060052.
  92. J. Vandenboomgaard, D.R. Terrell, R.A.J. Born, and H.F.J.I. Giller, J. Mater. Sci., 9: 1705 (1974); https://doi.org/10.1007/BF00540770.
  93. J. Echigoya, S. Hayashi, and Y. Obi, J. Mater. Sci., 35: 5587 (2000); https://doi.org/10.1023/A:1004857014209.
  94. P.R. Sahm and H.R. Killias, J. Mater. Sci., 5: 1027 (1970); https://doi.org/10.1007/BF02403273.
  95. J.D. Hunt and K.A. Jackson, Trans. Met. Soc. AIME, 242: 843 (1966).
  96. M.N. Croker, R.S. Findler, and R.W. Smith, Proc. Roy. Soc. A, 335: 15 (1973); https://doi.org/10.1098/rspa.1973.0111.
  97. M.N. Croker, M. McParlan, D. Barager, and R.W. Smith, J. Cryst. Growth, 29: 85 (1975); https://doi.org/10.1016/0022-0248(75)90055-X.
  98. M.N. Croker, D. Barager, and R.W. Smith, J. Cryst. Growth, 30: 198 (1975); https://doi.org/10.1016/0022-0248(75)90090-1.
  99. M. Sahoo and R.W. Smith, Met. Sci., 9: 217 (1975); https://doi.org/10.1179/030634575790444874.
  100. M. Sahoo and R.W. Smith, Can. Met. Q., 15, No. 1: 1 (1976); https://doi.org/10.1179/cmq.1976.15.1.1.
  101. M. Sahoo, R.A. Porter, and R.W. Smith, J. Mater. Sci., 11: 1125 (1976); https://doi.org/10.1007/BF00737524.
  102. W.A. Tiller and R. Mrdjenovich, J. Appl. Phys., 34: 3639 (1963); https://doi.org/10.1063/1.1729283.
  103. B.J. Shaw, Acta Met., 15: 1169 (1967); https://doi.org/10.1016/0001-6160(67)90391-4.
  104. B. Soutiere and H.W. Kerr, Trans. Met. Soc. AIME, 245: 2595 (1969).
  105. F.R. Mollard and M.C. Flemings, Trans. Met. Soc. AIME, 239: 1534 (1967).
  106. K.A. Jackson, Trans. Met. Soc. AIME, 242: 1275 (1968).
  107. R.M. Jordan and J.D. Hunt, Met. Trans., 2: 3401 (1971); https://doi.org/10.1007/BF02811622.
  108. H.E. Cline and J.D. Livingston, Trans. Met. Soc. AIME, 245: 1978 (1969).
  109. M. Sahoo, R.A. Porter, and R.W. Smith, J. Mater. Sci., 11: 1680 (1976); https://doi.org/10.1007/BF00737524.
  110. C. Cui, J. Zhang, B. Li, M. Han, L. Liu, and H. Fu, J. Cryst. Growth, 299: 248 (2007); https://doi.org/10.1016/j.jcrysgro.2006.11.248.
  111. V.E. Semenenko, T.A. Kovalenko, and M.V. Tret’yakov, Vіsnik KhNU, Serіya Fіzichna ‘Yadra, Chastynki, Polya’, 619: 115 (2004) (in Russian).
  112. A.V. Movchan, A.P. Bachurin, and L.G. Pedan, Dopovіdі NAN Ukrainy, 7: 104 (2000) (in Russian).
  113. K.P. Bunin, V.I. Movchan, and L.G. Pedan, Izv. VUZov. Chernaya Metallurgiya, 2: 123 (1973) (in Russian).
  114. K.P. Bunin, V.I. Movchan, and L.G. Pedan, Izv. AN SSSR. Metally, 3: 164 (1975) (in Russian).
  115. V.I. Movchan, L.G. Pedan, and V.P. Gerasimenko, MiTOM, 9: 19 (1983) (in Russian).
  116. V.I. Movchan, A.V. Movchan, and Yu.S. Dvoryadkin, Problemy Metallurgicheskogo Proizvodstva, 110: 90 (1993) (in Russian).
  117. A.V. Movchan, L.G. Pedan, and A.P. Bachurin, Metally, 5: 53 (1999) (in Russian).
  118. V.I. Movchan, L.G. Pedan, and V.I. Ivanica, MiTOM, 8: 12 (1990) (in Russian).
  119. V.M. Gavrilenko, V.P. Gerasimenko, and V.I. Movchan, Izv. AN SSSR. Metally, 3: 71 (1984) (in Russian).
  120. A.V. Movchan, S.I. Gubenko, A.P. Bachurin, and E.A. Chernoivanenko, Stroitel’stvo, Materialovedenie, Mashinostroenie: Sb. Nauch. Trudov, 64: 262 (2012) (in Russian); http://nbuv.gov.ua/UJRN/smmsc_2012_64_46.
  121. O.V. Movchan and K.O. Chornoivanenko, XV Int. Conf. ‘Strategіya Yakostі v Promyslovostі i Osvіtі’ (Dnіpro-Varna: 2019), p. 133 (in Ukrainian).
  122. S.I. Gubenko, A.V. Movchan, A.P. Bachurin, and E.A. Chernoivanenko, Novyny Nauki Prydnіprov’ya, Serіya ‘Іnzhenernі Nauky’, 2: 87 (2012) (in Russian).
  123. A.P. Bachurіn, O.V. Movchan, and L.G. Pedan, MTOM, 1–2: 18 (2001) (in Ukrainian).
  124. O.V. Movchan and K.O. Chornoivanenko, Metallurgical and Ore Mining Industry, 5–6: 76 (2019) (in Ukrainian); https://doi.org/10.34185/0543-5749.2019-5-6-76-83.