New Opportunities to Determine the Rate of Wear of Materials at Friction by the Indentation Data

Yu. V. Milman$^1$, B. M. Mordyuk$^2$, K. E. Grinkevych$^1$, S. I. Chugunova$^1$, I. V. Goncharova$^1$, A. I. Lukyanov$^1$, and D. A. Lesyk$^3$

$^1$I. M. Frantsevich Institute for Problems in Materials Science of the N.A.S. of Ukraine, 3 Academician Krzhizhanovsky Str., UA-03142 Kyiv, Ukraine
$^2$G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^3$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Peremohy Ave., UA-03056 Kyiv, Ukraine

Received 30.06.2020; final version — 12.10.2020 Download PDF logo PDF

Abstract
The article is concerned with the determination of physical plasticity δH (the ratio of the plastic strain to the total strain) and yield stress σS by indentation and the application of these characteristics for analysis of the wear rate W during the friction. The experimental part of the work is performed on the AISI O2 and AISI D2 steels, the surface layers of which were hardened by combined thermomechanical treatment consisted of sequential use of laser heat treatment and ultrasonic impact treatment. For the metals, W is shown to be proportional to δH and inversely proportional to σS. The general scheme for the dependence of W on δH is proposed and based on experimental results for tool steels and hard alloys. For the steels, whose wear is caused by the plastic deformation, W increases with increasing δH, and it decreases conversely for hard alloys worn predominantly by the fracture mechanism. The use of physical plasticity δH and yield stress σS, which are calculated using the hardness and Young’s modulus, characterizes both the hardening extent and the wear rate of the surface layers in more full measure and more accurately than the hardness magnitude itself.

Keywords: wear, physical plasticity, yield stress, hardened surface layer, hardness, indentation.

Citation: Yu. V. Milman, B. M. Mordyuk, K. E. Grinkevych, S. I. Chugunova, I. V. Goncharova, A. I. Lukyanov, and D. A. Lesyk, New Opportunities to Determine the Rate of Wear of Materials at Friction by the Indentation Data, Progress in Physics of Metals, 21, No. 4: 554–579 (2020)


References (60)  
  1. E. Rabinowicz, Friction and Wear of Materials (Wiley: New York: 1995).
  2. I.V. Kragelsky, Tribology: Lubrication, Friction and Wear (John Wiley and Sons Ltd: Bury St Edmunds: 2005).
  3. I.M. Lyubarskyi and L.S. Palatnik, Metallofizika Treniya [Metal Physics of Friction] (Moscow: Metallurgy: 1976) (in Russian).
  4. A.R. Chintha, Mater. Sci. Technol., 35, No. 10: 1133 (2019). https://doi.org/10.1080/02670836.2019.1615669
  5. H.K.D.H. Bhadeshia, Prog. Mater. Sci., 57, No. 2: 268 (2012). https://doi.org/10.1016/j.pmatsci.2011.06.002
  6. J.D. Lemm, A.R. Warmuth, S.R. Pearson, and P.H. Shipway, Tribology Int., 81: 258 (2015). https://doi.org/10.1016/j.triboint.2014.09.003
  7. Y. Zhu, W. Wang, R. Lewis, W. Yan, S. R. Lewis, and H. Ding, J. Tribol., 141, No. 12: 120801 (2019). https://doi.org/10.1115/1.4044464
  8. L. Zhou, G. Liu, Z. Han and K. Lu, Scr. Mater., 58, No. 6: 445 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.034
  9. K. Kato, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribology, 216, No. 6: 349 (2002). https://doi.org/10.1243/135065002762355280
  10. M.F. Ashby and S.C. Lim, Scr. Met. Mater., 24: 805 (1990). https://doi.org/10.1016/0956-716X(90)90116-X.
  11. S.A. Bespalov, Usp. Fiz. Met., 10, No. 4: 415 (2009) (in Russian). https://doi.org/10.15407/ufm.10.04.415
  12. A. Jafari, K. Dehghani, K. Bahaaddini, and R. A. Hataie, Wear, 416–417: 14 (2018). https://doi.org/10.1016/j.wear.2018.09.010
  13. H. de Beure and J.Th.M. de Hosson, Scr. Metal., 21, No. 5: 627 (1987). https://doi.org/10.1016/0036-9748(87)90373-5
  14. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, А. Lamikiz, G.I. Prokopenko, Yu.V. Milman, and K.E. Grinkevych, Surf. Coat. Technol., 328: 344 (2017). https://doi.org/10.1016/j.surfcoat.2017.08.045
  15. S.I. Sidorenko, M.O. Vasylyev, and S.M. Voloshko, Materials Science: Achievements and Prospects (Eds. L.M. Lobanov et al.) (Kyiv: Akademperiodyka: 2018), p. 393 (in Ukrainian). http://u-i-n.com.ua/en/catalog_main/203
  16. M.O. Vasiliev, G.I. Prokopenko, and V.S. Filatova, Usp. Fiz. Met., 5, No. 3: 345 (2009) (in Russian). https://doi.org/10.15407/ufm.05.03.345
  17. B.N. Mordyuk, M.O. Iefimov, Yu.V. Milman, G.I. Prokopenko, V.V. Silbershmidt, M.I. Danylenko, and A.V. Kotko, Surf. Coat. Technol., 202, No. 19: 4875 (2008). https://doi.org/10.1016/j.surfcoat.2008.04.080
  18. Yu.V. Milman, K. Grinkevich, S. Сhugunova, W. Lojkowski, M. Djahanbakhsh, and H.J. Fecht, Wear, 258, Nos. 1–4: 77 (2005). https://doi.org/10.1016/j.wear.2004.02.017
  19. E.M. Rudenko, V.Ye. Panarin, P.O. Kyrychok, M.Ye. Svavilnyi, I.V. Korotash, O.O. Palyukh, D.Yu. Polotskyi, and R.L. Trishchuk, Prog. Phys. Met., 20, No. 3: 485 (2019). https://doi.org/10.15407/ufm.20.03.485
  20. J. W. Murray, N. Ahmed, T. Yuzawa, T. Nakagawa, S. Sarugaku, D. Saito, and A.T. Clare, Tribology Int., 150: 106392 (2020) https://doi.org/10.1016/j.triboint.2020.106392
  21. O.V. Maksakova, O.D. Pogrebnjak, and V.M. Beresnev, Prog. Phys. Met., 19, No. 1: 25 (2018). https://doi.org/10.15407/ufm.19.01.025
  22. M.A. Vasylyev, B.N. Mordyuk, S.I. Sidorenko, S.M. Voloshko, A.P. Burmak, I.O. Kruhlov, and V.I. Zakiev, Surf. Coat. Technol., 361: 413 (2019) https://doi.org/10.1016/j.surfcoat.2018.12.010
  23. B.N. Mordyuk, G.I. Prokopenko, K.E. Grinkevych, N.A. Piskun, and T.V. Popova, Surf. Coat. Technol., 309: 969 (2017). https://doi.org/10.1016/j.surfcoat.2016.10.050
  24. Yu.V. Milman, S.I. Chugunova, I.V. Goncharova, and A.A. Golubenko, Prog. Phys. Met., 19, No. 3: 271 (2018). https://doi.org/10.15407/ufm.19.03.271
  25. A.F. Shchurov, A.V. Kruglov, and V.A. Perevoshchikov, Inorg. Mater., 37, No. 4: 349 (2001). https://doi.org/10.1023/A:1017571609977
  26. P.H. Boldt, G.C. Weatherly, and J.D. Embury, Int. J. Mater. Res., 15, No. 4: 1025 (2000). https://doi.org/10.1557/JMR.2000.0146
  27. X. Zhang, B.D. Beake, and S. Zhang, Thin Films and Coatings. Toughening and Toughness Characterization (Ed. S. Zhang) (Boca Raton: Taylor & Francis Group, CRC Press: 2015), Ch. 2, p. 48. https://doi.org/10.1201/b18729
  28. Yu.V. Milman, B.A. Galanov, and S.I. Chugunova, Acta Met. Mater., 41, No. 9: 2523 (1993). https://doi.org/10.1016/0956-7151(93)90122-9
  29. B.A. Galanov, Yu.V. Milman, S.I. Chugunova, I.V. Goncharova, and I.V. Voskoboinik, Crystals, 7, No. 3: 87 (2017). https://doi.org/10.3390/cryst7030087
  30. Yu.V. Milman, J. Phys. D: Appl. Phys., 41: 074013 (2008). https://doi.org/10.1088/0022-3727/41/7/074013
  31. M.J. Schneider and M.S. Chatterjee, ASM Handbook. Vol. 4A. Steel Heat Treating Fundamentals and Processes (Eds. J. Dossett and G.E. Totten) (ASM International: 2013), p. 389.
  32. J. Grum, J. Ach. Mater. Manuf. Eng., 24, No. 1: 17 (2007). http://jamme.acmsse.h2.pl/papers_vol24_1/24101.pdf
  33. Y. Morisada, H. Fujii, T. Mizuno, G. Abe, T. Nagaoka, and M. Fukusumi, Mater. Sci. Eng. A, 505, Nos. 1–2: 157 (2009). https://doi.org/10.1016/j.msea.2008.11.006
  34. A.L. Ortiz, J.-W. Tian, L.L. Shaw, and P.K. Liaw, Scr. Mater., 62, No. 3: 129 (2010). https://doi.org/10.1016/j.scriptamat.2009.10.015
  35. S. Lu, Z. Wang, and K. Lu, J. Mater. Sci. Technol., 26, No. 3: 258 (2010). https://doi.org/10.1016/S1005-0302(10)60043-6
  36. A. Amanov, I.-S. Cho, and D.-E. Kim, Mater. Design, 45: 118 (2013). https://doi.org/10.1016/j.matdes.2012.08.073
  37. L. Li, M. Kim, S. Lee, M. Bae, and D. Lee, Surf. Coat. Technol., 307: 517 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.023
  38. C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J.M.K. Wiezorek, Z. Zhou, D. Qian, S.R, Mannava, and V.K. Vasudevan, Mater. Sci. Eng. A, 613: 274 (2014). https://doi.org/10.1016/j.msea.2014.06.114
  39. T. Amine, J.W. Newkirk, H. El-Din, F. El-Sheikh, and F. Liou, Int. J. Adv. Manuf. Technol., 73: 1427 (2014). https://doi.org/10.1007/s00170-014-5882-8
  40. U. Trdan, M. Skarba, J.A. Porro, J.L. Ocaña, and J. Grum, Surf. Coat. Technol., 342: 1 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.084
  41. J. Radziejewska, Mater. Design, 32, No. 10: 5073 (2011). https://doi.org/10.1016/j.matdes.2011.06.035
  42. J.H. Lee, J.H. Jang, B.D. Joo, Y.M. Son, and Y.H. Moon, Trans. Nonferrous Met. Soc. China, 19, No. 4: 917 (2009). https://doi.org/10.1016/S1003-6326(08)60377-5
  43. G. Telasang, J.D. Majumdar, G. Padmanabham, and I. Manna, Surf. Coat. Technol., 261: 69 (2015). https://doi.org/10.1016/j.surfcoat.2014.11.058
  44. D. Tabor, Phil. Mag. A, 74, No. 5: 1207 (1996). https://doi.org/10.1080/01418619608239720
  45. Y.T. Cheng and C.M. Cheng, Mater. Sci. Eng. R, 44, No. 4: 91 (2004). https://doi.org/10.1016/j.mser.2004.05.001
  46. Y. Milman, S. Dub, and A. Golubenko, MRS Proceedings, 1049: 1049-AA05-06 (2007). https://doi.org/10.1557/PROC-1049-AA05-06
  47. D.M. March, Proc. Phys. Soc. A, 279: 420 (1964). https://doi.org/10.1098/rspa.1964.0210
  48. J. Strenberg, J. Appl. Phys., 65, No. 9: 3417 (1989). https://doi.org/10.1063/1.342659
  49. K.J. Johnson, Contact Mechanics (Cambridge: University Press: 1985).
  50. K. Tanaka, J. Mater. Sci., 22: 1501 (1987). https://doi.org/10.1007/BF01233154
  51. D.A. Lesyk, S. Martinez, B.N. Mordyuk, V.V. Dzhemelinskyi, A. Lamikiz, and G.I. Prokopenko, Optics and Laser Technol., 111: 424 (2019). https://doi.org/10.1016/j.optlastec.2018.09.030
  52. D. Lesyk, S. Martinez, B. Mordyuk, V. Dzhemelinskyi, and O. Danyleiko, Advances in Design, Simulation and Manufacturing II–DSMIE 2019. Lecture Notes in Mechanical Engineering (Eds. V. Ivanov et al.) (Cham: Springer: 2020), p. 188. https://doi.org/10.1007/978-3-030-22365-6_19
  53. K.E. Grinkevich, Trenie i Iznos, 24, No. 3: 100 (2003).
  54. Yu.V. Mil’man, H.М. Nykyforchyn, K.E. Hrinkevych, O.T. Tsyrul’nyk, І.V. Tkachenko, V.A. Voloshyn, and L.V. Mordel, Mater. Sci., 47: 583 (2012). https://doi.org/10.1007/s11003-012-9431-z
  55. K. Kato and K. Adachi, Modern Tribology Handbook (Ed. B. Bhushan) (Boca Raton: Taylor & Francis Group, CRC Press: 2000).
  56. P.S. Bate and D.V. Wilson, Acta Metall., 34, No. 6: 1097 (1986). https://doi.org/10.1016/0001-6160(86)90220-8
  57. A.V. Byakova, Yu.V. Milman, and A.A. Vlasov, Science of Sintering, 36, No. 2: 93 (2004). https://doi.org/10.2298/SOS0402093B
  58. Y. Estrin, N.V. Isaev, S.V. Lubenets, S.V. Malykhin, A.T. Pugachov, E.N. Reshetnyak, V.S. Fomenko, L.S. Fomenko, M. Janecek, and R.J. Hellmig, Acta Mater., 54, No. 20: 5581 (2006). https://doi.org/10.1016/j.actamat.2006.07.036
  59. Z. Huang, L.Y. Gu, and J.R. Weertman, Scr. Mater., 37, No. 7: 1071 (1997). https://doi.org/10.1016/S1359-6462(97)00209-1
  60. V. Popov, Facta Universitatis. Series: Mech. Eng., 17, No. 1: 39 (2019). https://doi.org/10.22190/FUME190112007P