The Role of Technological Process in Structural Performances of Quasi-Crystalline Al–Fe–Cr Alloy

O. V. Byakova$^1$, A. O. Vlasov$^1$, O. A. Scheretskiy$^2$, and O. I. Yurkova$^3$

$^1$I. M. Frantsevich Institute for Problems in Materials Science of the N.A.S. of Ukraine, 3 Academician Krzhizhanovsky Str., UA-03142 Kyiv, Ukraine
$^2$Physical-Technological Institute of Metals and Alloys of the N.A.S. of Ukraine, 34/1 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^3$National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 37 Prospect Peremohy, UA-03056 Kyiv, Ukraine

Received 22.06.2020; final version — 07.10.2020 Download PDF logo PDF

Abstract
The present study emphasizes the role of processing strategy in terms of its effect on structural performances, heat-treatment response, and mechanical behaviour of quasi-crystalline Al–Fe–Cr-based alloy with nominal composition Al94Fe3Cr3. Several kinds of semi-products and bulk-shaped materials, all processed with Al94Fe3Cr3 alloy, have been produced using rapid solidification by melt spinning, powder atomization, hot extrusion, and cold-spraying, respectively. All kinds of semi-products and bulk-shaped materials comprised nanosize quasi-crystalline particles of i-phase, all embedded in α-Al matrix, although fraction volume of quasi-crystals and other structural parameters were rather different and dependent on processing route. In particular, cold-spraying technique was believed to give essential advantage in retaining quasi-crystalline particles contained by feedstock powder as compared to currently employed hot extrusion. Crucial role of nanosize quasi-crystalline particles in structural performances and superior combination of high strength and sufficient ductility of ternary Al–Fe–Cr alloy was justified over evolution of mechanical properties under heating. In this aim, evolution of the structure and mechanical properties of each kind of Al94Fe3Cr3 alloy in response to heat treatment was examined and discussed by considering the classical strengthening mechanisms. A set of mechanical characteristics including microhardness, HV, yield stress, σy, Young’s modulus, E, and plasticity characteristic δH$/$δA was determined by indentation technique and used in consideration. Strength properties (HV, σy, E) and plasticity characteristic (δH$/$δA) of cold-sprayed Al94Fe3Cr3 alloy were revealed to be much higher than those provided by currently employed hot extrusion. The important point concerns the fact that cold-sprayed Al94Fe3Cr3 alloy kept almost stable values of mechanical properties at least up to 350 °C, suggesting potential application of this material in engineering practice under intermediate temperature.

Keywords: quasi-crystals, aluminium alloy, melt spinning, powder atomization, cold gas-dynamic spraying, microstructure, mechanical properties.

Citation: O. V. Byakova, A. O. Vlasov, O. A. Scheretskiy, and O. I. Yurkova, The Role of Technological Process in Structural Performances of Quasi-Crystalline Al–Fe–Cr Alloy, Progress in Physics of Metals, 21, No. 4: 499–526 (2020)


References (92)  
  1. M.-G. Barthes-Labrousse and J.-M. Dubois, Philos. Mag., 88, Nos. 13–15: 2217 (2008). https://doi.org/10.1080/14786430802023036
  2. J.-M. Dubois, E. Belin-Ferré, and M. Feuerbacher, Complex Metallic Alloys: Fundamentals and Applications (Eds. J.-M. Dubois and E. Belin-Ferré) (Weinheim: Wiley-Vch Verlag: 2011), p. 1.
  3. J.-M. Dubois, Chem. Soc. Rev., 41, No. 20: 6760 (2012). https://doi.org/10.1039/C2CS35110B
  4. D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Phys. Rev. Lett., 53, No. 20: 1951 (1984). https://doi.org/10.1103/PhysRevLett.53.1951
  5. D. Shechtman and I.A. Blech, Metall. Trans. A, 16, No. 6: 1005 (1985). https://doi.org/10.1007/BF02811670
  6. L. Bendersky, Phys. Rev. Lett., 55, No. 14: 1461 (1985). https://doi.org/10.1103/PhysRevLett.55.1461
  7. A.-P. Tsai, A. Inoue, and T. Masumoto, Jpn. J. Appl. Phys., 26, No. 9: L1505 (1987). https://iopscience.iop.org/article/10.1143/JJAP.26.L1505/meta
  8. A.-P. Tsai, A. Inoue, and T. Masumoto, Mater. Trans., JIM, 30: 463 (1989). https://doi.org/10.2320/matertrans1989.30.463
  9. Z.M. Stadnik, Physical Properties of Quasicrystals (Berlin: Springer-Verlag: 1999).
  10. L.I. Adeeva and A.L. Borisova, Phys. Chem. Solid St., 3, No. 3: 454 (2002) (in Russian).
  11. S Takeuchi, Quasicrystals (Tokyo: Sangyo Tosho: 1993), p. 125.
  12. J.-M. Dubois, An Introduction to Structure, Physical Properties and Application of Quasicrystalline Alloys (Eds. J.-B. Suck, M. Schreiber, and P. Hausler) (Berlin: Springer Verlag: 1998), p. 392.
  13. H Tanaka and T. Fujiwara, Structure and Properties of Aperiodic Materials (Eds. Y. Kawazoe, Y. Waseda) (Berlin: Springer-Verlag: 2003) p. 1.
  14. E. Hornbogen and M. Shandl, Mater. Res. Adv. Tech., 83, No. 2: 128 (1992).
  15. J.-M. Dubois, S.S. Kang, and Y. Massiani, J. Non Cryst. Solids, 153–154: 443 (1993). https://doi.org/10.1016/0022-3093(93)90392-B
  16. S.S. Kang, J.M. Dubois, and J. von Stebut, J. Mater. Res., 8, No. 10: 2471 (1993). https://doi.org/10.1557/JMR.1993.2471
  17. K. Urban, M. Feuerbacher, and M. Wollgarten, MRS Bull., 22, No. 11: 65 (1997). https://doi.org/10.1557/S0883769400034461
  18. A. Rüdiger and U. Köster, Mater. Sci. Eng. A, 294–296: 890 (2000). https://doi.org/10.1016/S0921-5093(00)01037-6
  19. J.-M. Dubois, P. Brunet, W. Costin, and A. Merstallinger, J. Non-Cryst. Solids, 334–335: 475 (2004). https://doi.org/10.1016/j.jnoncrysol.2003.12.027
  20. S. Polishchuk, P. Boulet, A. Mézin, M.-C. de Weerd, S. Weber, J. Ledieu, J.-M. Dubois, and V. Fournée, J. Mater. Res., 27, No. 5: 837 (2012). https://doi.org/10.1557/jmr.2011.415
  21. J.-M. Dubois, S. S. Kang, and J. Von Stebut, J. Mater. Sci. Lett., 10, No. 9: 537 (1991). https://doi.org/10.1007/BF00726930
  22. J.E. Shield, J.A. Campbell, and D.J. Sordelet, J. Mater. Sci. Lett., 16, No. 24: 2019 (1997). https://doi.org/10.1023/A:1018544313643
  23. M.F. Besser and T. Eisenhammer, MRS Bull., 22, No. 11: 59 (1997). https://doi.org/10.1557/S088376940003445X
  24. T. Duguet, V. Fournée, J.-M. Dubois, and T. Belmonte, Surf. Coat. Technol., 205, No. 1: 9 (2010). https://doi.org/10.1016/j.surfcoat.2010.05.030
  25. L. Aloui, T. Duguet, F. Haidara, M.-C. Record, D. Samélor, F. Senocq, D. Mangelinck, and C. Vahlas, Appl. Surf. Sci., 258, No. 17: 6425 (2012). https://doi.org/10.1016/j.apsusc.2012.03.053
  26. A. Inoue, M. Watanabe, H.M. Kimura, F. Takahashi, A. Nagata, and T. Masumoto, Mater. Trans. JIM, 33, No. 8: 723 (1992). http://doi.org/10.2320/matertrans1989.33.723
  27. A. Inoue, Nanostruct. Mater., 6, Nos. 1–4: 53 (1995). https://doi.org/10.1016/0965-9773(95)00029-1
  28. A. Inoue, Prog. Mater. Sci., 43, No. 5: 365 (1998). https://doi.org/10.1016/S0079-6425(98)00005-X
  29. D.J. Sordelet, M.F. Besser, and J.L. Logsdon, Mater. Sci. Eng. A, 255, Nos. 1–2: 54 (1998). https://doi.org/10.1016/S0921-5093(98)00778-3
  30. X. Guo, G. Zhang, W. Li, Y. Gao, H. Liao, and C. Coddet, Appl. Surf. Sci., 255, No. 6: 3822 (2009). https://doi.org/10.1016/j.apsusc.2008.10.041
  31. B.N. Mordyuk, M.O. Iefimov, K.E. Grinkevych, A.V. Sameljuk, and M.I. Danylenko, Surf. Coat. Technol., 205, Nos. 23–24:5278 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.046
  32. X. Guo, J. Chen, H. Yu, H. Liao, and C. Coddet, Surf. Coat. Technol., 268: 94 (2015). https://doi.org/10.1016/j.surfcoat.2014.05.062
  33. T.J. Watson, A. Nardi, A.T. Ernst, I. Cernatescu, B.A. Bedard, and M. Aindow, Surf. Coat. Technol., 324: 57 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.049
  34. A. Inoue and H. Kimura, Nanosruct. Mater., 11, No. 2: 221 (1999). https://doi.org/10.1016/S0965-9773(99)00035-5
  35. A. Inoue and H. Kimura, Mater. Sci. Eng. A, 286, No. 1: 1 (2000). https://doi.org/10.1016/S0921-5093(00)00656-0
  36. F. Audebert, F. Prima, M. Galano, M. Tomut, P.J. Warren, I.C. Stone, and B. Cantor, Mater. Trans., 43, No. 8: 2017 (2002). https://doi.org/10.2320/matertrans.43.2017
  37. Yu.V. Milman, A.I. Sirko, M.O. Iefimov, O.D. Niekov, A.O. Sharovsky, and N.P. Zacharova, High Temp. Mater. Processes, 25, Nos. 1–2: 19 (2006). https://doi.org/10.1515/HTMP.2006.25.1-2.19
  38. M. Galano, F. Audebert, A. García-Escorial, I. C. Stone, and B. Cantor, Acta Mater., 57, No. 17: 5120 (2009). https://doi.org/10.1016/j.actamat.2009.07.009
  39. M. Galano, F. Audebert, I. C. Stone, and B. Cantor, Acta Mater., 57: 5107 (2009). https://doi.org/10.1016/j.actamat.2009.07.011
  40. Yu.V. Milman, Mater. Sci. Forum, 482: 77 (2005). https://doi.org/10.4028/www.scientific.net/MSF.482.77
  41. N.W. Khun, R.T. Li, and K.A. Khor, Tribology Trans., 58, No. 5: 859 (2015). https://doi.org/10.1080/10402004.2015.1023411
  42. M.O. Iefimov, D.V. Lotsko, Yu.V. Milman, A.L. Borisova, S.I. Chugunova, Ye.A. Astakhov, and O.D. Neikov, High Temp. Mater. Processes, 25, Nos. 1–2: 31 (2006). https://doi.org/10.1515/HTMP.2006.25.1-2.31
  43. Yu.V. Milman, D.V. Lotsko, O.D. Neikov, A.I. Sirko, N.A. Yefimov, A.N. Bilous, D.B. Miracle, and O.N. Senkov, Mater. Sci. Forum, 396–402: 723 (2002). https://doi.org/10.4028/www.scientific.net/MSF.396-402.723
  44. M.V. Semenov, M.M. Kiz, M.O. Iefimov, A.I. Sirko, A.V. Byakova, and Yu.V. Milman, Nanosistemi, Nanomateriali, Nanotehnologii, 4, No. 4: 767 (2006) (in Russian).
  45. J.M. Dubois, A. Proner, B. Bucaille, Ph. Cathonnet, C. Dong, V. Richard, A. Pianelli, Y. Massiani, S. Ait-Yaazza, and E. Belin-Ferré, Ann. Chim. Sci. Mat., 19: 3 (1994).
  46. D.J. Sordelet, S.D. Widener, Y. Tang, and M.F. Besser, Mater. Sci. Eng. A, 294–296: 834 (2000). https://doi.org/10.1016/S0921-5093(00)01056-X
  47. Bruno Alessandro Silva Guedes de Lima, Rodinei Medeiros Gomes, Severino Jackson Guedes de Lima, Diana Dragoe, Marie-Geneviéve Barthes-Labrousse, Richard Kouitat-Njiwa, and Jean-Marie Dubois, Sci. Technol. Adv. Mater., 17, No. 1: 71 (2016). https://doi.org/10.1080/14686996.2016.1152563
  48. T. Eisenhammer, Thin Solid Films, 270, No. 1: 1 (1995). https://doi.org/10.1016/0040-6090(95)06833-3
  49. H.M. Kimura, K. Sasamori, and A. Inoue, J. Mater. Res., 15, No. 12: 2737 (2000). https://doi.org/10.1557/JMR.2000.0392
  50. M. Galano, F. Audebert, A. García-Escorial, I. C. Stone, and B. Cantor, J. Alloys Compd., 495, No. 2: 372 (2010). https://doi.org/10.1016/j.jallcom.2009.10.208.
  51. M. Galano, F. Audebert, B. Cantor, and I. Stone, Mater. Sci. Eng. A, 375–377: 1206 (2004). https://doi.org/10.1016/j.msea.2003.10.066
  52. S. Pedrazzini, M. Galano, F. Audebert, D. M. Collins, F. Hofmann, B. Abbey, A.M. Korsunsky, M. Lieblich, A. Garcia Escorial, and G.D. W. Smith, Mater. Sci. Eng. A, 672: 175 (2016). https://doi.org/10.1016/j.msea.2016.07.007
  53. Z. Chlup, I. Todd, A. Garcia-Escorial, M. Lieblich, A. Chlupová, and J.G. O’Dwyer, Mater. Sci. Forum, 426–432: 2417 (2003). https://doi.org/10.4028/www.scientific.net/MSF.426-432.2417.
  54. N. Ott, A. Beni, A. Ulrich, C. Ludwig, and P. Schmutz, Talanta, 120: 230 (2014). https://doi.org/10.1016/j.talanta.2013.11.091
  55. E. Ura-Binczyk, N. Homazava, A. Ulrich, R. Hauert M. Lewandowska, K.J. Kurzydlowski, and P. Schmutz, Corros. Sci., 53, No. 5: 1825 (2011). https://doi.org/10.1016/j.corsci.2011.01.061.
  56. A. Beni, N. Ott, E. Ura-Bińczyk, M. Rasinski, B. Bauer, P. Gille, A. Ulrich, and P. Schmutz, Electrochim. Acta, 56, No. 28: 10524 (2011). https://doi.org/10.1016/j.electacta.2011.08.092
  57. Y. Massiani, S. Ait Yaazza, J. P. Crousier, and J-M. Dubois, J. Non-Cryst. Solids, 159, Nos. 1–2: 92 (1993). https://doi.org/10.1016/0022-3093(93)91286-C.
  58. D. Veys, C. Rapin, X. Li, L. Aranda, V. Fournée, and J-M. Dubois, J. Non-Cryst. Solids, 347, Nos. 1–3: 1 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.09.004.
  59. R.T. Li, Z.L. Dong, N.W. Khun, and K.A. Khor, Mater. Sci. Technol., 31, No. 6: 688 (2015). https://doi.org/10.1179/1743284714Y.0000000645
  60. N.W. Khun, R.T. Li, K. Loke, and K.A. Khor, Tribology Trans., 58, No. 4: 616 (2015). https://doi.org/10.1080/10402004.2014.991860.
  61. A. Ziani, G. Michot, A. Pianelli, A. Redjaïmia, C.Y. Zahra, and A.M. Zahra, J. Mater. Sci., 30, No. 11: 2921 (1995). https://doi.org/10.1007/BF00349664.
  62. C. Zhang, Y. Wu, X. Cai, F. Zhao, S. Zheng, G. Zhou, and S. Wu, Mater. Sci. Eng. A, 323, Nos. 1–2: 226 (2002). https://doi.org/10.1016/S0921-5093(01)01353-3.
  63. K.N. Ishihara, S.R. Nishitani, and P.H. Shingu, Trans. ISIJ, 28, No. 1: 2 (1988). http://doi.org/10.2355/isijinternational1966.28.2.
  64. H. Lones, Rep. Prog. Phys., 36, No. 11: 1425 (1973). https://doi.org/10.1088/0034-4885/36/11/002
  65. J. Gurland and N.M. Parih, Fracture: An Advanced Treatise (Ed. H. Liebowitz) (New York, USA: Academic Press, Inc: 1972), p. 841.
  66. K. Urban, N. Moser, and H. Kronmüller, Phys. Status Solidi A, 91, No. 2: 411 (1985). https://doi.org/10.1002/pssa.2210910209
  67. C. Banjongprasert, S.C. Hogg, I.G. Palmer, N. Grennan-Heaven, I.C. Stone, and P.S. Grant, Mater. Sci. Forum, 561–568: 1075 (2007). https://doi.org/10.4028/www.scientific.net/MSF.561-565.1075.
  68. H.J. Kestenbach, C. Bolfarini, C.S. Kiminami, and W.J. Botta Filho, J. Metastable Nanocryst. Mater., 20–21: 382 (2004). https://doi.org/10.4028/www.scientific.net/JMNM.20-21.382
  69. A. García-Escorial, E. Natale, V.J. Cremaschi, I. Todd, and M. Lieblich, J. Alloys Compd., 643: S199 (2015). https://doi.org/10.1016/j.jallcom.2014.12.164.
  70. R.T. Li, Z.L. Dong, and K.A. Khor, Scripta Mater., 114: 88 (2016). https://doi.org/10.1016/j.scriptamat.2015.12.011.
  71. A.V. Byakova, M.M. Kiz, A.I. Sirko, M.S. Yakovleva, and Yu.V. Milman, High Temp. Mater. Processes, 29, Nos. 5–6: 325 (2010). https://doi.org/10.1515/HTMP.2010.29.5-6.325
  72. S. Yin, P. Cavaliere, B. Aldwell, R. Jenkins, H. Liao, W. Li, and R. Lupoi, Addit. Manuf., 21: 628 (2018). https://doi.org/10.1016/j.addma.2018.04.017
  73. O.D. Neikov, V.G. Kalinkin, A.F. Lednyansky, and G.I. Vasilieva, Sposob Polucheniya Poroshkov Aluuminiya i Yego Splavov [Method for Production of Al and Al-Based Alloys]: Patent 2078427 RU. MKI, B22F9/08 (Bul., 12) (1997) (in Russian).
  74. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology (Ed. A. Papyrin) (Amsterdam: Elsevier Ltd.: 2007).
  75. J.V. Cahn, D. Schehntman, and D. Gratias, J. Mater. Res., 1, No. 1: 13 (1986). https://doi.org/10.1557/JMR.1986.0013
  76. Yu.V. Milman and S.I. Chugunova, Int. J. Impact Eng., 23, No. 1: 629 (1999). https://doi.org/10.1016/S0734-743X(99)00109-8
  77. Yu.V. Milman, B.A. Galanov, and S.I. Chugunova, Acta Metall. Mater., 41, No. 9: 2523 (1993). https://doi.org/10.1016/0956-7151(93)90122-9
  78. W.C. Oliver and G.M. Pharr, J. Mater. Res., 7, No. 6: 1564 (1992). https://doi.org/10.1557/JMR.1992.1564
  79. Yu.V. Milman, J. Phys. D: Appl. Phys., 41, No. 7: 1 (2008). https://doi.org/10.1088/0022-3727/41/7/074013
  80. Yu. Milman, S. Dub, and A. Golubenko, Mater. Res. Soc. Symp. Proc., 1049: 123 (2008). https://doi.org/10.1557/PROC-1049-AA05-06.
  81. M. Grujicic, J.R. Saylor, D.E. Beasley, W.S. DeRosset, and D. Helfritch, Appl. Surf. Sci., 219, Nos. 3–4: 211 (2003). https://doi.org/10.1016/S0169-4332(03)00643-3.
  82. R.C. McCune, W.T. Donlon, O.O. Popoola, and E.L. Cartwright, J. Therm. Spray Technol., 9, No. 1: 73 (2000). https://doi.org/10.1361/105996300770350087.
  83. W.-Y. Li, H. Liao, C.-J. Li, G. Li, C. Coddet, and X. Wang, Appl. Surf. Sci., 253, No. 5: 2852 (2006). https://doi.org/10.1016/j.apsusc.2006.05.126.
  84. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Acta Mater., 51, No. 15:4379 (2003). https://doi.org/10.1016/S1359-6454(03)00274-X
  85. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, Mater. Des., 25, No. 8: 681 (2004). https://doi.org/10.1016/j.matdes.2004.03.008.
  86. L. Ajdelsztajn, A. Zúñiga, B. Jodoin, and E.J. Lavernia, Surf. Coat. Technol., 201, No. 6: 2109 (2006). https://doi.org/10.1016/j.surfcoat.2005.06.001
  87. H. El-Sobky, Explosive Welding, Forming and Compaction (Eds. T.Z. Blazynski) (London: Applied Science Publishers Ltd.: 1983), p. 189.
  88. F. Prima, M. Tomut, I. Stone, B. Cantor, D. Janickovic, G. Vlasak, and P. Svec, Mater. Sci. Eng. A, 375–377: 772 (2004). https://doi.org/10.1016/j.msea.2003.10.264.
  89. N. Takata, K. Yamada, K. Ikeda, F. Yoshida, H. Nakashima, and N. Tsuji, Mater. Sci. Forum, 503–504: 919 (2006). https://doi.org/10.4028/www.scientific.net/MSF.503-504.919
  90. G. Benchabane, Z. Boumerzoug, I. Thibon, and T. Gloriant, Mater. Charact., 59, No. 10: 1425 (2008). https://doi.org/10.1016/j.matchar.2008.01.002
  91. I.N.A. Oguocha, M. Radjabi, and S. Yannacopoulos, J. Mater. Sci., 35, No. 22: 5629 (2000). https://doi.org/10.1023/A:1004881702823
  92. J. Majimel, G. Molénat, M.J. Casanove, D. Schuster, A. Denquin, and G. Lapasset, Scr. Mater., 46, No. 2: 113 (2002). https://doi.org/10.1016/S1359-6462(01)01200-3