Mass Transfer in Electroslag Processes with Consumable Electrode and Liquid Metal

G. P. Stovpchenko$^{1,2}$, A. V. Sybir$^{2,3}$, G. O. Polishko$^1$, L. B. Medovar$^{1,2}$, and Ya. V. Gusiev$^1$

$^1$E. O. Paton Electric Welding Institute of the N.A.S. of Ukraine, 11 Kazimir Malevich Str., UA-03150 Kyiv, Ukraine
$^2$Private Engineering Company ‘ELMET-ROLL’, Post Office Box 259, UA-03150 Kyiv, Ukraine
$^3$National Metallurgical Academy of Ukraine, 4 Gagarin Ave., UA-49600 Dnipro, Ukraine

Received 02.07.2020; final version — 09.10.2020 Download PDF logo PDF

Abstract
Experimental and numerical comparisons of mass transfer processes during the electroslag remelting with consumable electrode (ESR) and electroslag refining with liquid metal (ESR LM) showed their identical refining capacity, despite the smaller both the slag–metal contact surface (twice) and metal overheat (by 70–95 K) in the latter case. As revealed, due to effect of metal movement inside the liquid metal drop, it moves in liquid slag faster than a solid particle of the same diameter. Under comparable conditions, it is experimentally confirmed that desulphurization at the ESR takes place mainly on the contact surface between the slag and metal baths, but not in the liquid metal film at the tip of a consumable electrode.

Keywords: electroslag remelting with consumable electrode, similarity criteria, turbulence, stream, desulphurization.

Citation: G. P. Stovpchenko, A. V. Sybir, G. O. Polishko, L. B. Medovar, and Ya. V. Gusiev, Mass Transfer in Electroslag Processes with Consumable Electrode and Liquid Metal, Progress in Physics of Metals, 21, No. 4: 481–498 (2020)


References (41)  
  1. B.Е. Paton and B.I. Medovar, Electroslag Metal (Kiev: Naukova Dumka: 1981) (in Russian).
  2. B.I. Medovar, А.K. Tsykulenko, and V.L. Shevtsov, Metallurgy of Electroslag Process (Kiev: Naukova Dumka: 1986) (in Russian).
  3. I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (New York: Springer-Verlag: 2015). https://doi.org/10.1007/978-1-4939-2113-3
  4. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev., 61, No. 5: 315 (2016). https://doi.org/10.1080/09506608.2015.1116649.
  5. R.J. Fruehan, O. Fortini, H.W. Paxtonand, and R. Brindle, Theoretical Minimum Energies to Produce Steel for Selected Conditions (Pittsburgh, PA: Carnegie Mellon University; Columbia, MD: Energetics, Inc.: 2000). https://doi.org/10.2172/769470
  6. L.A. Lisova, A.P. Stovpchenko, L.B. Medovar, and V.L. Petrenko, Electrometallurgy Today, No. 2: 3 (2017) (in Ukrainian). https://doi.org/10.15407/sem2017.02.01
  7. М.М. Klyuev and S.V. Wolkov, Ehlektroshlakovaya Pereplavka [Electroslag Remelting] (Moscow: Metallurgy: 1984) (in Russian).
  8. B.I. Medovar, А.V. Chernets, L.B. Medovar, V.E. Shevchenko, V.P. Trypolskaya, B.B. Fedorowsky, Yu.V. Orlowsky, A.P. Beloglazov, and I.А. Lantsman, Problemy Spetsialnoy Ehlektrometallurgii [Advances in Special Electrometallurgy], No. 1: 7 (1995) (in Russian).
  9. B.I. Medovar, А.V. Chernets, L.B. Medovar, B.B. Fedorowsky, V.E. Shevchenko, I.А. Lantsman, А.K. Tsykulenko, and V.I. Us, Problemy Spetsialnoy Ehlektrometallurgii [Advances in Special Electrometallurgy], No. 1: 3 (1997) (in Russian).
  10. B.I. Medovar, L.B. Medovar, V.Ya. Sayenko, and A.V. Chernets, Problemy Spetsialnoy Ehlektrometallurgii [Advances in Special Electrometallurgy], No. 3: 3 (1999) (in Russian).
  11. L.B. Medovar, А.К. Tsykulenko, A.V. Chernets, B.B. Fedorowsky, V.E. Shevchenko, I.А. Lantsman И.А., Ts.F. Grabowsky, V.I. Us, and V.L. Petrenko, Problemy Spetsialnoy Ehlektrometallurgii [Advances in Special Electrometallurgy], No. 4: 7 (2000) (in Russian).
  12. L.B. Medovar, А.P. Stovpchenko, А.N. Golovachev, and B.B. Fedorovsky, Electrometallurgy Today, No. 3: 12 (2013) (in Russian).
  13. B.I. Medovar, V.L. Shevtsov, and V.L. Martin, Ehlektroshlakovaya Tigel’naya Plavka i Razlivka Metalla [Electroslag Crucible Melting and Pouring of Metal] (Kiev: Naukova Dumka: 1988) (in Russian).
  14. I.V. Chumanov and D.A. Pyatygin, Izvestiya VUZov. Chernaya Metallurgiya, No. 3: 22 (2006) (in Russian).
  15. K. Kajikawa, A. Mitchell, and K.M. Kelkar, Proc. IFM 2014 (Tokyo: Japan Steel Castings and Forgings Association: 2014), p. 124.
  16. B. Hernandez-Morales and A. Mitchell, Ironmaking & Steelmaking, 26, No. 6: 423 (1999). https://doi.org/10.1179/030192399677275
  17. A. Kharicha, E. Karimi‐Sibaki, M. Wu, A. Ludwig, and J. Bohacek, Steel Research Intern., 89, No. 1: 1700100 2018. https://doi.org/10.1002/srin.201700100
  18. W. Fang, J. Baleta, Q. Wang, and B. Li. Open Physics, 17, No. 1: 743 (2019). https://doi.org/10.1515/phys-2019-0078
  19. A. Mitchell and S. Joshi, Metallurgical Transactions, 4: 631 (1973). https://doi.org/10.1007/BF02643068
  20. М.М. Klyuev and А.F. Kablukovsky, Metallurgiya Ehlektroshlakovoy Pereplavki [Metallurgy of Electroslag Remelting] (Moscow: Metallurgiya: 1969) (in Russian).
  21. G.I. Zhmoidin, Vosstanovlenie i Rafinirovanie Zheleza [Recovery and Refining of Iron] (Moscow: Nauka: 1969) (in Russian).
  22. A. Kharicha, A. Ludwig, M. Wu, H. Scholz, W. Schtzenhfer, G. Reiter, R. Tanzer, A. Mackenbrock, O. Köser, A. Carosi, R. Sorci, and F. Arcobello-Varlese, Integrated Simulation of Advanced Protective Gas Electroslag Remelting for the Production of High-Quality Steels (ISA-PESR) (Luxembourg: Publications Office of the European Union, Contract No. RFSR-CT-2004-00027: 2009).
  23. I. Garevskikh, Yu. Shulte, V. Maximenko, and B. Speransky, Stal’, No. 1: 39 (1962) (in Russian).
  24. A. Kharicha, A. Ludwig, and M. Wu, EPD Congress 2011 (Eds. S.N. Monteiro, D.E. Verhulst, P.N. Anyalebechi, and J.A. Pomykala) (Pittsburgh: The Minerals, Metals & Materials Society: 2011). https://doi.org/10.1002/9781118495285.ch84
  25. H. Wang, Y. Zhong, Q. Li, Y. Fang, W. Ren, Z. Lei, and Z. Ren, ISIJ International, 56, No. 2: 255 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-581
  26. R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops, and Particles (New York–London: Academic Press: 1978).
  27. E.E. Michaelides, Particles, Bubbles & Drops: Their Motion, Heat and Mass Transfer (World Scientific: 2006). https://doi.org/10.1142/6018
  28. C. Crowe, J. Schwarzkopf, M. Sommerfeld, and Y. Tsuji, Multiphase Flows with Droplets and Particles (Boca Raton: CRC Press: 2012). https://doi.org/10.1201/b11103
  29. S. Middleman, Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops (Academic Press: 1995).
  30. A.F. Yang, A. Karasev, and P.G. Jonsson, ISIJ International, 55, No. 3: 570 (2015). https://doi.org/10.2355/isijinternational.55.570
  31. P.K. Iwamasa and R.J. Fruehan, ISIJ International, 36, No. 11: 1319 (1996). https://doi.org/10.2355/isijinternational.36.1319
  32. V.G. Yefimova, Metall i Lit’ye Ukrainy, No. 1: 248 (2014) (in Russian).
  33. G. Brooks, Y. Pan, Subagyo, and K. Coley Metall. Mater. Trans. B, 36: 525 (2005). https://doi.org/10.1007/s11663-005-0044-x
  34. Subagyo and G. Brooks, ISIJ International, 42, No. 10: 1182 (2002). https://doi.org/10.2355/isijinternational.42.1182
  35. C. Yang and Z. Mao, Numerical Simulation of Multiphase Reactors with Continuous Liquid Phase (Academic Press: 2014).
  36. V.G. Levich, Fiziko-Khimicheskaya Gidrodinamika [Physical-Chemical Hydrodynamics] (Moscow: PhysMatGiz: 1962 (in Russian).
  37. S.L. Soo, Fluid Dynamics of Multiphase Systems (Waltham, Mass., Blaisdell Pub. Co.: 1967).
  38. B.I. Brounshtein and V.V. Shchegolev, Gidrodinamika, Masso- i Teploobmen v Kolonnykh Apparatakh [Hydrodynamics of Mass and Heat Exchange in Column Apparatus] (Leningrad: Khimiya: 1988).
  39. М.М. Kjuyev and Yu.M. Mironov, Stal’, 6: 511 (1967) (in Russian).
  40. B.I. Brounstein and G.А. Fishbain, Gidrodinamika Masso- i Teploonmena v Dispersnykh Sistemakh [Hydrodynamics of Mass and Heat Exchange in Disperse Systems] (Leningrad: Khimiya: 1977) (in Russian).
  41. W.E. Ranz and W.R. Marshall, Jr., Chem. Eng. Prog., 48, No. 3: 141 (1952); ibid. 173 (1952).