Positron Spectroscopy Study of Structural Defects and Electronic Properties of Carbon Nanotubes

E. A. Tsapko and I. Ye. Galstian

G. V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 16.04.2020; final version — 14.05.2020 Download PDF logo PDF

Abstract
The advantages and restrictions of different positron spectroscopy methods in the study of electronic properties of multilayer carbon nanotubes (MWCNTs) with metallic and semiconductor types of conductivity are considered. The defects’ influence on the parameters of the MWCNTs’ electronic structure is established via method of the angular correlation of annihilation radiation (ACAR). Analysis of the results shows that annihilation occurs with both σ-electrons (within the interlayer intervals), quasi-free electrons, and electrons of unsaturated covalent bonds. As determined, the increase in the defects’ concentration results to an increase in the radius of localization of the electron wave function ($r_{m1}$) within the interlayer intervals and to an increase in the quasi-free electron concentration. Due to the formation of edge dislocations in the MWCNTs, the doubling of $r_{m1}$ (up to 0.25 nm), the hybridization of unsaturated and stretched σ-bonds, and, as a consequence, the increase of the concentration of conduction electrons occurs. The high sensitivity of the positrons to defects can be used to develop methods of MWCNTs’ attestation and defect identification; the 2$r_{mb}$, 2$r_{mi}$, and $R$ values obtained from the ACAR spectra are the thickness of the layer, the interlayer distance, and the effective radius of free volume of the MWCNTs, respectively.

Keywords: positron spectroscopy, carbon nanotubes, structural defects, wave-function localization radius, electronic properties.

Citation: E. A. Tsapko and I. Ye. Galstian, Positron Spectroscopy Study of Structural Defects and Electronic Properties of Carbon Nanotubes, Progress in Physics of Metals, 21, No. 2: 153–179 (2020)


References (56)  
  1. P.A.M. Dirac, Math. Proc. Camb. Philos. Soc., 26, Iss. 3: 361 (1930). https://doi.org/10.1017/S0305004100016091
  2. C.D. Anderson, Phys. Rev., 43, Iss. 6: 491 (1933). https://doi.org/10.1103/PhysRev.43.491
  3. M. Deutsch, Phys. Rev., 83: 866. (1951)
  4. S. Berko and J.S. Plaskett, Phys. Rev., 112, Iss. 6: 1877 (1958). https://doi.org/10.1103/PhysRev.112.1877
  5. S. Berko, Phys. Rev., 128, Iss. 5: 2166 (1962). https://doi.org/10.1103/PhysRev.128.2166
  6. I.Ya. Dekhtyar and V.S. Mikhalenkov, Doklady Akad. Nauk SSSR, 140: 1293 (1961) (in Russian).
  7. Positrons in Solids (Ed. P. Hautojarvi). Topics in Current Physics (Berlin–Heidelberg: Springer: 1979), vol. 12. https://doi.org/10.1007/978-3-642-81316-0
  8. M. Eldrup, D. Lightbody, and J.N. Sherwood, Chem. Phys., 63, Iss. 1–2: 51 (1981). https://doi.org/10.1016/0301-0104(81)80307-2
  9. Positron and Positronium Chemistry (Eds. D.M. Schrader and Y.C. Jean). Studies in Physical and Theoretical Chemistry (Amsterdam–Oxford–New York–Tokyo: Elsevier: 1988), vol. 57.
  10. Y.C. Jean, Microchemical Journal, 42, Iss. 1: 72 (1990). https://doi.org/10.1016/0026-265X(90)90027-3
  11. O.E. Mogensen, Positron Annihilation Chemistry. Springer Series in Chemical Physics (Berlin: Springer–Verlag: 1995), vol. 58, p. 15. https://doi.org/10.1007/978-3-642-85123-0_2
  12. R.A. Pethrick, Prog. Polym. Sci., 22: 1 (1997). https://doi.org/10.1016/S0079-6700(96)00023-8
  13. G. Dlubek, F. Börner, R. Buchhold, K. Sahre, R. Krause-Rehberg, and K.-J. Eichhorn, J. Polym. Sci., Part B: Polym. Phys., 38: 3062 (2000). https://doi.org/10.1002/1099-0488(20001201)38:23%3C3062::AID-POLB80%3E3.0.CO;2-I
  14. K.G. Lynn, J.R. MacDonald, R.A. Boie, L.C. Feldman, J.D. Gabbe, M.F. Robbins, E. Bonderup, and J. Golovchenko, Phys. Rev. Lett., 38, Iss. 5: 241 (1977). https://doi.org/10.1103/PhysRevLett.38.241
  15. A. Dupasquier and A.P. Mills, Positron Spectroscopy of Solids (Amsterdam: ISPress: 1993).
  16. R.A. Ferrell, Rev. Mod. Phys., 28, Iss. 3: 308 (1956). https://doi.org/10.1103/RevModPhys.28.308
  17. M.M. Nyshchenko, E.A. Tsapko, V.Yu. Koda, V.S. Mykhalenkov, G.P. Prykhod’ko, Yu.I. Sementsov, R.V. Mazurenko, and S.M. Makhno, Metallofiz. Noveishie Tekhnol., 35, No. 9: 1167 (2013) (in Ukranian).
  18. J.P. Carbotte, Phys. Rev., 144, Iss. 1: 309 (1966). https://doi.org/10.1103/PhysRev.144.309
  19. D. Hudson, Statistika dlya Fizikov [Statistics for Physicists] (Moscow: Mir: 1987) (Russian translation).
  20. V. S. Mikhalenkov, Phys. Status Solidi A, 24, Iss. 2: 107 (1974). https://doi.org/10.1002/pssa.2210240245
  21. A. Cizek, F. Parizek, J. Adam, I.Ya. Dekhtyar, and V.S. Mikhalenkov, Czech. J. Phys. B, 19, 5: 629 (1969). https://doi.org/10.1007/BF01691476
  22. Y.C. Jean, J.D. Van Horn, W.S. Hung, and K.R. Lee, Macromolecules, 46, 18: 7133 (2013). https://doi.org/10.1021/ma401309x
  23. S.J.J. Tao, Chem. Phys., 56, Iss. 11: 5499 (1972). https://doi.org/10.1063/1.1677067
  24. D. Singh, W.E. Pickett, R.E. Cohen, H. Krakauer, and S. Berko, Phys. Rev. B, 39, Iss. 13: 9667(R) (1989). https://doi.org/10.1103/PhysRevB.39.9667
  25. M. Peter and A.A. Manuel, Physica Scripta, 1989, T29: 106 (1989). https://doi.org/10.1088/0031-8949/1989/T29/019
  26. P.E. Mijnarends and A. Bansil, Positron Spectroscopy of Solids (Eds. A. Dupasquier and A.P. Mills Jr.). Proceedings of the International School of Physics ‘Enrico Fermi’ (1995), vol. 125, p. 25. https://doi.org/10.3254/978-1-61499-211-0-25
  27. R. Zhang, H. Cao, H.M. Chen, P. Mallon, T.C. Sandreczk, J.R. Richardson, Y. С. Jean, B. Nielsen, R. Suzuki, and T. Ohdaira Radiat. Phys. Chem., 58, Iss. 5–6: 639 (2000). https://doi.org/10.1016/S0969-806X(00)00235-8
  28. W.-S. Hung (Thesis of Disser. for Ph.D. in Chemical Engineering) (Chungli, Taiwan: Chung-Yuan Christian University: 2011).
  29. E. Nascimento, O. Helene, C. Takiya, and V.R. Vanin, Nucl. Instrum. Methods Phys. Res. Sect. A, 538, Iss. 1–3: 723 (2005). https://doi.org/10.1016/j.nima.2004.09.013
  30. E. Bonderup, J.U. Andersen, and D.N. Lowy, Phys. Rev. B, 20: 883 (1979). https://doi.org/10.1103/PhysRevB.20.883
  31. M. Sob, J. Phys. F: Met. Phys., 15, No. 8: 1685 (1985). https://doi.org/10.1088/0305-4608/15/8/008
  32. M. Barbiellini, M. Hakala, J. Puska, R.M. Nieminen, and A.A. Manueli, Phys. Rev. B, 56, Iss. 12: 7136 (1997). https://doi.org/10.1103/PhysRevB.56.7136
  33. A. Seeger, J. Phys. F: Met. Phys., 3, No. 2: 248 (1973). https://doi.org/10.1088/0305-4608/3/2/003
  34. M. Doyama and R. Hasiguyi, Cryst. Lattice Defects, 4: 139 (1973).
  35. I.Ya. Dekhtyar, Phys. Rep., 9, Iss. 5: 243 (1974). https://doi.org/10.1016/0370-1573(74)90021-0
  36. R.N. West, Adv. Phys., 22, Iss. 3: 263 (1973). https://doi.org/10.1080/00018737300101299
  37. V.S. Mikhalenkov, V.I. Tokar, and E.A. Tsapko, Metallofiz. Noveishie Tekhnol., 7, No. 5: 101 (1985) (in Russian).
  38. D.G. Lock and R.N. West, J. Phys. F: Met. Phys., 4, No. 12: 2179 (1974). https://doi.org/10.1088/0305-4608/4/12/014
  39. P. Kubica, B.T.A. McKee, A.T. Stewart, and M.J. Stott, Phys. Rev. B, 11, Iss. 1: 11 (1975). https://doi.org/10.1103/PhysRevB.11.11
  40. M.J. Stott and P. Kubica, Phys. Rev. B, 11, Iss. 1: 1 (1975). https://doi.org/10.1103/PhysRevB.11.1
  41. I.M. Hong and J.P. Carbotte, Can. J. Phys., 55, No. 15: 1335 (1977). https://doi.org/10.1139/p77-170
  42. V.S. Mikhalenkov, V.I. Tokar, and E.A. Tsapko, Ukr. J. Phys., 24, No. 10: 1552 (1979) (in Russian).
  43. A.P. Cracknell, The Fermi Surfaces of Metal (London: Taylor and Francis Ltd.: 1971).
  44. V.S. Mikhalenkov, V.I. Tokar, and E.A. Tsapko, Proc. 5th Int. Conf. Positron Annihilation (Lake Yamanaka, Japan, April 1979) (Sendai, Japan: The Japan Institute of Metals: 1979).
  45. M.J. Puska, P. Lanki, and R.M. Nieminen, J. Phys.: Condens. Matter, 1, No. 35: 6081 (1989). https://doi.org/10.1088/0953-8984/1/35/008
  46. P. Kirkegaard and M. Eldrup, Comp. Phys. Comm., 3, Iss. 3: 240 (1972). https://doi.org/10.1016/0010-4655(72)90070-7
  47. P. Kirkegaard and M. Eldrup, Comp. Phys. Comm., 7, Iss. 7: 401 (1974). https://doi.org/10.1016/0010-4655(74)90070-8
  48. C.J. Virtue, R.J. Douglas, and B.T.A. McKee, Comp. Phys. Comm., 15, Iss. 1–2: 97 (1978). https://doi.org/10.1016/0010-4655(78)90084-X
  49. P. Kirkegaard, J.V. Olsen, M. Eldrup, and N.J. Pedersen, Riso DTU (Denmark: National Laboratory for Suntainable Energy: 2009).
  50. Sh. Ishibashi, J. Phys.: Condens. Matter, 14, No. 41: 9753 (2002). https://doi.org/10.1088/0953-8984/14/41/330
  51. A.T. Luu, Zs. Kajcsos, N.D. Thanh, T.Q. Dung, M.V. Nhon, K. Lazar, K. Havancsak, G. Huhn, Z.E. Horvath, T.D. Tap, L.T. Son, and P.T. Phuc, Phys. Status Solidi C, 6, Iss. 11: 2578 (2009). https://doi.org/10.1002/pssc.200982105
  52. M. Xing-kun, C. Hong, H. Yuan-jin, Y. Nagashima, H. Saito, and T. Hyodo, Acta Physica Sinica, 8, No. 10: 783 (1999). https://doi.org/10.1088/1004-423X/8/10/008
  53. M.M. Nishchenko, E.A. Tsapko, Yu.V. Lisunova, G.P. Prikhod’ko, and N.I. Danilenko, Inorganic Materials: Applied Research, 2, No. 2: 186 (2011). https://doi.org/10.1134/S2075113311020158
  54. R.S. Justice, D.H. Wang, L.-S. Tana, and D. W. Schaefer, J. Appl. Cryst., 40: s88 (2007). https://doi.org/10.1107/S0021889807004153
  55. V.Yu. Koda, M.M. Nishchenko, A.V. Brichka, S.Ya. Brichka, and G.P. Prikhod’ko, Nanosistemi, Nanomateriali, Nanotehnologii, 3, No. 1: 227 (2005).
  56. R.K. Mueller and K.N. Maffitt, J. Appl. Phys., 35, Iss. 3: 734 (1964). https://doi.org/10.1063/1.1713456