Research Status and Application of the High-Entropy and Traditional Alloys Fabricated via the Laser Cladding

Y. Geng$^{1,2}$, S. V. Konovalov$^{1,2}$, and X. Chen$^{1,2}$

$^1$Wenzhou University, Institute of Laser and Optoelectronic Intelligent Manufacturing, 325024 Wenzhou, P. R. China
$^2$Samara National Research University, 34 Moskovskoye Shosse, 443086 Samara, Russian Federation

Received 04.12.2019; final version — 27.02.2020 Download PDF logo PDF

Abstract
The objective of this paper is presenting a review of high-entropy alloys and traditional alloys fabricated by laser cladding. In this paper, recent developments of different material system are summarized, and the developments in laser cladding for functional coatings with high wear resistance, good corrosion and oxidation resistances, and better medical biocompatibility are reviewed. By summarizing the analysis of microstructure, mechanical properties, corrosion resistance of high-entropy alloys and traditional alloys’ coating fabricated by laser cladding, it stated that laser cladding treatment can improve corrosion resistance, homogenize grain size, and increase microhardness and other properties. Laser cladding is considered as the potential method to ameliorate mechanical properties, improve microstructure and repair broken parts. Therefore, laser cladding has the successful applications in automobile and aerospace productions, and shipbuilding due to those advantages.

Keywords: high-entropy alloys, traditional alloys, laser cladding, microstructure, mechanical properties, application.

Citation: Y. Geng, S. V. Konovalov, and X. Chen, Research Status and Application of the High-Entropy and Traditional Alloys Fabricated via the Laser Cladding, Progress in Physics of Metals, 21, No. 1: 26–45 (2020)


References (68)  
  1. X. W. Qiu, Y. P. Zhang, L. He, and C. G. Liu, J. Alloys Compd., 549: 195 (2013). https://doi.org/10.1016/j.jallcom.2012.09.091
  2. A. C. Yeh, Y. J. Chang, C. W. Tsai, Y. C. Wang, J. W. Yeh, and C. M. Kuo, Metall. Mater. Trans. A, 45, No. 1: 184 (2014).
  3. W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu, Mater. Des., 51: 854 (2013). https://doi.org/10.1016/j.matdes.2013.04.061
  4. M. H. Chuang, M. H. Tsai, W. R. Wang, S. J. Lin, and J. W. Yeh, Acta Mater., 59, No. 16: 6308 (2011). https://doi.org/10.1016/j.actamat.2011.06.041
  5. B. Ganesh, W. Sha, N. Ramanaiah, and A. Krishnaiah, Mater. Des., 56: 480 (2014). https://doi.org/10.1016/j.matdes.2013.11.052
  6. J. Gray and B. Luan, J. Alloys Compd., 336, Nos. 1–2: 88 (2002). https://doi.org/10.1016/S0925-8388(01)01899-0
  7. J. Liu, H. Yu, C. Chen, F. Weng, and J. Dai, Opt. Lasers Eng., 93: 195 (2017). https://doi.org/10.1016/j.optlaseng.2017.02.007
  8. S. Nath, S. Pityana, and J. D. Majumdar, Surf. Coat. Technol., 206, No. 15: 3333 (2012). https://doi.org/10.1016/j.surfcoat.2012.01.038
  9. J. D. Majumdar, R. Galun, B. Mordike, and I. Manna, Mater. Sci. Eng. A, 361, Nos. 1–2: 119 (2003). https://doi.org/10.1016/S0921-5093(03)00519-7
  10. L. Dubourg, D. Ursescu, F. Hlawka, and A. Cornet, Wear, 258, Nos. 11–12: 1745 (2005). https://doi.org/10.1016/j.wear.2004.12.010
  11. X. Chen, C. Su, Y. Wang, A. N. Siddiquee, S. Konovalov, S. Jayalakshmi, and R. A. Singh, J. Synch. Investig., 12, No. 6: 1278 (2018). https://doi.org/10.1134/S102745101901004X
  12. A. Hamada, A. Järvenpää, E. Ahmed, P. Sahu, and A. Farahat, Mater. Des., 94: 345 (2016). https://doi.org/10.1016/j.matdes.2016.01.049
  13. J. D. Kim and Y. Peng, J. Mater. Process. Technol., 104, No. 3: 284 (2000). https://doi.org/10.1016/S0924-0136(00)00528-8
  14. L. Jiang, W. Wu, Z. Cao, D. Deng, and T. Li, J. Therm. Spray Technol., 25: 806 (2016). https://doi.org/10.1007/s11666-016-0397-5
  15. W. W. Liu, Z. J. Tang, X. Y. Liu, H. J. Wang, and H. C. Zhang, Procedia CIRP, 61: 235 (2017). https://doi.org/10.1016/j.procir.2016.11.217
  16. T. M. Yue, Y. P. Su, and H. O. Yang, Mater. Lett., 61, No. 1: 209 (2007). https://doi.org/10.1016/j.matlet.2006.04.033
  17. R. Vilar, J. Laser Appl., 11, No. 2: 64 (1999). https://doi.org/10.2351/1.521888
  18. Q. W. Meng, L. Geng, and D. G. Ni, Mater. Lett., 59, No. 22: 2774 (2005). https://doi.org/10.1016/j.matlet.2005.03.056
  19. W. U. H. Syed, A. J. Pinkerton, and L. Li, Appl. Surf. Sci., 252, No. 13: 4803 (2006). https://doi.org/10.1016/j.apsusc.2005.08.118
  20. F. Weng, C. Chen, and H. Yu, Mater. Des., 58: 412 (2014). https://doi.org/10.1016/j.matdes.2014.01.077
  21. D. Bartkowski, A. Młynarczak, A. Piasecki, B. Dudziak, M. Gościański, and A. Bartkowska, Opt. Laser Technol., 68: 191 (2015). https://doi.org/10.1016/j.optlastec.2014.12.005
  22. L. Sexton, S. Lavin, G. Byrne, and A. Kennedy, J. Mater. Process. Technol., 122, No. 1: 63 (2002). https://doi.org/10.1016/S0924-0136(01)01121-9
  23. L. Qiang, O. Jiahu, L. Tingquan, and Y. Dezhuang, Material Sci. Technol., 4, No. 4: 22 (1996).
  24. A. Emamian, S. F. Corbin, and A. Khajepour, Surf. Coat. Technol., 206, No. 1: 124 (2011). https://doi.org/10.1016/j.surfcoat.2011.06.062
  25. R. M. Mahamood, E. T. Akinlabi, M. Shukla, and S. Pityana, Mater. Des., 50: 656 (2013). https://doi.org/10.1016/j.matdes.2013.03.049
  26. X. B. Liu, X. J. Meng, H. Q. Liu, G. L. Shi, S. H. Wu, C. F. Sun, M. D. Wang, and L. H. Qi, Mater. Des., 55: 404 (2014). https://doi.org/10.1016/j.matdes.2013.09.038
  27. H. Zhang, Y. Pan, Y. He, and H. Jiao, Appl. Surf. Sci., 257, No. 6: 2259 (2011). https://doi.org/10.1016/j.apsusc.2010.09.084
  28. M. Zhang, X. Zhou, X. Yu, and J. Li, Surf. Coat. Technol., 311: 321 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.012
  29. H. Zhang, Y. Pan, and Y. He, J. Therm. Spray Technol., 20: 1049 (2011). https://doi.org/10.1007/s11666-011-9626-0
  30. Y. Cai, Y. Chen, Z. Luo, F. Gao, and L. Li, Mater. Des., 133: 91 (2017). https://doi.org/10.1016/j.matdes.2017.07.045
  31. G. J. Li, J. Li, and X. Luo, Mater. Character., 98: 83 (2014). https://doi.org/10.1016/j.matchar.2014.10.003
  32. S. Chen, X. Chen, L. Wang, J. Liang, and C. Liu, J. Laser Appl., 29, No. 1: 012004 (2017). https://doi.org/10.2351/1.4966052
  33. F. Weng, H. Yu, C. Chen, J. Liu, L. Zhao, and J. Dai, J. Alloys Compd., 686: 74 (2016). https://doi.org/10.1016/j.jallcom.2016.05.319
  34. T. Abioye, D. McCartney, and A. Clare, J. Mater. Process. Technol., 217: 232 (2015). https://doi.org/10.1016/j.jmatprotec.2014.10.024
  35. P. K. Farayibi, T. E. Abioye, and A. T. Clare, Int. J. Advanced Manuf. Technol., 87: 3349 (2016). https://doi.org/10.1007/s00170-016-8743-9
  36. T. Yue, H. Xie, X. Lin, H. Yang, and G. Meng, J. Alloys Compd., 587: 588 (2014). https://doi.org/10.1016/j.jallcom.2013.10.254
  37. Z. Cai, X. Cui, Z. Liu, Y. Li, M. Dong, and G. Jin, Opt. Laser Technol., 99: 276 (2018). https://doi.org/10.1016/j.optlastec.2017.09.012
  38. G. Jin, Z. B. Cai, Y. J. Guan, X. F. Cui, Z. Liu, Y. Li, M. L. Dong, and D. Zhang, Appl. Surf. Sci., 445: 113 (2018). https://doi.org/10.1016/j.apsusc.2018.03.135
  39. Q. Chao, T. Guo, T. Jarvis, X. Wu, P. Hodgson, and D. Fabijanic, Surf. Coat. Technol., 332: 440 (2017). https://doi.org/10.1016/j.surfcoat.2017.09.072
  40. P. Zhang and Z. Liu, Mater. Des., 100: 254 (2016). https://doi.org/10.1016/j.matdes.2016.03.151
  41. J. J. Yang, H. C. Yu, Z. M. Wang, and X. Y. Zeng, Mater. Character., 127, Iss. 5: 137 (2017). https://doi.org/10.1016/j.matchar.2017.01.014
  42. X. W. Qiu and C. G. Liu, J. Alloys Compd., 553: 216 (2013). https://doi.org/10.1016/j.jallcom.2012.11.100
  43. X. T. Liu, W. B. Lei, J. Li, Y. Ma, W. M. Wang, B. H. Zhang, C. S. Liu, and J. Z. Cui, Rare Metals, 33: 727 (2014). https://doi.org/10.1007/s12598-014-0403-3
  44. U. Roy, H. Roy, H. Daoud, U. Glatzel, and K. Ray, Mater. Lett., 132: 186 (2014). https://doi.org/10.1016/j.matlet.2014.06.067
  45. W. Wu, L. Jiang, H. Jiang, X. M. Pan, and Z. Q. Cao, J. Therm. Spray Technol., 24: 1333 (2015). https://doi.org/10.1007/s11666-015-0303-6
  46. F. Y. Shu, L. Wu, H. Y. Zhao, S. H. Sui, L. Zhou, J. Zhang, W. X. He, P. He, and B. S. Xu, Mater. Lett., 211: 235 (2018). https://doi.org/10.1016/j.matlet.2017.09.056
  47. Y. Torres, P. Srria, F. J. Cotor, E. Gutierrez, E. Peon, A. M. Beltran, J. E. Gonzalez, Surf. Coat. Technol., 348: 31 (2018). https://doi.org/10.1016/j.surfcoat.2018.05.015
  48. L. Jiang, W. Wu, Z. Cao, D. Deng, and T. Li, J. Therm. Spray Technol., 25: 806 (2016). https://doi.org/10.1007/s11666-016-0397-5
  49. Q. W. Meng, L. Geng, and B. Y. Zhang, Surf. Coat. Technol., 200, Nos. 16–17: 4923 (2006). https://doi.org/10.1016/j.surfcoat.2005.04.059
  50. J. Nurminen, J. Näkki, and P. Vuoristo, Int. J. Refract. Hard Met., 27, No. 2: 472 (2009). https://doi.org/10.1016/j.ijrmhm.2008.10.008
  51. X. Z. Chen, K. Hu, and Q. B. Yuan, China Sur. Eng., 29, No. 4: 118 (2016). https://doi.org/10.11933/j.issn.1007-9289.2016.04.015
  52. X. Z. Chen, Y. Y. Fang, P. Li, Z. Z Yu, X. D. Wu, and D. S. Li, Mater. Des., 65: 1214 (2015). https://doi.org/10.1016/j.matdes.2014.10.013
  53. V. Moura, L. Lima, J. Pardal, A. Kina, R. Corte, and S. Tavares, Mater. Character., 59, No. 8: 1127 (2008). https://doi.org/10.1016/j.matchar.2007.09.002
  54. P. Maj, B. Adamczyk-Cieślak, J. Mizera, W. Pachla, and K. Kurzydłowski, Mater. Character., 93: 110 (2014). https://doi.org/10.1016/j.matchar.2014.03.017
  55. T. F. Santos, R. R. Marinho, M. T. Paes, and A. J. Ramirez, Rem: Rev. Esc. Minas, 66, No. 2: 187 (2013). https://doi.org/10.1590/S0370-44672013000200008
  56. T. Abioye, P. Farayibi, and A. Clare, Mater. Manuf. Processes, 32, No. 14: 1653 (2017). https://doi.org/10.1080/10426914.2017.1317787
  57. M. Xu, J. Li, J. Jiang, and B. Li, Procedia CIRP, 29: 804 (2015). https://doi.org/10.1016/j.procir.2015.02.088
  58. M. Kawasaki, K. Takase, S. Kato, M. Nakagawa, K. Mori, M. Nemoto, S. Takagi, and H. Sugimoto, SAE International, 101, No. 3: 1000 (1992).
  59. S. Dong, S. Yan, B. Xu, Y. Wang, and W. Ren, J. Acad. Armored Force Eng., 27: 90 (2013).
  60. S. Dong, X. Zhang, B. Xu, Z. Wang, and S. Yan, J. Acad. Armored Force Eng., 25, No. 2: 85 (2011).
  61. L. Shepeleva, B. Medres, W. Kaplan, M. Bamberger, and A. Weisheit, Surf. Coat. Technol., 125, Nos. 1–3: 45 (2000). https://doi.org/10.1016/S0257-8972(99)00603-9
  62. Z. C. Liu, Q. H. Jiang, T. Li, S. Y. Dong, S. X. Yan, H. C. Zhang, and B. S. Xu, J. Cleaner Prod., 133: 1027 (2016). https://doi.org/10.1016/j.jclepro.2016.06.049
  63. X. Zhen, S. Z. O. F. P. Branch, and N. G. P. Plant, Petro-Chemical Equipment, 3: 11 (2017).
  64. Y. P. Kathuria, Surf. Coat. Technol., 132, Nos. 2–3: 262 (2000). https://doi.org/10.1016/S0257-8972(00)00735-0
  65. Q. Liu, M. Janardhana, B. Hinton, M. Brandt, and K. Sharp, Int. J. Structural Integrity, 2, No. 3: 314 (2011). https://doi.org/10.1108/17579861111162914
  66. S. D. Sun, Q. C. Liu, M. Brandt, V. Luzin, R. Cottam, M. Janardhana, and G. Clark, Mater. Sci. Eng. A, 606: 46 (2014). https://doi.org/10.1016/j.msea.2014.03.077
  67. T. Torims, G. Pikurs, A. Ratkus, A. Logins, J. Vilcans, and S. Sklariks, Procedia Eng., 100: 559 (2015). https://doi.org/10.1016/j.proeng.2015.01.405
  68. J. D. Kim, K. Kang, and J. Kim, Z. Angew. Phys. A, 79: 1583 (2004). https://doi.org/10.1007/s00339-004-2854-0