Nitriding in a Helicon Discharge as a Promising Technique for Changing the Surface Properties of Steel Parts

E. M. Rudenko$^{1}$, V. Ye. Panarin$^{1}$, P. O. Kyrychok$^{2}$, M. Ye. Svavilnyi$^{1}$, I. V. Korotash$^{1}$, O. O. Palyukh$^{2}$, D. Yu. Polotskyi$^{1}$, R. L. Trishchuk$^{2}$

$^1$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$Institute of Publishing and Printing of the National Technical University of Ukraine ‘Igor Sikorsky Kyiv Polytechnic Institute’, 1/37 Yangel Str., UA-03056 Kyiv, Ukraine

Received: 15.04.2019; final version — 27.06.2019. Download: PDF logoPDF

The main types of state-of-the-art nitriding technologies, their advantages and disadvantages are considered. An innovative technology of ion nitriding in high-frequency helicon-discharge plasma is proposed. The hardening of steel samples via ion nitriding in a helicon discharge is experimentally revealed that (in a wide range of operating parameters) allows us to have an influence on the process of diffusion saturation with nitrogen atoms. The results of microhardness measurements along the depth of nitrided steel samples are presented (the steel grade is C45 according to the European standard EN 10027). The possibility of controlling the gradient of the tribotechnical properties of friction parts by changing the parameters of the technological process of ion nitriding in a helicon discharge is shown.

Keywords: nitriding, strengthening, ionic nitriding in helicon discharge, diffusion coatings, increase of wear resistance.

DOI: https://doi.org/10.15407/ufm.20.03.485

Citation: E. M. Rudenko, V. Ye. Panarin, P. O. Kyrychok, M. Ye. Svavilnyi, I. V. Korotash, O. O. Palyukh, D. Yu. Polotskyi, and R. L. Trishchuk, Nitriding in a Helicon Discharge as a Promising Technique for Changing the Surface Properties of Steel Parts, Usp. Fiz. Met., 20, No. 3: 485–501 (2019); doi: 10.15407/ufm.20.03.485


References (38)  
    1. M. A. Balter, Uprochnenie Detaley Mashin [Hardening of Machine Parts] (Moscow: Mashinostroenie: 1978) (in Russian).
    2. W. A.-R. Dhafer, V. Kostyk, K. Kostyk, A. Glotka, and M. Chechel, Eastern-European Journal of Enterprise Technologies, 3, No. 5 (81): 44 (2016). Crossref
    3. M. Ogórek, Z. Skuza, and T. Frączek, Logistyka, No. 6: 351 (2015) (in Polish).
    4. R. L. Trishchuk, Tekhnologiya i Tekhnyka Drukarstva [Technology and Equipment of Printing], No. 1 (59): 48 (2018) (in Ukrainian). Crossref
    5. V. B. Molodkin, H. I. Nizkova, Ye. I. Bogdanov, S. I. Olikhovskii, S. V. Dmitriev, M. G. Tolmachev, V. V. Lizunov, Ya. V. Vasylyk, A. G. Karpov, and O. G. Voytok, Usp. Fiz. Met., 18, No. 2: 177 (2017) (in Ukrainian). Crossref
    6. V. V. Lizunov, I. M. Zabolotnyy, Ya. V. Vasylyk, I. E. Golentus, and M. V. Ushakov, Usp. Fiz. Met., 20, No. 1: 75 (2019). Crossref
    7. Y. Meshkov, S. Kotrechko, and A. Shiyan, Bulletin of Prydniprovsk State Academy of Civil Engineering and Architecture, No. 5: 39 (2013) (in Russian).
    8. P. V. Kaplun, V. A. Honchar, B. I. Tiutiunyk, and P. V. Matviishyn, Problemy Trybologii [Tribology Problems], No. 2: 16 (2017) (in Ukrainian).
    9. V. G. Kaplun, Fizicheskaya Inzheneriya Poverkhnosti [Physical Engineering of Surface], 14, No. 2: 141 (2003) (in Russian).
    10. А. Rudyk, Bulletin of NTU ‘KhPI’. Series: Mechanical-Technological Systems and Complexes, No. 19 (1241): 22 (2017) (in Ukrainian).
    11. I. M. Pastukh, Teoriya i Praktika Bezvodorodnogo Azotirovaniya v Tleyushchem Razryade [Theory and Practice of Hydrogenated Nitriding in Glow Discharges] (Kharkiv: NSC ‘Kharkiv Inst. Phys.-Technol.’: 2006) (in Russian).
    12. C. C. Wei, Adv. Sci. Lett., 12, No. 1: 148 (2012). Crossref
    13. B. B. Fernandes, S. Mändl, R. M. Oliveira, and M. Ueda, Appl. Surf. Sci., 310: 278 (2014). Crossref
    14. K. Köster, P. Kaestner, G. Bräuer, H. Hoche, T. Troßmann, and M. Oechsner, Surf. Coat. Technol., 228: 615 (2013). Crossref
    15. M. Campos, S. D. de Souza, S. de Souza, and M. Olzon-Dionysio, Hyperfine Interact., 203, Iss. 1–3: 105 (2011). Crossref
    16. S. A. Gerasimov, A. V. Zhikharev, and V. A. Golikov, Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6: 24 (2000) (in Russian).
    17. A. V. Gavrilova, S. A. Gerasimov, G. F. Kosolapov, and Yu. D. Tyapkin, Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3: 14 (1974) (in Russian).
    18. K. P. Shamrai, V. P. Pavlenko, and V. B. Taranov, Plasma Phys. Control. Fusion, 39, No. 3: 505 (1997). Crossref
    19. C. S. Corr, N. Plihon, P. Chabert, O. Sutherland, and R. W. Boswell, Phys. Plasmas, 11, Iss.10: 4596 (2004). Crossref
    20. A. W. Molvik, A. R. Ellingboe, and T. D. Rognlien, Phys. Rev. Lett., 79, Iss. 2: 233 (1997). Crossref
    21. V. F. Virko, G. S. Kirichenko, and K. P. Shamrai, Plasma Sources Sci. Technol., 11, No. 1: 10 (2002). Crossref
    22. B. M. Slobodyan, B. F. Virko, G. C. Kirichenko, and K. P. Shamrai, Problems of Atomic Science and Technology, No. 4: 235 (2003) (in Russian).
    23. J. E. Stevens, M. J. Sowa, and J. L. Cecchi, J. Vac. Sci. Technol. A, 13, No. 5: 2476 (1995). Crossref
    24. V. F. Virko, K. P. Shamrai, G. S. Kirichenko, and Yu. V. Virko, Phys. Plasmas, 11, No. 8: 3888 (2004). Crossref
    25. V. M. Slobodyan, V. F. Virko, K. P. Shamrai, and G. S. Kirichenko, Abst. 13th Int. Congress on Plasma Physics (ICPP 2006) (22–26 May, 2006, Kyiv, Ukraine) (Kyiv: 2006), p. 123.
    26. K. P. Shamrai, S. Shinohara, V. F. Virko, V. M. Slobodyan, Yu. V. Virko, and G. S. Kirichenko, Plasma Phys. Control. Fusion, 47, No. 5A: A307 (2005). Crossref
    27. V. F. Semenyuk, V. F. Virko, I. V. Korotash, L. S. Osipov, D. Yu. Polotsky, E. M. Rudenko, V. M. Slobodyan, and K. P. Shamrai, Problems of Atomic Science and Technology, No. 4 (86): 179 (2013).
    28. A. Shpak, E. Rudenko, I. Korotash, V. Semenyuk, V. Odinokov, G. Pavlov, and V. Sologub, Nanoindustriya, No. 4: 12 (2009) (in Russian).
    29. V. F. Semenyuk, Eh. M. Rudenko, I. V. Korotash, L. S. Osipov, D. Yu. Polotskiy, K. P. Shamray, V. V. Odinokov, G. Ya. Pavlov, and V. A. Sologub, Metallofiz. Noveishie Tekhnol., 33, No. 2: 223 (2011) (in Russian).
    30. Yu. V. Milman, S. I. Chugunova, I. V. Goncharova, and А. А. Golubenko, Usp. Fiz. Met., 19, No. 3: 271 (2018). Crossref
    31. Yu. V. Milman and I. V. Goncharova, Usp. Fiz. Met., 18, No. 3: 265 (2017) (in Russian). Crossref
    32. B. I. Kostetskiy, Strukturno-Ehnergeticheskie Osnovy Upravleniya Treniem i Iznosom v Mashinakh [Structure-Energy Fundamentals of the Friction and Wear Control in Machines] (USSR: Znanie: 1990) (in Russian).
    33. B. I. Kostetskiy, I. G. Nosovskiy, L. I. Bershadskiy, and A. K. Karaulov, Nadezhnost i Dolgovechnost Mashin [Reliability and Durability of Machines] (Eds. B. I. Kostetskiy) (Kyiv: Tehnika: 1975) (in Russian).
    34. E. М. Rudenko, I. V. Korotash, V. F. Semenyuk, and K. P. Shamrai, Science and Innovation, 5, No. 5: 5 (2009) (in Ukrainian). Crossref
    35. I. Korotash, V. Odinokov, G. Pavlov, E. Rudenko, D. Polotsky, V. Semenyuk, and V. Sologub, Nanoindustriya, No. 4: 14 (2010) (in Russian).
    36. L. Osipov, E. Rudenko, V. Semenyuk, I. Korotash, V. Odinokov, G. Pavlov, and V. Sologub, Nanoindustriya, No. 2: 4 (2010) (in Russian).
    37. Patent 87747 UA, IPC С23С 14/34 (2006.01), Plasma Device for Application of Multilayered Film Coatings, G. N. Veremejchenko, I. V. Korotash, E. M. Rudenko, V. F. Semeniuk, V. V. Odinokov, H. Y. Pavlov, and V. A. Solohub (Publ. 25.02.2014) (in Ukrainian).
    38. E. M. Rudenko, V. Ye. Panarin, P. O. Kyrychok, M. Ye. Svavilnyi, I. V. Korotash, D. Yu. Polotskyi, and R. L. Trishchuk, Metallofiz. Noveishie Tekhnol., 40, No. 8: 993 (2018) (in Ukrainian). Crossref