Microstructure and Properties of Titanium-Based Materials Promising for Antiballistic Protection

О. М. Іvasishin$^{1}$, P. E. Markovsky$^{1}$, D. G. Savvakin$^{1}$, O. О. Stasiuk$^{1}$, V. A. Golub$^{2}$, V. І. Mirnenko$^{2}$, S. H. Sedov$^{2}$, V. А. Kurban$^{2}$, S. L. Antonyuk$^{3}$

$^1$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$Ivan Cherniakhovsky National Defence University of Ukraine, 28 Povitroflotsky Ave., UA-02093 Kyiv, Ukraine
$^3$SC ‘ANTONOV’, 1 Tupolev Str., UA-03062 Kyiv, Ukraine

Received: 26.02.2019; final version — 18.04.2019. Download: PDF logoPDF

Titanium-based materials, which combine high strength and hardness of surface layer along with sufficient ductile characteristics of the matrix metal, are very promising for various applications, particularly, as armoured components in military-industrial complex. Above-mentioned combination of properties can be achieved by means of the creation of multilayer structures, which consist of layers possessing different physical and mechanical properties. In the present study, microstructure peculiarities, mechanical and antiballistic protection properties of the layered Ti-based materials are investigated. Two different ways were used for fabrication of such the layered structures. The first one is a conventional metallurgical (ingot-wrought) method followed by the surface rapid heat treatment of the Ті–6Al–4V and T110 alloys for fabrication of graded structures with different mechanical properties over the material depth. The second one is an elemental powder metallurgy method for fabrication of the structures combining layers of the Ti–6Al–4V alloy and composites based on it and hardened with TiC or TiB particles. Ballistic tests of the obtained materials are carried out for different types of projectiles with different kinetic energy and hardness of the core; features of the penetration of the hitting elements are performed depending on the material structural state. It is proved that materials with graded and layered structures demonstrate undeniable advantages in the antiballistic protection characteristics as compared with homogeneous alloys of the same thickness.

Keywords: titanium alloys, layered and graded microstructures, mechanical characteristics, ballistic tests.

Citation: О. М. Іvasishin, P. E. Markovsky, D. G. Savvakin, O. О. Stasiuk, V. A. Golub, V. І. Mirnenko, S. H. Sedov, V. А. Kurban, and S. L. Antonyuk, Microstructure and Properties of Titanium-Based Materials Promising for Antiballistic Protection, Usp. Fiz. Met., 20, No. 2: 285–309 (2019), doi: 10.15407/ufm.20.02.285

References (25)  
  1. G. Luetjering and J. C. Williams, Titanium (Berlin–Heidelberg: Springer: 2007). Crossref
  2. U. Zwicker, Titan und Titanlegierungen (Berlin–Heidelberg: Springer: 1974) (in German). Crossref
  3. J. Fanning, J. Mater. Eng. Perform., 14, Iss. 6: 686 (2005). Crossref
  4. J. S. Montgomery and M. G. Y. Wells, JOM, 53, Iss. 4: 29 (2001). Crossref
  5. C. Zheng, F. Wang, and X. Cheng, Int. J. Impact Eng., 85: 161 (2015). Crossref
  6. G. Lutjering, Mater. Sci. Eng. А, 243, Iss. 1–2: 32 (1998). Crossref
  7. P. E. Markovsky and S. L. Semiatin, J. Mater. Process. Technol., 210, Iss. 3: 518 (2010). Crossref
  8. P. E. Markovsky and S. L. Semiatin, Mater. Sci. Eng. A, 528, Iss. 7–8: 3079 (2011). Crossref
  9. P. E. Markovsky, Key Eng. Mater., 436: 185 (2010). Crossref
  10. S. V. Akhonin, P. E. Markovsky, V. А. Berezos, O. O. Stasyuk, and А. Yu. Severin, Sovrem. Elektrometall., No. 1: 9 (2018) (in Russian). Crossref
  11. O. M. Ivasishin, S. V. Akhonin, D. G. Savvakin, V. A. Berezos, V. I. Bondarchuk, O. O. Stasyuk, and P. E. Markovsky, Usp. Fiz. Met., 19, Iss. 3: 309 (2018). Crossref
  12. O. M. Ivasishin, D. G. Savvakin, and M. M. Gumenyak, Metallofiz. Noveishie Tekhnol., 33, Iss. 7: 899 (2011).
  13. O. M. Ivasishin, D. G. Savvakin, K. A. Bondareva, V. S. Moxson, and V. A. Duz, Nauka Innov., 1, No. 2: 45 (2005). Crossref
  14. O. M. Ivasishin and P. E. Markovsky, JOM, 48, Iss. 7: 48 (1996). Crossref
  15. P. E. Markovsky and M. Ikeda, Mater. Trans., 46, No. 7: 1515 (2005).
  16. O. M. Ivasishin, P. E. Markovsky, Yu. V. Matviychuk, S. L. Semiatin, C. H. Ward, and S. Fox, J. Alloys Compd., 457, Iss. 1–2: (296) 2008. Crossref
  17. T. L. Jones, Ballistic Performance of Titanium Alloys: Ti–6Al–4V Versus Russian Titanium (Army Research Laboratory Report ARL-CR-0533: 2004).
  18. J. Fanning, Proc. 11th World Conference on Titanium) (June 3–7, 2007, Kyoto, Japan) (Kyoto: The Japan Institute of Metals: 2007), p. 487.
  19. O. M. Ivasishin, P. E. Markovsky, D. G. Savvakin, V. I. Bondarchuk, A A. Stasyuk, and S. V. Prikhodko, Sovrem Elektrometall., No. 3: 52 (2018). Crossref
  20. D. G. Savvakin, S. V. Prikhodko, M. V. Matviychuk, and O. M. Ivasishin, Presentation at International Titanium Association ITA-2017 Conference (8–11 October 2017, Miami, USA).
  21. T. M. Godfrey, P.S. Goodwin, and C. M. Ward-Close, Adv. Eng. Mat., 2, Iss. 3: 85 (2000). Crossref
  22. S. V. Prikhodko, D. G. Savvakin, P. E. Markovsky, O. O. Stasiuk, M. Norouzi Rad, C. Choi, and O. M. Ivasishin, Microsc. Microanal, 24, Suppl. 1: 2218 (2018). Crossref
  23. S. Prikhodko, D. G. Savvakin, O. O. Stasyuk, P. E. Markovsky, and O. M. Ivasishin, Material Science Forum, 941: 1384 (2018). Crossref
  24. O. M. Ivasishin, P. E. Markovsky, D. G. Savvakin, O. O. Stasyuk, S. D. Sitzman, M. Norouzi Rad, and S. Prikhodko, J. Mater. Process. Technol., 269: 172 (2019). Crossref
  25. P. E. Markovsky, Material Science Forum, 941: 839 (2018). Crossref