Effect of Carbon Nanotubes on Mechanochemical Synthesis of $d$-Metal Carbide Nanopowders and Nanocomposites

O. I. Nakonechna$^{1}$, M. M. Dashevskyi$^{1}$, О. І. Boshko$^{2}$, V. V. Zavodyannyi$^{3}$, N. N. Belyavina$^{1}$

$^1$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^3$Kherson State Agrarian University, 23 Stritenska Str., UA-73006, Kherson, Ukraine

Received: 01.10.2018; final version — 03.01.2019. Download: PDF logoPDF

The nanoscale mono- (powders) and complex (compacted nanocomposites) carbides of $d$-transition metals are synthesized by mechanical alloying in a high-energy planetary ball mill from a charge containing the carbon nanotubes. The effect of multiwalled carbon nanotubes on reaction milling of the obtained materials is analyzed. The features of formation mechanism of metal carbides at the mechanical alloying are clarified. Particularly, as is shown, at the first stage of the synthesis (up to 60 min of processing of the charge in a ball mill), the amorphization of the carbon nanotubes and crushing of particles of the initial metal along the grain boundaries occurs concurrently. Then, the amorphous carbon enters into the metal lattice forming an interstitial solid solution, resulting in deformation of the metal crystal lattice. At the second stage of synthesis (from 60 to 250 minutes of processing), the process of embedding of the carbon atoms in metal matrix is accelerated and the formation of the carbide phases on surface of the parent metal particles begins. The third stage of synthesis completes the formation of carbide. As revealed, the processing time required for the complete transformation of the initial components to the carbide correlates with the enthalpy of its formation, and the fields of mechanical stress are relaxed over two main channels: heating and grinding. As found out, the carbides of $d$-transition metals studied in this work are formed mainly due to self-supporting reaction at milling. The efficiency of using carbon nanotubes in the fabrication of nanocomposite materials with improved functional characteristics is shown. As revealed, the reaction milling is effective for the synthesis of multicomponent carbides (substitutional solid solutions).

Keywords: mechanochemical processing, carbon nanotube, carbide, solid solution, x-ray diffraction, electron microscopy.

Citation: O. I. Nakonechna, M. M. Dashevskyi, О. І. Boshko, V. V. Zavodyannyi, and N. N. Belyavina, Effect of Carbon Nanotubes on Mechanochemical Synthesis of $d$-Metal Carbide Nanopowders and Nanocomposites, Usp. Fiz. Met., 20, No. 1: 5–51 (2019), doi: 10.15407/ufm.20.01.005


References (65)  
  1. P. Balaz, Acta Metalurgica Slovaca, (Spec. issue), No. 4: 23 (2001).
  2. V. Boldyrev, Khimiya v Interesakh Ustoichivogo Razvitiya, 10, Nos. 1–2: 3, (2002) (in Russian).
  3. M. Carry-Lea, Am. J. Sci., 141: 259 (1891).
  4. E. P. Elsukov, I. V. Povstugar, A. L. Ul’yanov, and G. A. Dorofeev, Fiz. Met. Metalloved., 101, No. 2: 193 (2006) (in Russian).
  5. A. C. Damask and G. J. Dienes, Point Defects in Metals (Gordon and Breach, 1st edition: 1963).
  6. A. M. Shalaev, Radiatsionno-Stimulirovannaya Diffuziya v Metallakh [Radiation-Induced Diffusion in Metals] (Moscow: Atomizdat: 1972) (in Russian).
  7. L. N. Larikov and V. M. Kal’chenko, Mekhanizm Vliyaniya Fazovykh Prevrashcheniy na Diffuziyu. Diffuziya v Metallah i Splavah [Mechanisms of Influence of the Phase Transformations on Diffusion. Diffusion in Metals] (Tula: 1968) (in Russian).
  8. S. D. Gercriken and V. M. Fal’chenko, Voprosy Fiziki Metallov i Metallovedeniya, No. 16: 153 (1962) (in Russian).
  9. B. S. Bokshtejn, S. Z. Bokshtein, and A. A. Zhuhovickiy, Termodinamika i Kinetika Diffuzii v Tverdykh Telakh [Thermodynamics and Kinetics of Diffusion in Solids] (Moscow: Metallurgiya: 1974) (in Russian).
  10. R. W. Baluffi and A. J. Ruoff, J. Appl. Phys., 34, No. 6: 1634 (1963). Crossref
  11. A. J. Ruoff and R. W. Baluffi, J. Appl. Phys., 34, No. 7: 1848 (1963). Crossref
  12. V. M. Lomer, Vakansii i Tochechnye Defekty [Vacancies and Point Defects] (Moscow: Metallurgizdat: 1961) (in Russian).
  13. Yu. P. Romashkin, Fiz. Tverd. Tela, 11, No. 12: 1059 (1960) (in Russian).
  14. V. V. Neverov, V. N. Burov, and A. I. Korotkov, Fiz. Met. Metalloved., 48, No. 5: 978 (1978) (in Russian).
  15. J. S. Benjamin, Sci. Am., 234, No. 5: 40 (1976).
  16. J. S. Benjamin, Mat. Sci. Forum, 88–90: 1 (1992). Crossref
  17. P. H. Shingu, Mechanical Alloying, 88–90 (Zurich: Trans Tech Publ.: 1992). Crossref
  18. V. V. Boldyrev, Eksperimental’nye Metody v Mekhanokhimii Tverdykh Neorganicheskikh Veshchestv [Experimental Methods in Mechanochemistry of Solid Inorganics] (Novosibirsk: Nauka. Siberian branch: 1983) (in Russian).
  19. V. V. Boldyrev, Kinetika i Kataliz, 13, 1411 (1972) (in Russian).
  20. V. Boldyrev and G. Heinicke, Z. Chem. B, 19: 356 (1975).
  21. N. Z. Lyahov and V. V. Boldyrev, Izv. SO AN SSSR. Ser. Khim., 5: 8 (1985) (in Russian).
  22. N. S. Lyakhov, Proc. Second Japan–Soviet Symposium on Mechanochemistry (Eds. G. Jimbo, M. Senna, and Y. Kuwohara) (Tokyo: Publishing Society Powder Technology: 1988), p. 59.
  23. Yu. T. Pavlukhin, Ya. Ya. Medikov, and V. V, Boldyrev, Izv. SO AN SSSR, Ser. Khim., 4: 11 (1981) (in Russian).
  24. Y. T. Pavlukhin, Ya. Ya. Medikov, and V. V. Boldyrev, J. Solid State Chem., 53, No. 2: 155 (1984). Crossref
  25. Yu. T. Pavlukhin, Ya. Ya. Medikov, and V. V. Boldyrev, Rev. Solid State Sci., 2: 603 (1988).
  26. H. Heegn, Proc. First Int. Conf. Mechanochemistry (Cambridge: Cambridge Intersci. Publ.: 1993), p. 11.
  27. R. B. Schwarz and C. C. Koch, Appl. Phys. Lett., 49, No. 3: 146 (1986). Crossref
  28. D. R. Maurice and T. Courtney, Metall. and Mat. Trans. A, 21: 289 (1990). Crossref
  29. V. V. Boldyrev, V. R. Regel’, O. F, Pozdnyakov, F. H. Urukaev, and B. Ya. Byl’skij, Dokl. AN SSSR, 221: 634 (1975) (in Russian).
  30. F. H. Urukaev, V. V. Boldyrev, O. F, Pozdnyakov, and V. R. Regel’, Kinetika i Kataliz, 18, 350 (1977) (in Russian).
  31. E. L. Goldberg, S. V. Pavlov, Proc. Second World Congress on Particle Technology (Ed. G. Jimbo) (Kyoto: Japan Society Technology: 1990), p. 507.
  32. V. V. Boldyrev, S. V. Pavlov, and E. L. Goldberg, Intern. J. Miner. Proc., 44–45: 181 (1996).
  33. C. C. Koch, Mater. Trans., JIM, 36, No. 2: 85 (1995). Crossref
  34. C. Suryanarayana, Progress Mater. Sci., 46, Nos. 1–2: 1 (2001). Crossref
  35. C. Suryanarayana and N. Al-Aqeeli, Progress Mater. Sci., 58, No. 4: 383 (2012). Crossref
  36. T. F. Grigorieva, A. P. Barinova, and N. Z. Lyakhov, Russ. Chem. Rev., 70: 45 (2001). Crossref
  37. P. Y. Butyagin, Russian Scientiéc Review. Sect. B: Chemistry Reviews, 2, Pt. 2: 89 (London: Harwood Academic Publ.: 1998).
  38. R. Schwarz, Mater. Sci. Forum, 269–272: 665 (1998). Crossref
  39. V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (New-York: Springer: 2009). Crossref
  40. M. Dashevskyi, O. Boshko, O. Nakonechna, and N. Belyavina, Metallofiz. Noveishie Tekhnol., 39 No. 4: 541 (2017). Crossref
  41. G. K. Williamson and W. H. Hall, Acta Met., 1, No. 1: 22 (1953). Crossref
  42. S. Iijima, Nature, 354: 56 (1991). Crossref
  43. X. Long, Y. Bai, M. Algarni, Y. Choi, and Q. Chen, Mat. Sci. Eng. A, 645: 347 (2015). Crossref
  44. R. A. Andrievskiy and A. V. Ragulya, Nanostrukturnye Materialy [Nanostructured Materials] (Moscow: Academiya: 2005) (in Russian).
  45. O. Boshko, O. Nakonechna, M. Dashevsky, K. Ivanenko, N. Belyavina, and S. Revo, Adv. Powder Technol., 27, No. 4: 1101 (2016). Crossref
  46. O. Boshko, O. Nakonechna, N. Belyavina, M. Dashevsky, S. Revo, Adv. Powder Technol., 28, No. 3: 964 (2017). Crossref
  47. O. Nakonechna, M. Dashevskyi, and N. Belyavina, Metallofiz. Noveishie Tekhnol., 40, No. 5: 637 (2018). Crossref
  48. P. Matteazzi and G. Le Caër, J. Am. Ceram. Soc., 74, No. 6: 1382 (1991). Crossref
  49. A. Teresiak and H. Kubsch, Nanostruct. Mater., 6, Nos. 5–8: 671 (1995). Crossref
  50. Q. Yuan, Y. Zheng, and H. Yu, Int. J. Refract. Met. Hard Mater., 27, No. 4: 696 (2009). Crossref
  51. H. Jia, Z. Zhang, Z. Qi, G. Liu, and X. Bian, J. Alloys Compd., 472, Nos. 1–2: 97 (2009). Crossref
  52. B. Ghosh and S. K. Pradhan, Mater. Chem. Phys., 120, Nos. 2–3: 537 (2010). Crossref
  53. C. J. Lu and Z. Q. Li, J. Alloys Compd., 395, Nos. 1–2: 88 (2005). Crossref
  54. N. J. Calos, J. S. Forrester, and G. B. Schaffer, J. Solid State Chem., 158, No. 2: 268 (2001). Crossref
  55. L. Takacs, J. Solid State Chem., 125, No. 1: 75 (1996). Crossref
  56. B. H. Lohse, A. Calka, and D. Wexler, J. Alloys Compd., 434–435: 405 (2007). Crossref
  57. N. Q.Wu, G. X. Wang, J. M. Wu, Z. Z. Li, and M. Y. Yuan, Int. J. Refract. Met. Hard Mater., 15, Nos. 5–6: 289 (1997). Crossref
  58. X. K. Zhu, K. Y. Zhao, B. C. Cheng, Q. S. Lin, X. Q. Zhang, T. L. Chen, and Y. S. Su, Mater. Sci. Eng. C, 16, Nos. 1–2: 103 (2001). Crossref
  59. E. P. Elsukov and G. A. Dorofeev, Khimiya v Interesakh Ustoichivogo Razvitiya, 10: 59 (2002) (in Russian).
  60. E. P. Elsukov, G. A, Dorofeev, and V. V. Boldyrev, Khimiya v Interesakh Ustoichivogo Razvitiya, 10: 53 (2002) (in Russian).
  61. E. P. Yelsukov, G. A. Dorofeev, V. A. Barinov, T. F. Grigorieva, and V. V. Boldyrev, Mater. Sci. Forum, 269–272: 151 (1998). Crossref
  62. N. P. Lyakishev, Fazovye Diagrammy Binarnyh Metallicheskikh Sistem [Phase Diagrams of Binary Metallic Systems] (Moscow: Mashinostroeniye: 1996) (in Russian).
  63. Y. B. Li, B. Q. Wei, J. Liang, Q. Yu, and D. H. Wu, Carbon, 37, No. 3: 493 (1999). Crossref
  64. V. Raghavan, J. Phase Equilib., 24, No. 1: 62 (2003). Crossref
  65. O. I. Nakonechna, N. N. Belyavina, M. M. Dashevskyi, K. O. Ivanenko, and S. L. Revo, Phys. Chem. Solid State, 19, No. 2: 179 (2018). Crossref