From Nanomaterials and Nanotechnologies to the Alternative Energy

O. G. Guglya$^{1}$, V. A. Gusev$^{2}$, O. A. Lyubchenko$^{3}$

$^1$National Science Center Kharkiv Institute of Physics and Technology, NAS of Ukraine, 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine
$^2$North-East Scientific Centre of the NAS and MES of Ukraine, 8 Bahaliy Str., UA-61000 Kharkiv, Ukraine
$^3$National Technical University ‘Kharkiv Polytechnic Institute’, 2 Kyrpychova Str., UA-61002 Kharkiv, Ukraine

Received: 03.08.2018; final version - 25.10.2018. Download: PDF logoPDF

The use of alternative energy sources in various areas of industry and in everyday life is becoming increasingly important. This is due to the depletion of the sources of hydrocarbon raw materials and, at the same time, the use of fossil fuel leads to environmental degradation and environmental pollution. Among the various possible sources of renewable energy, solar and hydrogen energies are considered the most promising. The main obstacle to widespread use and distribution of them is the lack of materials, which can effectively convert the energy of Sun and hydrogen into electricity and heat. The main requirements for such materials are the high-energy capacity, structural stability, and low price. These properties are inherent in nanocrystalline materials and, therefore, many studies of recent decades have been devoted to them. In this review, a special attention is focused on the three types of nanocrystalline objects of greatest interest for power engineering, namely, solar cells, lithium-ion batteries and solid-state hydrogen storage. Their structural features, manufacturing techniques as well as the relationship between structure and energy capacity are considered. The state and prospects of application of nanocrystalline structures in renewable energy are analysed.

Keywords: alternative energy, nanomaterials, solar cells, lithium-ion battery, hydrogen storage.

PACS: 61.46.-w, 61.48.-c, 68.37.-d, 68.43.-h, 68.65.-k, 81.05.U-, 81.05.Zx, 81.07.-b, 81.16.-c, 81.70.-q, 82.45.Yz, 82.47.Aa, 88.05.Ec, 88.05.Gh, 88.05.Lg, 88.05.Np, 88.30.G-, 88.30.M-, 88.30.R-, 88.40.-j, 88.40.H-, 88.40.J-, 89.30.-g

DOI: https://doi.org/10.15407/ufm.19.04.442

Citation: O. G. Guglya, V. A. Gusev, and O. A. Lyubchenko, From Nanomaterials and Nanotechnologies to the Alternative Energy, Usp. Fiz. Met., 19, No. 4: 442—486 (2018), doi: 10.15407/ufm.19.04.442


References (122)  
  1. A. Demirbas, Energy Sources, Part B, 4, No. 2: 212 (2009). Crossref
  2. K. G. Satyanarayana, A. Mariano, and J. V. C. Vargas, Int. J. Energy Research, 35, No. 4: 291 (2011). Crossref
  3. U. Sahaym and M. G. Norton, J. Mater. Science, 43, No. 16: 5395 (2008). Crossref
  4. N. S. Lewis, Science, 315: No. 5813: 798 (2007).
  5. Y. Sun, N. Liu, and Y. Cui, Nature Energy, 1: 16071 (2016). Crossref
  6. R. P. Feynman, Engineering and Science, 23, No. 5: 22 (1960).
  7. N. Taniguchi, Proc. of the Int. Conf. on Production Engineering (Tokyo: 1974), p. 18.
  8. D. E. Carlson and C. R. Wronski, Appl. Phys. Lett., 28, No. 11: 671 (1976). Crossref
  9. G. Binning and H. Rohrer, Surf. Sci., 126, Nos. 1–3: 236 (1983). Crossref
  10. G. Binnig, C. F. Quate, and Ch. Gerber, Phys. Rev. Lett., 56, No. 9: 930 (1986). Crossref
  11. S. Iijima, Nature, 354: 56 (1991). Crossref
  12. T. P. Yadav, R. M. Yadav, and D. P. Singh, Nanosci. Nanotechnol., 2, No. 3: 22 (2012). Crossref
  13. H. Gleiter, Prog. Mater. Sci., 33, No. 4: 223 (1989). Crossref
  14. R. Birringe, Mater. Sci. Eng. A, 117, 33 (1989). Crossref
  15. R. Thiruvengadathan, V. Korampally, A. Ghosh, N. Chanda, K. Gangopadhyay, and S. Gangopadhyay, Rep. Prog. Phys., 76, No. 6: 066501 (2013). Crossref
  16. J. L. Liu and S. Bashir, Advanced Nanomaterials and Their Application in Renewable Energy (Amsterdam: Elsevier: 2015). Crossref
  17. P. Edwards, R. Johnston, and C. Rao, Metal Clusters in Chemistry (Eds. R. Braunstein, L. Oro, and P. Raithby) (Weinheim: Wiley-VCH: 1999), Vol. 3, p. 1454.
  18. N. T. Gladkih, S. V. Gukarov, A. P. Kryshtal, V. I. Larin, V. N. Suhov, and S. I. Bogatyrenko, Poverkhnostnye Yavleniya i Fazovye Prevrashcheniya v Kondensirovannykh Plenkakh [Surface Phenomena and Phase Transformations in Condensed Films] (Kharkov: KhNU: 2004) (in Russian).
  19. K. T. Lee and J. Cho, Nano Today, 6: 28 (2011). Crossref
  20. Y. G. Guo, J. S. Hu, and L. J. Wan, Adv. Mater., 20, No. 15: 2878 (2008). Crossref
  21. R. Morris, B. Dixon, T. Gennett, R. Raffaelle, and M. J. Heben, J. Power Sources, 138: 277 (2004). Crossref
  22. Z. Zhou, J. Zhao, X. Gao, Z. Chen, J. Yan, P. von Rague Schleyer, and M. Morinada, Chem. Mater., 17, No. 5: 992 (2005). Crossref
  23. H. Xie, Y. Li, S. Jin, J. Han, and X. Zhao, J. Phys. Chem. C, 114, No. 21: 9706 (2010). Crossref
  24. M. S. Wu and R. H. Lee, J. Power Sources, 176, No. 1: 363 (2008). Crossref
  25. G. Zhang, L. Yu, H. E. Hoster, and X. W. Lou, Nanoscale, 5, No. 3: 877 (2013). Crossref
  26. J. Chen, X. H. Xia, J. P. Tu, Q. G. Xiong, Y. X. Yu, and X. L. Wang, J. Mater. Chem., 22, No. 30: 15056 (2012). Crossref
  27. A. R. Armstrong, G. Armstrong, J. Canales, and P. G. Bruce, Angew. Chem. Int. Ed., 116, No. 17: 2336 (2004). Crossref
  28. A. Armstrong, G. Armstrong, J. Canales, and P. G. Bruce, Adv. Mater., 17, No. 6: 862 (2005). Crossref
  29. M. C. Yang, Y. Y. Lee, B. Xu, K. Powers, and Y. S. Meng, J. Power Sources, 207: 166 (2012). Crossref
  30. J. Luo, X. Xia, Y. Luo, C. Guan, J. Liu, X. Qi, C. F. Ng, T. Yu, H. Zhang, and H. J. Fan, Adv. Energy Mater., 3, No. 6: 737 (2013). Crossref
  31. H. Wang, D. Ma, X. Xuang, Y. Huang, and X. Zhang, Sci. Rep., 2: 701 (2012). Crossref
  32. X. Li, Y. Chen, H. Yao, X. Zhau, J. Yang, H. Huang, Y.-W. Mai, and L. Zhou, RSC Advances, 4: 39906 (2014). Crossref
  33. S. Guo, J. Liu, S. Qiu, Y. Wang, X. Yan, N. Wu, S. Wang, and Z. Guo, Electrochim. Acta, 190: 556 (2016). Crossref
  34. P. Bruce, B. Scrosati, and J.-V.Tarascon, Angewandte Chemie, 47, No. 16: 2930 (2008). Crossref
  35. C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill, Nature Mater., 7: 665 (2008). Crossref
  36. R. Malik, D. Burch, M. Bazant, and G. Ceder, Nano Lett., 10, No. 10: 4123 (2010). Crossref
  37. D. Wang, H. Buga, M. Grouzet, G. Deghenghi, T. Drezen, I. Exnar, N.-H. Kwon, J. H. Miners. L. Poletto, and M. Graszel, J. Power Sources, 189, No. 1: 624 (2009). Crossref
  38. J. D. Eppinga and B. F. Chmelka, Cur. Opin. Colloid Interface Sci., 11, Nos. 2–3: 81 (2006). Crossref
  39. F. Jiao, K. M. Shaju, and P. G Bruce, Angew. Chem. Int. Ed., 44, No. 40: 6550 (2005). Crossref
  40. K. Wong and S. Dia, J. Energy Resour. Technol., 139, No. 1: 014001 (2016). Crossref
  41. https://www.solarwind-sensor.com/wp-content/uploads/2014/04/Silicon-cell-convertible-spectrum.png.
  42. S. H. Jensen, P. H. Larsen, and M. Mogensen, Int. J. Hydrogen Energy, 32, No. 15: 3253 (2007). Crossref
  43. M. D. Kelzenberg, S. W. Booettcher, J. A. Petykiewicz, D. B. Turnet-Evans, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nature Mater., 9, No. 3: 239 (2010). Crossref
  44. J. Zhu, Z. Yu, G. F. Burkhard, C. M. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Gui, Nano Lett., 9, No. 1: 279 (2009). Crossref
  45. http://www.rusnano.com/about/press-centre/news/75461.
  46. S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, and M. Grätzel, Thin Solid Films, 516: 4613 (2008). Crossref
  47. H. P. Wu, C. M. Lan, J. Hu, W. K. Huang, J. W. Shiu, Z. J. Lan, C. M. Tsai, C. H. Su, E. W. G. Diau, J. Phys. Chem. Lett., 4, No. 9: 1570 (2013). Crossref
  48. https://genesisnanotech.wordpress.com/2014/12/19/dye-sensitized-solar-cells-and-new-solar-energy-material-perovskite-19-conversion-efficiancy.
  49. M. Nazeeruddin, A. Ray, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Graetzel, J. Am. Chem. Soc., 115, No. 14: 6382 (1993). Crossref
  50. M. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Gratzel, J. Am. Chem. Soc., 123, No. 8: 1613 (2001). Crossref
  51. K. F. Chou and A. M. Dennis, Sensors, 15, No. 6: 13288 (2015). Crossref
  52. Z. Abdin, M. A. Alim, R. Saidur, M. R. Islam, W. Rashmi, S. Mekhilef, and A. Wadi, Renew. Sust. Energy Rev., 26: 837 (2013). Crossref
  53. Y. Bai, I. Mora-Sero, F. De Angelis, and P. Wang, Chem. Rev., 114, No. 19: 10095 (2014). Crossref
  54. J. Llorca, Contrib. Sci., 7, No. 1: 57 (2011). Crossref
  55. https://esdr.lbl.gov/news/article/11190/berkeley-lab-research-helps-fuel-cells-meet-their-potential.
  56. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles; https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles.
  57. A. Zuttel, P. Sudan, Ph. Mauron, T. Kiyobayashi, Ch. Emmenegger, and L. Schlapbach, Int. J. Hydrogen Energy, 27, No. 2: 203 (2002). Crossref
  58. I. P. Jain, P. Jain, and A. Jain, J. Alloys Compd., 503, No. 2: 303 (2010).
  59. http://spie.org/newsroom/1451-designing-novel-carbon-nanostructures-for-hydrogen-storage?SSO=1.
  60. I. Yu. Sagalyanov, Yu. I. Prylutskyy, T. M. Radchenko, and V. A. Tatarenko, Usp. Fiz. Met., 11, No. 1: 95 (2010) (in Ukrainian). Crossref
  61. L. L. Kondratenko, O. V. Mykhailenko, Yu. I. Prylutskyy, T. M. Radchenko, and V. A. Tatarenko, Usp. Fiz. Met., 11, No. 3: 369 (2010) (in Ukrainian). Crossref
  62. T. M. Radchenko, V. A. Tatarenko, I. Yu. Sagalianov, and Yu. I. Prylutskyy, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B. T. Edwards) (Hauppauge, N.Y., USA: Nova Science Publishers, Inc.: 2014), Ch. 7, p. 219.
  63. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H.Kiang, D. S. Bethune, and M. J. Heben, Nature, 386: 377 (1997). Crossref
  64. P. Benard, R. Chahine, P. Chandonia, D. Cossement, G. Dorval-Douville, L. Lafia, P. Lachance, R. Paggiaro, and E. Poirier, J. Alloys Compd., 446–447: 380 (2007). Crossref
  65. S. Beyaz, F. Darkrim Lamari, B. Weinberger, and P. Langlois, Int. J. Hydrogen Energy, 35, No. 1: 217: (2010). Crossref
  66. F. Darkrim, J. Vermesse, and P. Malbrunot, J. Chem. Phys., 110, No. 8: 4020 (1999). Crossref
  67. Q. Wang and J. K. Johnson. J. Chem. Phys., 110, No. 1: 577 (1999). Crossref
  68. M. Hirscher, M. Becher, M. Halushka, F. von Zeppellin, X. Chen, U. Dettlaff-Weglikowska, and S. Roth, J. Alloys Compd., 356–357: 433 (2003). Crossref
  69. A. D. Lueking and R. T. Yang, Appl. Catal. A, 265: 259 (2004). Crossref
  70. G. Yushin, R. Dash, J. Jagiello, and Y. Gogotsi, Adv. Funct. Mat., 16, No. 17: 2288 (2006). Crossref
  71. R.J.-M. Pelleng, F. Marinelly, J. D. Fuhr, F. Fernandez-Alonso, and K. Refson, J. Chem. Phys., 129, No. 22: 224701 (2008). Crossref
  72. V. Bhat, C. Contescu, N. Gallego, and F. Baker, Carbon, 48, No. 5: 1331 (2010). Crossref
  73. J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 44, No. 30: 4670 (2005). Crossref
  74. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, and O. M. Yaghi, Science, 300, No. 5622: 1127 (2003). Crossref
  75. G. Ferey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guegan, Chem. Commun., 0, No. 24: 2976 (2003). Crossref
  76. M. Hirscher, B. Panella, and B. Schmitz, Micropor. Mesopor. Mat., 129, No. 3: 335 (2010). Crossref
  77. D. J. Collins and H. C. Zhou, J. Mat. Chem., 17, No. 30: 3154 (2007). Crossref
  78. M. Latroche, S. Surble, C. Serre, C. Mellot-Draznieks, P. L. Llewellyn, J. H. Lee, J. S. Chang, S. H. Jhung, and G. Ferey, Angew. Chem. Int. Ed., 45, No. 48: 8227 (2006). Crossref
  79. A. G. Wong-Foy, A. J. Matzger, and O. M. Yaghi, J. Am. Chem. Soc., 128, No. 11: 3494 (2006). Crossref
  80. H. K. Chae, D. Y. Siberio-Perez, J. Kim, Y. B. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, and O. M. Yaghi, Nature, 427: 523 (2004). Crossref
  81. J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 44, No. 30: 4670 (2005). Crossref
  82. J. L. C. Rowsell, A. R. Millward, K. S. Park, and O. M. Yaghi, J. Amer. Chem. Soc., 126, No. 18: 5666 (2004). Crossref
  83. G. Sandrock, J. Alloys Compd., 293–295: 877 (1999). Crossref
  84. R. Wiswall, Hydrogen in Metals II. Application-Oriented Properties (Eds. G. Alefeld and J. Volkl) (Berlin, Heidelberg: Springer-Verlag: 1978), Chapter 5, p. 201. Crossref
  85. Y. Fukai, The Metal–Hydrogen Systems. Basic Balk Properties (Berlin, Heidelberg: Springer-Verlag: 2005). Crossref
  86. A. Zaluska, L. Zaluski, and J. O. Ström-Olsen, J. Alloys Compd., 288, Nos. 1–2: 217 (1999). Crossref
  87. G. Barkhordarian, T. Klassen, and R. Bormann, J. Alloys Compd., 364, Nos. 1–2: 242 (2004). Crossref
  88. M. U. Niemann, S. S. Srinivasan, A. R. Phani, A. Kumar, D. Y. Goswami, and E. K. Stefanakos, J. Nanomaterials, 2008: 950967 (2008). Crossref
  89. G. Liang, J. Huot, S. Boily, and A. Van Neste, J. Alloys Compd., 292, Nos. 1–2: 247 (1999). Crossref
  90. F. Gennari, F. Castra, G. Urretavizcaya, and G. Meyer, J. Alloys Compd., 334, Nos. 1–2: 277 (2002). Crossref
  91. W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Compd., 322, Nos. 1–2: L5 (2001). Crossref
  92. G. Liang, J. Huot, S. Boily A. Van Neste, and R. Schulz, J. Alloys Compd., 291, Nos. 1–2: 295 (1999). Crossref
  93. H. G. Schimmel, J. Huot, L. C. Chapon, F. D. Tichelaar, and F. M. Mulder, J. Am. Chem. Soc., 127, No. 41: 14348 (2005). Crossref
  94. Z. Dehouche, R. Djaozangry, J. Huot, S. Boily, J. Goyette, T. K. Bose, and R. Schulz, J. Alloys Compd., 305, Nos. 1–2: 264 (2000). Crossref
  95. K. S. Jung, E. Y. Lee, and K. S. Lee, J. Alloys Compd., 421, Nos. 1–2: 179 (2006). Crossref
  96. W. Oelerich, T. Klassen, and R. Bormann, J. Alloys Compd., 315, Nos. 1–2: 237 (2001). Crossref
  97. K. Higuchi, Y. Yamamoto, H. Kajioka, K.Toiyama, M. Honda, and S. Orimo, J. Alloys Compd., 330–332: 526 (2002). Crossref
  98. K. Higuchi, H. Kajioka, K. Toiyama, H. Fujii, S. Orimo, and Y. Kikuchi, J. Alloys Compd., 293–295: 484 (1999). Crossref
  99. H. Akyildiz, M. Ozenbas, and T. Ozturk, Int. J. Hydrogen Energy, 31, No. 10: 1379 (2006). Crossref
  100. T. Richardson, B. Farangis, J. Slack, P. Nachimuthu, R. Perera, N. Tamura, and M. Rubin, J. Alloys Compd., 356–357: 204 (2003). Crossref
  101. P. Chen, Z. Xiong, J. Luo, J. Lin, and K. L. Tan, Nature, 420: 302 (2002). Crossref
  102. H. Leng, T. Ichikawa, S. Isobe, S. Hino, N. Hanada, and H. Fujii, J. Alloys Compd., 404–406: 443 (2005). Crossref
  103. T. Ichikawa, S. Isobe, N. Hanad, and H. Fujii, J. Alloys Compd., 365, Nos. 1–2: 271 (2004). Crossref
  104. Z. Xiong, J. Hu, G. Wu, P. Chen, W. Luo, K. Gross, and J. Wang, J. Alloys Compd., 398, Nos. 1–2: 235 (2005). Crossref
  105. Z. Xiong, G. Wu, J. Hu, and P. Chen, J. Alloys Compd., 441, Nos. 1–2: 152 (2007). Crossref
  106. W. Luo, J. Alloys Compd., 381, Nos. 1–2: 284 (2004). Crossref
  107. J. Yang, A. Sudik, D. Siegel, D. Halliday, A. Drews, R. O. Carter, C. Wolwerton, G. J. Lewis, J. W. A. Sachtler, J. J. Low, S. A. Faheem, D. A. Lesch, and V. Ozolins, Angew. Chem. Int. Ed., 47, No. 5: 882 (2008). Crossref
  108. A. Goncharov, A. Guglya, and E. Melnikova, Int. J. Hydrogen Energy, 37, No. 23: 18061 (2012). Crossref
  109. A. Goncharov, A. Guglya, A. Kalchenko, E. Solopikhina, V. Vlasov, and E. Lyubchenko, J. Nanotechnology, 2017: 4106067 (2017). Crossref
  110. K. Papathanassopoulos and H. Wenzl, J. Phys. F: Metal Phys., 12, No. 7: 1369 (1982). Crossref
  111. H. Numakura and M. Koiwa, Acta Metall., 32, No. 10: 1799 (1984). Crossref
  112. S. R. Peddada, I. M. Robertson, and H. K. Birnbaum, Mater. Res., 8, No. 2: 291 (1993). Crossref
  113. A. Guglya, E. Lyubchenko, Yu. Marchenko, E. Solopikhina, and V. Vlasov, Int. J. Hydrogen Energy, 41, No. 22: 9410 (2016). Crossref
  114. A. Fujishima, K. Kohayakawa, and K. Honda, J. Electrochem. Soc., 122, No. 11: 1487 (1975). Crossref
  115. E. Nyankson, B. Agyei-Tuffour, J. Asare, E. Annan, E. R. Rwenyagila, D. Konadu, A. Yaya, and D. D. Arhin, J. Engineer. Appl. Sci., 8, No. 10: 871 (2013).
  116. http://statnano.com/news/45676.
  117. https://www.forbes.com/sites/peterdiamandis/2014/09/02/solar-energy-revolution-a-massive-opportunity/#1ba9e79a6c90.
  118. https://www.canadiansolar.com/making-the-difference/surprises-in-solar.html.
  119. E. Serrano, G. Rus, and J. Garcia-Martinez, Renew. Sust. Energy Rev., 13, No. 9: 2373 (2009). Crossref
  120. Renewables 2017 Global Status Report (Paris: REN21: 2017); http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf.
  121. A. Konechenkov, Terminal, No. 26 (820): 12 (2016); http://uwea.com.ua/uploads/publications/TERMINAL_27.06.2016.pdf (in Russian).
  122. V. Sidorovich, Ehlektricheskaya Generatsiya v Germanii: Osnovnye Itogi 2016 [Power Generation in Germany — Assessment of 2016]; http://renen.ru/elektroenergetika-germanii-osnovnye-itogi-2016 (in Russian).