Multiscale Modelling of Self-Organization of Non-Equilibrium Point Defects in Irradiated $\alpha$-Zirconium

V. O. Kharchenko$^{1}$, I. O. Lysenko$^{1}$, O. M. Shchokotova$^{1}$, A. I. Bashtova$^{1}$, D. O. Kharchenko$^{1}$, Yu. M. Ovcharenko$^{1}$, S. V. Kokhan$^{1}$, X. Wu$^{2}$, B. Wen$^{2}$, L. Wu$^{2}$, W. Zhang$^{2}$

$^1$Institute of Applied Physics, NAS of Ukraine, 58 Petropavlivska Str., 40000 Sumy, Ukraine
$^2$The First Institute, Nuclear Power Institute of China, 328, the 1st Section, Changshundadao Road, Shuangliu, Chengdu, China

Received: 10.08.2017. Download: PDF

This work is devoted to a comprehensive detailed study of a pure zirconium with non-equilibrium point defects induced by irradiation within the framework of the multiscale modelling scheme by using quantum-mechanics methods, molecular dynamics, and the Monte-Carlo methods based on the Langevin dynamics. By using $ab$-$initio$ calculations, the structural, electronic, and energy properties of a pure zirconium with isolated vacancies and their clusters are studied. The lattice-parameter change in pure zirconium with different concentrations of isolated vacancy and different configurations of di- and trivacancies is discussed. The vacancy-formation energy in a pure zirconium is obtained. Stability of small vacancy clusters containing divacancy characterized by different distances between two vacancies as well as trivacancies of different configuration is analysed. Distributions of electron density, band structure, and Fermi surface for pure zirconium with isolated vacancy are studied in detail. We calculate the dependence of the Fermi energy of a zirconium crystal, whose unit cell contains a vacancy cluster, on the number of vacancies in the cluster. Cascade formation, development, and annealing in pure zirconium crystals irradiated in different irradiation conditions are studied within the framework of the molecular-dynamics simulations. Statistical and geometric properties of cascades are examined in detail by varying sample temperature, energy of primary knocked atom, and direction of its motion. A possibility of channelling at cascades’ development resulting in formation of crowdions is shown. A change in statistical properties of the crystal during cascade development and relaxation time of cascades is calculated. Dependence of formation energy of point defects and vacancy clusters on temperature is discussed. Spatial self-organization of an ensemble of point defects in $\alpha$-zirconium irradiated by fast neutrons by using reaction rate theory is studied. In our consideration, we take into account elastic properties of the medium due to defects’ presence and sink density dynamics. We consider dynamics of the system with uniform distribution of point defects and spatially extended system at different irradiation regimes (by varying irradiation temperature and dose rate). As found, the point defects’ patterning is accompanied by a formation of vacancy clusters. The distribution of elastic fields with the self-organization of a vacancy ensemble in a pure zirconium subjected to shear and cyclic deformation and the impact of irradiation on the mode of deformation of zirconium are studied.

Keywords: defects, binding energy, electronic properties, irradiation, cascades, clusters, $ab$-$initio$ calculations, molecular dynamics, reaction rate theory.

PACS: 05.65.+b, 07.05.Tp, 61.72.Bb, 61.72.J-, 61.80.Az, 71.15.Nc, 89.75.Fb

DOI: https://doi.org/10.15407/ufm.18.04.295

Citation: V. O. Kharchenko, I. O. Lysenko, O. M. Shchokotova, A. I. Bashtova, D. O. Kharchenko, Yu. M. Ovcharenko, S. V. Kokhan, X. Wu, B. Wen, L. Wu, and W. Zhang, Multiscale Modelling of Self-Organization of Non-Equilibrium Point Defects in Irradiated $\alpha$-Zirconium, Usp. Fiz. Met., 18, No. 4: 295—400 (2017) (in Ukrainian), doi: 10.15407/ufm.18.04.295


References (102)  
  1. G. S. Was, Fundamentals of Radiation Materials Science (Berlin, Heidelberg: Springer-Verlag: 2007). Crossref
  2. D. Walgraef, Spatio-Temporal Pattern Formation (New York–Berlin–Heidelberg: Springer-Verlag: 1996).
  3. A. Jostobns and K. Farrell, Structural Damage and its Annealing Response in Neutron Irradiated Magnesium, Rad. Effects, 15: 217 (1972). Crossref
  4. J. O. Steigler and K. Farrell, Alignment of Dislocation Loops in Irradiated Metals, Scr. Metall., 8: 651 (1974). Crossref
  5. J. H. Evans, Observation of a Regular Void Array in High Purity Molybdenum Irradiated with 2 MeV Nitrogen Ions, Nature, 229: 403 (1971). Crossref
  6. N. M. Ghoniem, D. Walgraef, and S. Zinkle, Theory and Experiment of Nanostructure Self-Organization in Irradiated Materials, J. Comput. Aided Mater. Des., 8: 1 (2001). Crossref
  7. D. J. Mazey and J. E. Evans, Bubble Lattice Formation in Titanium Injected with Krypton Ions, J. Nucl. Mater., 138: 16 (1986). Crossref
  8. W. Jager, P. Ehrhart, and W. Shilling, Dislocation Patterning under Irradiation, Solid State Phenomena, 3–4: 297 (1988). Crossref
  9. W. Jager and H. Trinkaus, Defect Ordering in Metals under Irradiation, J. Nucl. Mater., 205: 394 (1993). Crossref
  10. J. E. Evans and D. J. Mazey, Solid Bubble Formation in Titanium Injected with Krypton Ions, J. Nucl. Mater., 138: 176 (1986). Crossref
  11. B. A. Loomis, S. B. Gerber, and A. Taylor, Void Ordering in Ion-Irradiated Nb and Nb–1% Zr, J. Nucl. Mater., 68: 19 (1977). Crossref
  12. F. Kh. Mirzoev, V. Ya. Panchenko, and L. A. Shelepin, Laser Control Processes in Solids, Physics-Uspekhi, 39: 1 (1996). Crossref
  13. D. Walgraef, J. Lauzeral, and N. M. Ghoniem, Theory and Numerical Simulations of Defect Ordering in Irradiated Materials, Phys. Rev. B, 53: 14782 (1996). Crossref
  14. M. H. Yoo, Growth Kinetics of Dislocation Loops and Voids—the Role of Divacancies, Philosophical Magazine, 40: 193 (1979). Crossref
  15. D. Walgraef and N. M. Ghoniem, Effects of Glissile Interstitial Clusters on Microstructure Self-Organization in Irradiated Materials, Phys. Rev. B, 67: 064103 (2003). Crossref
  16. D. Douglas, Metallurgy of Zirconium (Moscow: Atomizdat: 1976) (Russian translation).
  17. C. Yan, R. Wang, Y. Wang, X. Wang, and G. Bai, Effects of Ion Irradiation on Microstructure and Properties of Zirconium Alloys—A Review, Nucl. Eng. Technol., 47: 323 (2015). Crossref
  18. M. Griffiths, D. Gilbon, C. Regnard, and C. Lemaignan, HVEM Study of the Effects of Alloying Elements and Impurities on Radiation Damage in Zr-Alloys, J. Nucl. Mater., 205: 273 (1993). Crossref
  19. M. Griffiths, R. C. Styles, C. H. Woo, F. Phillipp, and W. Frank, Study of Point Defect Mobilities in Zirconium during Electron Irradiation in a High-Voltage Electron Microscope, J. Nucl. Mater., 208: 324 (1994). Crossref
  20. G. J. C. Carpenter, Void Formation in Zirconium under Irradiation in the High-Voltage Electron Microscope, Rad. Eff., 19: 189 (1973). Crossref
  21. D. Faulkner and C. H. Woo, Void Swelling in Zirconium, J. Nucl. Mater., 90: 3073 (1980). Crossref
  22. D. J. Bacon, A Review of Computer Models of Point Ddefects in HCP Metals, J. Nucl. Mater., 159: 176 (1988). Crossref
  23. C. Varvenne, O. Mackain, and E. Clouet, Vacancy Clustering in Zirconium: An Atomic-Scale Study, Acta Mater., 78: 65 (2014). Crossref
  24. G. Verite, F. Willaime, and C. C. Fu, Anisotropy of the Vacancy Migration in Ti, Zr and Hf Hexagonal Close-Packed Metals from First Principles, Solid State Phenom., 129, 75 (2007). Crossref
  25. V. O. Kharchenko and D. O. Kharchenko, Ab-initio Calculations for the Structural Properties of Zr–Nb Alloys, Cond. Mat. Phys., 16: 13801 (2013). Crossref
  26. V. G. Kapinos, Yu. N. Osetsky, and P. A. Platonov, Simulation of Defect Cascade Collapse in HCP Zirconium, J. Nucl. Mater., 184: 125, (1991). Crossref
  27. S. J. Wooding, L. M. Howe, F. Gao, A. F. Calder, and D. J. Bacon, A Molecular Dynamics Study of High-Energy Displacement Cascades in -Zirconium, J. Nucl. Mater., 254: 191 (1998). Crossref
  28. F. Gao, D. J. Bacon, L. M. Howe, and C. B. So, Temperature-Dependence of Defect Creation and Clustering by Displacement Cascades in -Zirconium, J. Nucl. Mater., 294: 288 (2001). Crossref
  29. R. E. Voskoboinikov, Yu. N. Osetsky, and D. J. Bacon, Identification and Morphology of Point Defect Clusters Created in Displacement Cascades in -Zirconium, Nucl. Instrum. and Meth. B, 242: 530 (2006). Crossref
  30. N. de Diego, Yu. N. Osetsky, and D. J. Bacon, Structure and Properties of Vacancy and Interstitial Clusters in -Zirconium, J. Nucl. Mater., 374: 87 (2008). Crossref
  31. A. V. Barashev, S. I. Golubov, and R. E. Stoller, Corrigendum to ‘Theoretical Investigation of Microstructure Evolution and Deformation of Zirconium under Neutron Irradiation’ [J. Nucl. Mater. 461 (2015) 85–94], J. Nucl. Mater., 461: 85 (2015). Crossref
  32. D. Walgraef and N. M. Ghoniem, Spatial Instabilities and Dislocation-Loop Ordering in Irradiated Materials, Phys. Rev. B, 39: 8867 (1989). Crossref
  33. D. Walgraef and N. M. Ghoniem, Nonlinear Dynamics of Self-Organized Microstructure under Irradiation, Phys. Rev. B, 52: 3951 (1995). Crossref
  34. D. O. Kharchenko and V. O. Kharchenko, Noise-Induced Pattern Formation in System of Point Defects Subjected to Irradiation, Eur. Phys. J. B, 85: 383 (2012). Crossref
  35. D. O. Kharchenko, V. O. Kharchenko, and A. I. Bashtova, Simulation of a Spatial Organization of Point Defects in Irradiated Systems, Ukr. J. Phys., 58: 993 (2013). Crossref
  36. D. O. Kharchenko and V. O. Kharchenko, Properties of Spatial Arrangement of V-Type Defects in Irradiated Materials: 3D-Modelling, Cond. Mat. Phys., 16: 33001 (2013). Crossref
  37. D. O. Kharchenko, V. O. Kharchenko, and A. I. Bashtova, Modeling Self-Organization of Nano-Size Vacancy Clusters in Stochastic Systems Subjected to Irradiation, Rad. Eff. Def. Sol., 169: 418 (2014). Crossref
  38. D. O. Kharchenko and V. O. Kharchenko, Abnormal Grain Growth in Nonequilibrium Systems: Effects of Point Defect Patterning, Phys. Rev. E, 89: 042133 (2014). Crossref
  39. N. M. Ghoniem and G. L. Kulcinski, The Effect of Damage Rate on Void Growth in Metals, J. Nucl. Mater., 82: 392 (1979). Crossref
  40. V. I. Dubinko, A. V. Tur, A. A. Turkin, and V. V. Yanovskij, A Mechanism of Formation and Properties of the Void Lattice in Metals under Irradiation, J. Nucl. Mater., 161: 57 (1989). Crossref
  41. S. Rokkam, A. El-Azab, P. Millett, and D. Wolf, Phase Field Modeling of Void Nucleation and Growth in Irradiated Metals, Modelling Simul. Matter. Sci. Eng., 17: 064002 (2009). Crossref
  42. S. Y. Hu and C. H. Henager, Phase-Field Simulation of Void Migration in a Temperature Gradient, Acta Mater., 58: 3230 (2010). Crossref
  43. A. A. Semenov and C. H. Woo, Phase-Field Modeling of Void Formation and Growth under Irradiation, Acta Mater., 60: 6112 (2012). Crossref
  44. D. O. Kharchenko and V. O. Kharchenko, A study of Void Size Growth in Nonequilibrium Stochastic Systems of Point Defects, Eur. Phys. J. B, 89: 123 (2016). Crossref
  45. F. Leonard and M. Haataja, Alloy Destabilization by Dislocations, Appl. Phys. Lett., 86: 181909 (2005). Crossref
  46. D. O. Kharchenko and V. O. Kharchenko, Modeling Phase Decomposition and Patterning in Binary Alloy Systems Subjected to Neutron Irradiation, Rad. Eff. Def. Sol., 171: 819 (2016). Crossref
  47. D. O. Kharchenko, V. O. Kharchenko, and A. I. Bashtova, Self-Organization of an Ensemble of Vacancies under the Spinodal Decomposition of Binary Systems at Continuous Irradiation, Ukr. J. Phys., 61, No. 3: 265 (2016). Crossref
  48. E. Weinan, Principles of Multiscale Modeling (Cambridge: Cambridge University Press: 2011).
  49. D. O. Kharchenko, I. O. Lysenko, and V. O. Kharchenko, Modelling of Microstructural Transformations in the Systems Subject to Radiation, Usp. Fiz. Met., 13, No. 2: 101 (2012). Crossref
  50. M. I. Mendelev and G. J. Ackland, Development of an Interatomic Potential for the Simulation of Phase Transformations in Zirconium, Phil. Mag. Lett., 87: 349 (2007). Crossref
  51. D. H. Ruiza, L. M. Gribaudo, and A. M. Montic, Materials Research, 8: 431 (2005).
  52. R. A. Enrique and P. Bellon, Compositional Patterning in Systems Driven by Competing Dynamics Of Different Length Scale, Phys. Rev. Lett., 84: 2885 (2000). Crossref
  53. R. A. Enrique and P. Bellon, Compositional Patterning in Immiscible Alloys Driven by Irradiation, Phys. Rev. B, 63: 134111 (2001). Crossref
  54. J.-M. Roussel and P. Bellon, Vacancy-Assisted Phase Separation with Asymmetric Atomic Mobility: Coarsening Rates, Precipitate Composition, and Morphology, Phys. Rev. B, 63: 184114, (2001). Crossref
  55. D. Kharchenko, I. Lysenko, and V. Kharchenko, Noise Induced Patterning in Periodic Systems with Conserved Dynamics, Physica A, 389: 3356 (2010). Crossref
  56. D. Kharchenko, V. Kharchenko, and I. Lysenko, Pattern Selection Processes and Noise Induced Pattern-Forming Transitions in Periodic Systems with Transient Dynamics, Cent. Eur. J. Phys., 9: 698 (2011). Crossref
  57. D. O. Kharchenko, V. O. Kharchenko, S. V. Kokhan, and I. O. Lysenko, Modeling of Microstructural Changes in Irradiated Systems Using the Phase Field Crystal Method, Ukr. J. Phys., 57, No. 10: 1069 (2012).
  58. K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Modeling Elasticity in Crystal Growth, Phys. Rev. Lett., 88: 245701 (2002). Crossref
  59. A. Jaatinen, C. V. Achim, K. R. Elder, and T. Ala-Nissila, Phys. Rev. E, 80: 031602 (2009). Crossref
  60. J. Berry, M. Garnt, and K. R. Elder, Diffusive Atomistic Dynamics of Edge Dislocations in Two Dimensions, Phys. Rev. E, 73: 031609 (2006). Crossref
  61. K. R. Elder, N. Provatas, J. Berry, P. Stefanovich, and M. Grant, Phys. Rev. B, 75: 064107 (2007). Crossref
  62. A. Onuki, Phase Transition Dynamics (Cambridge: Cambridge University Press: 2002).
  63. A. Minami and A. Onuki, Dislocation Formation in Two-Phase Alloys, Phys. Rev. B, 70: 184114 (2004). Crossref
  64. A. Onuki, Plastic Flow in Two-dimensional Solids, Phys. Rev. E, 68: 061502 (2003). Crossref
  65. A. Minami and A. Onuki, Dislocation Formation and Plastic Flow in Binary Alloys in Three Dimensions, Phys. Rev. B, 72: 100101 (2005). Crossref
  66. A. Onuki, A. Furukawa, and A. Minami, Pramana J. Phys., 64: 661 (2005).
  67. D. O. Kharchenko, O. M. Shchokotova, I. O. Lysenko, and V. O. Kharchenko, Modeling Microstructure Evolution of Binary Systems Subjected to Irradiation and Mechanical Loading, Rad. Eff. Def. Sol., 170: 584 (2015). Crossref
  68. D. O. Kharchenko, O. M. Schokotova, A. I. Bashtova, and I. O. Lysenko, A Study of Phase Separation Processes in Presence of Dislocations in Binary Systems Subjected to Irradiation, Cond. Mat. Phys., 18: 23003 (2015). Crossref
  69. M. Haataja, J. Muller, A. D. Rutenberg, and M. Grant, Dislocations and Morphological Instabilities: Continuum Modeling of Misfitting Heteroepitaxial Films, Phys. Rev. B, 65: 165414 (2002). Crossref
  70. M. Haataja and F. Leonard, Influence of Mobile Dislocations on Phase Separation in Binary Alloys, Phys. Rev. B, 69: 081201 (2004). Crossref
  71. M. Haataja, J. Mahon, N. Provatas, and F. Leonard, Scaling of Domain Size during Spinodal Decomposition: Dislocation Discreteness and Mobility Effects, Appl. Phys. Lett., 87: 251901 (2005). Crossref
  72. A. D. Becke, Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98: 5648 (1993). Crossref
  73. K. Burke, J. Werschnik, and E. K. U. Gross, Thime-Dependent Density Functional Theory: Past, Present, and Future, J. Chem. Phys., 123: 062206 (2005). Crossref
  74. D. C. Langreth and M. J. Mehl, Beyond the Local-Density Approximation in Calculations of Ground-State Electronic Properties, Phys. Rev. B, 28: 1809 (1983). Crossref
  75. A. D. Becke, Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior, Phys. Rev. A, 38: 3098 (1988). Crossref
  76. O. K. Andersen, Linear Methods in Band Theory, Phys. Rev. B, 12: 3060 (1975). Crossref
  77. J. Slater and H. C. Verma, The Theory of Complex Spectra, Phys. Rev., 34: 1293 (1929). Crossref
  78. P. W. Atkins, Molecular Quantum Mechanics Parts I and II: An Introduction to Quantum Chemistry (Oxford: Oxford University Press: 1977).
  79. J. C. Slater, A Simplification of the Hartree–Fock Method, Phys. Rev., 81: 385 (1951). Crossref
  80. J. C. Slater, A Generalized Self-Consistent Field Method, Phys. Rev., 91: 528 (1953). Crossref
  81. W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 140: A1133 (1965). Crossref
  82. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 136: B864 (1964). Crossref
  83. O. Gunnarsson and B. I. Lundquist, Exchange and Correlation in Atoms, Molecules, and Solids by the Spin-Density-Functional Formalism, Phys. Rev. B, 13: 4274 (1976). Crossref
  84. R. O. Jones and O. Gunnarsson, The Density Functional Formalism, its Applications and Prospects, Rev. Mod. Phys., 61: 689 (1989). Crossref
  85. S. D. Murray and M. I. Baskes, Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals, Phys. Rev. B, 29: 4436453 (1984). Crossref
  86. C. Kittel, Introduction to Solid State Physics (New York–London–Sydney–Toronto: Wiley: 2004).
  87. K. Krishan, Kinetics of Void-Lattice Formation in Metals, Nature, 287: 420 (1980). Crossref
  88. K. Krishan, Self Organization and Stability of Rate Processes during Irradiation, Solid State Phenom., 3–4: 267 (1988). Crossref
  89. S. M. Murphy, Spatial Instability in Dislocation Structure under Irradiation, Europhys. Lett., 3: 1267 (1987). Crossref
  90. E. A. Koptelov and A. A. Semenov, The Fluctuation Instability of the Homogeneous Void Distribution, J. Nucl. Mater., 160: 253 (1988). Crossref
  91. N. M. Ghoniem and D. Walgraef, Evolution Dynamics of 3D Periodic Microstructures in Irradiated Materials, Modell. Simul. Mater. Sci. Eng., 1: 569 (1993). Crossref
  92. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (New York: Pergamon: 1973).
  93. N. de Diego, N. Mirn, and M. Ruhl, Transmission Electron Microscopy Studies of the Ordering of Nitrogen in Tantalum, Acta Metall., 27: 1445 (1979). Crossref
  94. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, Wien2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology: 2001).
  95. See website http://www.wien2k.at.
  96. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77: 3865 (1996). Crossref
  97. V. O. Kharchenko and S. V. Kokhan, Electronic Properties of the Zirconium Crystal with Vacancies and Dynamics of Vacancies: ab-initio Calculations and Molecular Dynamics, J. Nano- Electron. Phys., 7, No. 2: 02014 (2015)..
  98. See website http://lammps.sandia.gov.
  99. J. D. Honeycutt and H. C. Andersen, Molecular Dynamics Study of Melting and Freezing of Small Lennard–Jones Clusters, J. Phys. Chem., 91: 4950 (1987). Crossref
  100. D. Faken and H. Jonsson, Systematic Analysis of Local Atomic Structure Combined with 3D Computer Graphics, Comput. Mater. Sci., 2: 279 (1994). Crossref
  101. A. Stukowski, Structure Identification Methods for Atomistic Simulations of Crystalline Materials, Modell. Simul. Mater. Sci. Eng., 20: 045021 (2012). Crossref
  102. J. H. Li, X. D. Dai, S. H. Liang, K. P. Tai, Y. Kong, and B. X. Liu, Interatomic Potentials of the Binary Transition Metal Systems and Some Applications in Materials Physics, Physics Reports, 455: 1134 (2008). Crossref