Structure and Properties of the Wear-Resistant Facing Modified by Electron-Beam Processing

V. E. Kormyshev$^{1}$, V. E. Gromov$^{1}$, Yu. F. Ivanov$^{2}$, S. V. Konovalov$^{1,3}$

$^1$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^2$Institute of High Current Electronics SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^3$Academician S. P. Korolev Samara National Research University, 34 Moskovskoe shosse, Samara, Russia

Received: 14.03.2017. Download: PDF

By the methods of modern physical materials science, the structure, phase composition, defect substructure, and tribological properties of the coating formed on low-carbon Hardox 450 steel by electric arc surfacing of powder Fe–C–Nb–Cr–W wire and modified by subsequent irradiation with high-intensity pulsed electron beams are studied. In the initial state, Hardox 450 steel has the structure of packet morphology martensite formed during low-temperature tempering. The surfacing results in the formation of high-strength layer with thickness of above 6 mm and with microhardness of $\approx$ 10.5 GPa that is 1.7 times higher than microhardness of the substrate. Along the surfacing–steel interface, the structure is formed, in which sizes of the grains vary within the range of 30–50 µm. With distance from the in-terface to the steel bulk, the grain size decreases and amounts 5–7 µm for the distance of 1.0–1.2 mm. In the bulk of martensite crystals, the dislocation substructure is observed in a form of multilayer nets with scalar dislocation density of $\approx$ $1\cdot10^{11}$ cm$^{-2}$. Niobium carbide particles, whose sizes vary as 0.2–1.5 µm, constitute the main strengthening phase of the surfaced layer. In the transition-layer structure, the formation of special carbide particles is revealed, namely, chromium carbides (Cr$_{3}$C$_{2}$ and Cr$_{7}$C$_{3}$), carbide of complex composition $М_{23}$С$_{6}$ ((Fe,Cr)$_{23}$C$_{6}$) and, rather rarely, WC tungsten carbide. The particles of special carbides are located in the bulk and at the boundaries of martensite crystals, and they have a round shape; the particle sizes vary within the range of 30–50 nm. The cellular type structure is formed on the surface of the surfaced layer as a result of irradiation by intensive pulsed electron beam. The sizes of cells vary within the range of 20–100 $\mu$m. The extended interlayers separate the cells. The cells have submicro- or nanocrystalline structure, the characteristic sizes of which vary within the range from 100 nm to 1 µm. Electron-beam treatment of the surfaced layer results in decrease in grain sizes to 1.5–2.0 $\mu$m. The strengthening phases of the surfacing layer are $\alpha$-phase (martensite), niobium carbides, iron of the Fe$_{3}$C and $M_{6}$C(Fe$_{3}$W$_{3}$C). It is established that wear resistance of the surfaced layer is increased by more than 70 times after the electron-beam treatment as compared with that for the initial steel, while the friction coefficient is decreased by $\approx$ 3 times.

Keywords: structure, phase composition, surfacing, wear resistance, electron beam treatment, microhardness.

PACS: 06.60.Vz, 62.20.Qp, 68.37.Lp, 81.40.Pq, 81.40.Wx, 81.65.Lp, 83.50.Uv

DOI: https://doi.org/10.15407/ufm.18.02.111

Citation: V. E. Kormyshev, V. E. Gromov, Yu. F. Ivanov, and S. V. Konovalov, Structure and Properties of the Wear-Resistant Facing Modified by Electron-Beam Processing, Usp. Fiz. Met., 18, No. 2: 111—139 (2017) (in Russian), doi: 10.15407/ufm.18.02.111


References (49)  
  1. B. E. Paton, Avtomaticheskaya Svarka, No. 10: 7 (2003) (in Russian).
  2. G. A. Vorobyeva, E. E. Skladnova, A. F. Leonov, and V. K. Erofeev Instrumentalnye Materialy [Instrumental Materials] (St. Petersburg: Politekhnika: 2005) (in Russian).
  3. N. V. Molodykh and A. S. Zenkin, Vosstanovlenie Detaley Mashin [Restoration of Machine Components] (Moscow: Mashinostroenie: 1989) (in Russian).
  4. N. A. Sosnin, S. A. Ermakov, and P. A. Topolyanskiy, Plazmennyye Tekhnologii. Rukovodstvo dlya Inzhenerov [Plasma Technologies. Manual for Engineers] (St. Petersburg: Polytechnic University: 2013 (in Russian).
  5. E. V. Kapralov, S. V. Raikov, E. A. Budovskikh, V. E. Gromov, and V. B. Kosterev, Stal, No. 7: 86 (2014) (in Russian).
  6. V. E. Gromov. E. V. Kapralov. S. V. Raikov. Yu. F. Ivanov, and E. A. Budovskikh, Uspehi Fiziki Metallov, 15, No. 4: 213 (2014) (in Russian). Crossref
  7. V. E. Gromov, K. V. Volkov, Yu. F. Ivanov, K. V. Morozov, K. V. Alsarayeva, and S. V. Konovalov, Uspehi Fiziki Metallov, 15, No. 1: 1 (2014) (in Russian). Crossref
  8. D. A. Romanov, V. E. Gromov, E. A. Budovskikh, and Yu. F. Ivanov, Uspehi Fiziki Metallov, 16, No. 2: 119 (2015) (in Russian). Crossref
  9. V. E. Gromov, K. V. Sosnin, Yu. F. Ivanov, and O. A. Semina, Uspehi Fiziki Metallov, 16, No. 3: 175 (2015) (in Russian). Crossref
  10. V. E. Gromov, K. V. Aksyonova, S. V. Konovalov, and Yu. F. Ivanov, Uspehi Fiziki Metallov, 16, No. 4: 265 (2015) (in Russian). Crossref
  11. V. E. Gromov, E. N. Nikitina, Yu. F. Ivanov, K. V. Aksyonova, and E. V. Kornet, Uspehi Fiziki Metallov, 16, No. 4: 299 (2015) (in Russian). Crossref
  12. V. E. Gromov, Yu. F. Ivanov, E. G. Belov, V. B. Kosterev, and D. A. Kosinov, Uspehi Fiziki Metallov, 17, No. 4: 303 (2016) (in Russian). Crossref
  13. S. V. Raikov, E. V. Kapralov, Y. F. Ivanov, E. A. Budovskikh, and V. E. Gromov, Izvestiya VUZov. Chernaya Metallurgiya, 58, No. 2: 121 (2015) (in Russian). Crossref
  14. S. V. Raikov, E. V. Kapralov, Yu. F. Ivanov, E. A. Budovskikh, and V. E. Gromov, Steel in Translation., 45, No. 2: 120 (2015). Crossref
  15. E. V. Kapralov, E. A. Budovskikh, V. E. Gromov, S. V. Raykov, A. M. Glezer, and Yu. F. Ivanov, Problemy Chernoy Metallurgii i Materialovedeniya, No. 1: 80 (2015) (in Russian).
  16. E. V. Kapralov, E. A. Budovskikh, V. E. Gromov, S. V. Raykov, and Yu. F. Ivanov, Nanoinzheneriya, No. 4 (46): 14 (2015) (in Russian).
  17. S. V. Raikov, E. V. Kapralov, E. S. Vashchuk, E. A. Budovskikh, V. E. Gromov, Yu. F. Ivanov, and K. V. Sosnin, Uprochnyayushchiye Tekhnologii i Pokrytiya, No. 2 (122): 40 (2015) (in Russian).
  18. E. V. Kapralov, E. A. Budovskikh, V. E. Gromov, and Yu. F. Ivanov, Russian Physics Journal, 58, No. 4: 471 (2015). Crossref
  19. Yu. F. Ivanov, V. E. Gromov, S. V. Konovalov, and K. V. Aksenova, Ustalost Silumina, Modifitsirovannogo Ehlektronno-Puchkovoy Obrabotkoy [Fatigue of Silumin Modified by Electron-Beam Treatment] (Novokuznetsk: Izd-vo ‘Poligrafist’: 2016) (in Russian).
  20. Modifitsirovanie Struktury i Svoystv Lyogkikh Splavov Uprochnyayushchimi Tekhnologiyami [Modifying Structure and Properties of Light Alloys via Strengthening Technologies] (Eds. V. E. Gromov and Yu. F. Ivanov) (Novokuznetsk: Izd-vo ‘Poligrafist’: 2015) (in Russian).
  21. K. V. Volkov, V. E. Gromov, Yu. F. Ivanov, and V. A. Grishunin, Povysheniye Ustalostnoy Vynoslivosti Relsovoy Stali Ehlektronno-Puchkovoy Obrabotkoy [Increase in a Fatigue Strength of Rail Steel by Electron-Beam Treatment] (Novokuznetsk: Izd-vo ‘Inter-Kuzbass’: 2013) (in Russian).
  22. V. A. Grishunin, V. E. Gromov, Yu. F. Ivanov, and Yu. A. Denisova, Ehlektronno-Puchkovaya Modifikatsiya Struktury i Svoystv Stali [Electron-Beam Modification of Structure and Properties of Steel] (Novokuznetsk: ‘Poligrafist’: 2012) (in Russian).
  23. Yu. F. Ivanov and N. N. Koval, Struktura i Svoystva Perspektivnykh Metallicheskikh Materialov [Structure and Properties of the Prospective Metallic Materials] (Ed. A. I. Potekayev) (Tomsk: Izd-vo NTL: 2007), Ch. 13, p. 345 (in Russian).
  24. S. V. Grigoriev, N. N. Koval, V. N. Devjatkov, and A. D. Teresov, Proc. 9th Int. Conf. on Modification of Materials with Particle Beams and Plasma Flows (Tomsk: 2008), p.19.
  25. D. I. Proskurovsky, V. P. Rotshtein, and G. E. Ozur, Proc. 11th Int. Conf. on High Power Particle Beams—BEAMS-96 (Prague: 1996), vol. 1, p. 259.
  26. Yu. F. Ivanov, D. A. Bessonov, S. V. Vorobyev, V. E. Gromov, S. V. Konovalov, and N. N. Koval, Ustalostnaya Dolgovechnost Stali Martensitnogo Klassa, Modifitsirovannoy Vysokointensivnymi Ehlektronnymi Puchkami [Fatigue Life of Martensitic Class Steel Modified by High-Intensive Electron Beams] (Novokuznetsk: Izd-vo ‘Inter-Kuzbass’: 2011) (in Russian).
  27. Yu. F. Ivanov, S. V. Vorobyev, S. V. Konovalov, V. E. Gromov, and N. N. Koval, Fizicheskiye Osnovy Povysheniya Ustalostnoy Dolgovechnosti Nerzhaveyushchikh Staley [Basic Physics of Increase in Fatigue Life of Stainless Steels] (Novokuznetsk: Izd-vo ‘Inter-Kuzbass’: 2011).
  28. V. A. Grishunin, V. E. Gromov, Yu. F. Ivanov, and Yu. A. Denisova, Elektronno-Puchkovaya Modifikatsiya Struktury i Svoistv Stali [Electron-Beam Modification of Structure and Properties of Steel] (Novokuznetsk: Izd-vo ‘Poligrafist’: 2012) (in Russian).
  29. Sovremennyye Tendentsii Modifitsirovaniya Struktury i Svoistv Mmaterialov [State-of-the-Art Tendencies for Material Structure and Properties Modification] (Eds. N. N. Koval and V. E. Gromov) (Tomsk: Izd-vo NTL: 2015).
  30. N. N, Koval and Yu. F. Ivanov, Izvestiya VUZov. Fizika, No. 5: 60 (2008) (in Russian).
  31. Evolyutsiya Struktury Poverkhnostnogo Sloya Stali, Podvergnutoy Ehlektronno-Ionno-Plazmennym Metodam Obrabotki [Evolution of Structure of Steel Surface Layer Underwent Electron-Beam-Plasma Treatment Methods] (Ed. N. N. Koval and Yu. F. Ivanov) (Tomsk: Izd-vo NTL: 2016) (in Russian).
  32. L. M. Utevskiy, Difraktsionnaya Ehlektronnaya Mikroskopiya v Metallovedenii [Diffraction Electron Microscopy in Metal Science] (Moscow: Metallurgiya: 1973) (in Russian).
  33. K. W. Andrews, D. J. Dyson, and S. R. Keown, Ehlektronnogrammy i Ikh Interpretatsiya [Interpretation of Electron Diffraction Patterns] (Moscow: Mir: 1971) (English translation).
  34. Prakticheskiye Metody v Elektronnoy Mikroskopii [Practical Methods in Electron Microscopy] (Ed. Audrey M. Glauert) (Leningrad: Mashinostroyeniye: Leningradskoe otdeleniye: 1980) (English translation).
  35. A. V. Smirnova, G. A. Kokorin, and S. M. Polonskaya, Elektronnaya Mikroskopiya v Metallovedenii. Spravochnik [Electron Microscopy in Metal Science. Handbook] (Moscow: Metallurgiya: 1985) (in Russian).
  36. D. Brandon and W. D. Kaplan, Microstructural Characterization of Materials (John Wiley & Sons, Ltd: 2008). Crossref
  37. M. M. Krishtal, I. S. Yasnikov, and V. I. Polunin, Skaniruyushchaya Ehlektronnaya Mikroskopiya i Rentgenospektralnyy Mikroanaliz v Primerakh Prakticheskogo Primeneniya [Scanning Electron Microscopy and X-Ray Spectroscopic Microanalysis as Examples for Practical Application] (Moscow: Tekhnosfera: 2009) (in Russian).
  38. Transmission Electron Microscopy Characterization of Nanomaterials (Ed. Challa S.S.R. Kumar) (New York: Springer: 2014). Crossref
  39. V. V. Rybin, V. A. Malyshevskiy, and V. N. Oleynik, Fiz. Met. Metalloved., 42, No. 5: 1042 (1976) (in Russian).
  40. G. V. Kurdyumov, L. M. Utevskiy, and R. I. Entin, Prevrashcheniya v Zheleze i Stali [Transformations in Iron and Steel] (Moscow: Nauka: 1977) (in Russian).
  41. Yu. N. Petrov, Defekty i Bezdiffuzionnoe Prevrashcheniye v Stali [Defects and Diffusionless Transformation in Steel] (Kiev: Naukova Dumka: 1978) (in Russian).
  42. Yu. F. Ivanov, V. E. Gromov, and E. N. Nikitina, Beynitnaya Konstruktsionnaya Stal’: Struktura i Mekhanizmy Uprochneniya [Bainite Constructional Steel: Structure and Hardening Mechanisms] (Novokuznetsk: Izd-vo SibGIU: 2015) (in Russian).
  43. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskiy et al., Physical Magnitudes: Handbook (Moscow: Energoatomizdat: 1991) (in Russian).
  44. O. A. Bannykh, P. B. Budberg, S. P. Alisova et al., Diagrammy Sostoyaniya Dvoynykh i Mnogokomponentnykh Sistem na Osnove Zheleza [Diagrams of State of the Iron-Based Binary and Multicomponents Systems] (Moscow: Metallurgiya: 1986) (in Russian).
  45. Diagrammy Sostoyaniya Dvoynykh Metallicheskikh Sistem [Diagrams of State for Binary Metallic Systems] (Ed. N. P. Lyakishev) (Moscow: Mashinostroyeniye: 1996–2000) (in Russian).
  46. Ustalost’ Staley, modifitsirovannykh Vysokointensivnymi Ehlektronnymi Puchkami [Fatigue of Steels Modified by High-Intensive Electron Beams] (Eds. V. E. Gromov and Yu. F. Ivanov) (Novokuznetsk: Izd-vo ‘Inter-Kuzbass’: 2012) (in Russian).
  47. O. A. Likhachev and Yu. M. Koval, Uspehi Fiziki Metallov, 16, No. 1: 1 (2015). Crossref
  48. O. A. Likhachev and Yu. M. Koval, Uspehi Fiziki Metallov, 16, No. 1: 23 (2015). Crossref
  49. V. A. Lobodyuk, Uspehi Fiziki Metallov, 17, No. 2: 89 (2016). Crossref
Cited By (1)
  1. V. E. Gromov, A. A. Yur’ev, Yu. F. Ivanov, S. V. Konovalov et al., Metallofiz. Noveishie Tekhnol. 39, 1599 (2018).