Formation of Structural-Phase States, Defect Substructure and Properties of a Surface of Thermomechanically Hardened Low-Carbon Steel

V. E. Gromov$^{1}$, Yu. F. Ivanov$^{2,3}$, E. G. Belov$^{4}$, V. B. Kosterev$^{4}$, D. A. Kosinov$^{1}$

$^1$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^2$Institute of High Current Electronics SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^3$National Research Tomsk Polytechnic University, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^4$OJSC ‘EVRAZ — West-Siberian Metal Plant’, 16 Kosmicheskoye Sh., 654043 Novokuznetsk, Russia

Received: 05.05.2016. Download: PDF

Detection of physical mechanisms of formation and evolution of structural and phase states and dislocation substructures in steels is one of the important problem of condensed-matter physics and contemporary material science because it forms the basis of development and formation of effective methods for increasing the service characteristics of products. Experimental investigations of structural and phase states being formed in a cross-section of products as a result of thermomechanical treatment are very significant for understanding the physical nature of transformations since they make it possible to change structure and mechanical characteristics purposefully. Thermomechanical hardening of low-carbon steel 09Г2C (0.09 wt.% of C, 2 wt.% of Mn, 1 wt.% of Si;) was made by rolling of H-beam ДП 155 and forced water cooling on rolling mill 450 of open joint-stock company ‘EVRAZ Consolidated West-Siberian Metallurgical Plant’. By methods of transmission diffraction electron microscopy, we investigated structural-phase states and defect substructure of H-beam (made of 09Г2С steel) formed during thermomechanical hardening on rolling mill. It is established that defect substructure state of steel $\alpha$-phase is determined by (a) the mechanisms of $\gamma \rightarrow \alpha$ transformation, (b) the regime of high temperature rolling and accelerated cooling, (c) the distance to the surface of the accelerated cooling. The correspondence of dislocation substructure and morphology of $\alpha$-phase (mechanism of $\gamma \rightarrow \alpha$ transformation) is established. In the martensite and bainite crystals, a net-like dislocation structure with a very high dislocation density that varies within the range of 5.8⋅10$^{10}$–10.0⋅10$^{10}$ cm$^{−2}$ is a dominant one. In the ferrite and pearlite grains, a structure of dislocation chaos and net-like dislocation substructure with a relatively low values of scalar density of dislocations varying within the range 2.6·10$^{10}$–3.5·10$^{10}$ cm$^{−2}$ are determined. We analyzed the processes and mechanisms contributing to the formation of nanodimensional phase at the thermomechanical treatment of low-alloy steel. It was shown as follows: (i) in dispersion of cementite plates of pearlite colonies by cutting them with moving dislocations, the particles of 5–30 nm size were formed; (ii) the oval-shape particles of 5–15 nm size were formed during the dissolution of cementite plates of pearlite colonies and repeated precipitation on dislocations, boundaries of subgrains and grains; (iii) during the decomposition of solid solution of carbon in the $\alpha$-iron occurring in the conditions of ‘self-tempering’ of martensite, the sizes of particles precipitated in the volume of martensite crystals on dislocations are 5–10 nm, and at the boundaries of martensite crystals—10–30 nm; (iv) during the diffusion $\gamma \rightarrow \alpha$ transformation at the high degree of deformation and temperatures of treatment, a dispersion of lamellar pearlite structure is observed: thickness of $\alpha$-phase plates separated by the carbide plates is ≈ 70 nm, while thickness of carbide phase plates is ≈ 25 nm. Using the quantitative parameters of steel structure revealed by the methods of metallography and electron diffraction microscopy, and estimate relations of physical material science, we analyzed physical mechanisms responsible for enhancement the microhardness of surface layer at the thermomechanical hardening. The quantitative parameters characterizing structural and phase state and allowing the possibilities to estimate the value of theoretical yield point for steel were determined. The quantitative correspondence of change of experimentally measured microhardness and theoretically determined yield point along the cross-section of H-beam flange was obtained. It is established that the phenomenon of increase in hardness of steel surface layer is a multi-factor, morphologically multi-component one, and is determined by the nature of $\gamma \rightarrow \alpha$ transformation. The main mechanisms responsible for high level of steel surface layer hardness are substructural and deformational ones caused by the formation of martensite and bainite crystals.

Keywords: thermomechanical hardening, H-beam, structure, dislocation substructure, tribological properties, mechanisms of strengthening.

PACS: 61.72.Lk, 81.65.Lp, 81.40.Cd, 81.40.Ef, 81.70.Bt, 83.50.Uv

DOI: https://doi.org/10.15407/ufm.17.04.303

Citation: V. E. Gromov, Yu. F. Ivanov, E. G. Belov, V. B. Kosterev, and D. A. Kosinov, Formation of Structural-Phase States, Defect Substructure and Properties of a Surface of Thermomechanically Hardened Low-Carbon Steel, Usp. Fiz. Met., 17, No. 4: 303—341 (2016) (in Russian), doi: 10.15407/ufm.17.04.303


References (71)  
  1. L. M. Kaputkina, M. L. Bershtein, and V. A. Zaimovskiy, Termomekhanicheskaya Obrabotka Stali [Thermomechanical Treatment of Steel] (Moscow: Metallurgiya: 1983) (in Russian).
  2. L. I. Tushinskiy, Teoriya i Tekhnologiya Uprochneniya Metallicheskikh Splavov [Theory and Technology of Hardening of Metal Alloys] (Novosibirsk: Nauka: 1990) (in Russian).
  3. P. D. Odesskiy and I. I. Vedyakov, Malouglerodistye Stali dlya Metallicheskikh Konstruktsiy [Mild Steel for Metal Structures] (Moscow: Intermet Inzhiniring: 1999) (in Russian).
  4. O. G. Sokolov and V. P. Leonov, Metall, No. 5: 115 (2001) (in Russian).
  5. M. L. Bernshtein, Struktura Deformirovannykh Metallov [The Structure of Deformed Metals] (Moscow: Metallurgiya: 1977) (in Russian).
  6. P. D. Odesskiy and D. P. Khromov, MiTOM, No. 3: 13 (1992) (in Russian).
  7. Yu. D. Morozov, A. M. Stepashin, and S. V. Aleksandrov, Metallurg, No. 5: 43 (2002) (in Russian).
  8. N. P. Lyakishev, S. I. Tishaev, P. D. Odesskiy, and A. V. Rudchenko, Izves-tiya RAN. Metally, No. 2: 96 (1993) (in Russian).
  9. L. I. Efron, D. A. Litvinenko, and A. A. Efimov, Izvestiya RAN. Metally, No. 6: 99 (1993) (in Russian).
  10. B. B. Bykhin, A. T. Kanaev, A. F. Kapushchak, and A. A. Kanaev, Stal', No. 12: 46 (1998) (in Russian).
  11. A. B. Yuryev, Uprochnenie Stroitel'noi Armatury i Prokatnykh Valkov [Strengthening of Building Bar and Forming Rolls] (Novosibirsk: Nauka: 2006) (in Russian).
  12. V. E. Gromov, O. Yu. Efimov, V. B. Kosterev, A. B. Yuryev, and V. Ya. Chinokalov, Strukturno-Fazovye Sostoyaniya i Svoistva Uprochnen-nykh Stal'nogo Prokata i Chugunnykh Valkov [Structure-Phase States and Properties of Strengthened Rolled Steel and Cast Iron Rolls] (Novokuznetsk: Inter-Kuzbass: 2011) (in Russian).
  13. O. Yu. Efimov, O. V. Dikan', M. V. Zezikov, E. G. Belov, E. A. Ivanov, A. V. Smarygin, I. M. Chernov, and V. Ya. Chinokalov, Ustroistvo dlya Uskorennogo Okhlazhdeniya i Gidrotransportirovaniya Shakhtnoy Stoiki [A Device for Rapid Cooling and Rack Shaft Hydrotransportation] ('EVRAZ Consolidated West-Siberian Metallurgical Plant'): Patent 81911 RF, MPK V21V 45/02, No. 2008135416, Appl. 01.09.2008, Publ. 10.04.2009, Bulletin No. 10.
  14. A. B. Yuryev, O. Yu. Efimov, O. V. Dikan', M. V. Zezikov, E. G. Belov, E. A. Ivanov, A. V. Smarygin, I. M. Chernov, A. A. Nechunaev, and V. Ya. Chinokalov, Ustroistvo dlya Uskorennogo Okhlazhdeniya i Gidro-transportirovaniya Dvutavra [A device for Rapid Cooling and an H-Beam Hydrotransportation]: ('EVRAZ Consolidated West-Siberian Metallurgical Plant'): Patent 97284 RF, MPK V21V 45/02, No. 2010111067/22, Appl. 23.03.2010, Publ. 10.09.2010, Bulletin No. 25.
  15. A. B. Yuryev, V. D. Sarychev, V. Ya. Chinokalov, M. V. Zezikov, and V. E. Gromov, Izvestiya VUZov. Chernaya Metallurgiya, No. 2: 38 (2002) (in Russian).
  16. Eh. V. Kozlov, A. V. Plevkov, and A. B. Yuryev, Izvestiya VUZov. Fizika, No. 3: 49 (2002) (in Russian).
  17. A. B. Yuryev, V. E. Gromov, V. Ya. Chinokalov, V. Ya. Tsellermaer, and Eh. V. Kozlov, Materialovedenie, No. 10: 26 (2003) (in Russian).
  18. Yu. F. Ivanov, A. B. Yuryev, and A. B. Plevkov, Izvestiya VUZov. Chernaya Metallurgiya, No. 10: 57 (2003) (in Russian).
  19. A. B. Yuryev, Yu. F. Ivanov, M. M. Morozov, V. E. Gromov, and Eh. V. Kozlov, Deformatsiya i Razrushenie Materialov [Deformation and Destruction of Materials], No. 3: 43 (2005) (in Russian).
  20. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Strukturnye Urovni Deformatsii Tverdykh Tel [Structural Levels of Deformation of Solids] (Novosibirsk: Nauka: 1985) (in Russian).
  21. V. E. Gromov, Eh. V. Kozlov, and V. A. Berdyshev, Gradientnye Strukturno-Fazovye Sostoyaniya v Rel'sovoi Stali [Gradient Structural-Phase State in the Rail Steel] (Moscow: Nedra: 2000) (in Russian).
  22. O. Yu. Efimov, A. B. Yuryev, and V. E. Gromov, Izvestiya VUZov. Chernaya Metallurgiya, No. 12: 57 (2007) (in Russian).
  23. E. G. Belov, V. Ya. Chinokalov, L. M. Poltoratskiy, O. Yu. Efimov, and V. E. Gromov, Problemy Chernoi Metallurgii i Materialovedeniya, No. 3: 62 (2009) (in Russian).
  24. E. G. Belov, O. Yu. Efimov, L. M. Poltoratskiy, V. Ya. Chinokalov, and V. E. Gromov, Izvestiya VUZov. Chernaya Metallurgiya, No. 12: 18 (2009) (in Russian).
  25. E. G. Belov, L. M. Poltoratskiy, O. Yu. Efimov, S. V. Konovalov, and V. E. Gromov, Izvestiya VUZov. Chernaya Metallurgiya, No. 2: 33 (2010) (in Russian).
  26. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Elektronnaya Mikroskopiya Tonkih Kristallov [Electron Microscopy of Thin Crystals] (Moscow: Mir: 1968) (Russian translation).
  27. D. Brandon and W. D. Kaplan, Microstructural Characterization of Materials. 2nd edition (Chichester, England: John Wiley & Sons Ltd.: 2008). Crossref
  28. L. M. Utevskiy, Difraktsionnaya Elektronnaya Mikroskopiya v Metallove-denii [Diffraction Electron Microscopy in Metallurgical Science] (Moscow: Metallurgiya: 1973) (in Russian).
  29. G. Tomas and M. J. Goringe, Transmission Electron Microscopy of Metals (New York: Wiley: 1979).
  30. Yu. N. Petrov, Defekty i Bezdiffuzionnoe Prevrashchenie v Stali [Defects and Diffusionless Transformation in Steel] (Kiev: Naukova Dumka: 1978) (in Russian).
  31. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Struktura Ter-micheski Obrabotannoi Stali [The Structure of the Heat-Treated Steel] (Mos-cow: Metallurgiya: 1994) (in Russian).
  32. A. Yu. Kaletin, V. M. Schastlivtsev, N. T. Kareva, and M. A. Smirnov, Fiz. Met. Metalloved., 56, No. 2: 366 (1983) (in Russian).
  33. N. A. Koneva and Eh. V. Kozlov, Izvestiya VUZov. Fizika, No. 8: 3 (1982) (in Russian).
  34. Yu. F. Ivanov, Sbornik Trudov 'Evolyutsiya Dislokatsionnoi Struktury, Uprochnenie i Razrushenie Splavov' [Collected Papers 'Evolution of Dislocation Structure, Hardening Alloys and Destruction'] (Tomsk: TGU: 1992), p. 52 (in Russian).
  35. N. A. Koneva and Eh. V. Kozlov, Vestnik TGASU, No. 1: 21 (1999) (in Russian).
  36. V. E. Gromov, Eh. V. Kozlov, V. I. Bazajkin, V. Ya. Cellermaer, and Yu. F. Ivanov, Fizika i Mehanika Volocheniya i Obyemnoi Shtampovki [Physics and Mechanics of Drawing and Forging] (Moscow: Nedra: 1997) (in Russian).
  37. L. I. Tushinskiy, A. A. Bataev, and L. B. Tikhomirova, Struktura Perlita i Konstruktivnaya Prochnost' Stali [Pearlite Structure and Structural Hardness of Steel] (Novosibirsk: VO Nauka: 1993) (in Russian).
  38. Yu. F. Ivanov and Eh. V. Kozlov, Izvestiya VUZov. Chernaya Metallurgiya, No. 12: 38 (1990) (in Russian).
  39. Yu. F. Ivanov and Eh. V. Kozlov, Izvestiya VUZov. Fizika, No. 2: 39 (1993) (in Russian).
  40. Yu. F. Ivanov, Izvestiya VUZov. Fizika, No. 5: 74 (1993) (in Russian).
  41. Yu. F. Ivanov and Eh. V. Kozlov, Izvestiya VUZov. Chernaya Metallurgiya, No. 12: 26 (1994) (in Russian).
  42. Yu. F. Ivanov, V. E. Gromov, V. V. Tsellermaer, N. A. Popova, and Eh. V. Kozlov, Izvestiya VUZov. Chernaya Metallurgiya, No. 6: 31 (2001) (in Russian).
  43. Yu. F. Ivanov, A. B. Yuryev, V. V. Kovalenko, A. V. Plevkov, V. E. Gromov, and Eh. V. Kozlov, Izvestiya Akademii Nauk. Seriya Fizicheskaya, 67, No. 10: 1402 (2003) (in Russian).
  44. A. B. Yuryev, Yu. F. Ivanov, V. E. Gromov, and Eh. V. Kozlov, Izvestiya VUZov. Chernaya Metallurgiya, No. 6: 34 (2004) (in Russian).
  45. V. V. Kovalenko, Yu. F. Ivanov, A. B. Yuryev, Eh. V. Kozlov, and V. E. Gromov, Materialovedenie, No. 6 (99): 49 (2005) (in Russian).
  46. A. B. Yuryev, Yu. F. Ivanov, M. M. Morozov, and V. E. Gromov, Izvestiya VUZov. Chernaya Metallurgiya, No. 6: 39 (2005) (in Russian).
  47. Yu. F. Ivanov, I. B. Tsellermaer, V. P. Rotshtein, and V. E. Gromov, Fizicheskaya Mezomekhanika, 9, No. 5: 107 (2006) (in Russian).
  48. O. Yu. Efimov, A. B. Yuryev, Yu. F. Ivanov, and V. E. Gromov, Izvestiya VUZov. Chernaya Metallurgiya, No. 2: 54 (2007) (in Russian).
  49. Yu. F. Ivanov, V. E. Gromov, S. V. Konovalov, Arabian Journal for Science and Engineering, 34, No. 2A: 219 (2009).
  50. V. E. Gromov, Yu. F. Ivanov, S. V. Konovalov, A. B. Yuryev, O. Yu. Efimov, E. G. Belov, V. B. Kosterev, V. Ya. Chinokalov, Prochnost' i Plastichnost' Materialov pri Vneshnem Energeticheskom Vozdeistvii [Strength and Plasticity of Materials at an External Energy Exposure] (Novokuznetsk: Izd-vo 'Inter-Kuzbass': 2010), p. 152 (in Russian).
  51. M. V. Belous, V. T. Cherepin, and M. A. Vasil'ev, Prevrashcheniya pri Ot-puske Stali [Transformations at Tempering Steel] (Moscow: Metallurgiya: 1973) (in Russian).
  52. G. Speich and R. R. Swann, J. Iron and Steel Inst., 203, No. 4: 480 (1965).
  53. V. I. Izotov and A. G. Kozlova, Fizika i Mekhanika Materialov, 80, No. 1: 97 (1995) (in Russian).
  54. V. I. Izotov and G. A. Filippov, Fizika i Mekhanika Materialov, 87, No. 4: 72 (1999) (in Russian).
  55. G. R. Speich, Trans. Met. Soc. AIME, 245, No. 10: 2553 (1969).
  56. D. Kalich and E. M. Roberts, Met. Trans., 2, No. 10: 2783 (1971). Crossref
  57. E. J. Fasiska and H. Wagenblat, Trans. Met. Soc. AIME, 239, No. 11: 1818 (1967).
  58. N. Ridley, H. Stuart, and L. Zwell, Trans. Met. Soc. AIME, 246, No. 8: 1834 (1969).
  59. S. I. Veselov and E. Z. Spektor, Fizika i Mekhanika Materialov, 34, No. 5: 895 (1972) (in Russian).
  60. M. V. Belous, Metallofizika. Resp. Mezhved. Sbornik, No. 32: 79 (1970) (in Russian).
  61. M. V. Belous, Zakonomernosti Formirovaniya Karbidnykh i Nitridnykh Faz pri Otpuske Splavov Zheleza [Laws of Formation of Carbide and Nitride Phases on Tempering Iron Alloys] (Thesis of Disser. for Dr. Tech. Sci.) (Kiev: 1972) (in Russian).
  62. V. N. Gridnev, V. G. Gavrilyuk, V. M. Nadutov, and Yu. A. Polushkin, Fizika i Mekhanika Materialov, 50, No. 3: 582 (1980) (in Russian).
  63. Yu. F. Ivanov, E. V. Kornet, Eh. V. Kozlov, and V. E. Gromov, Zakalennaya Konstruktsionnaya Stal': Struktura i Mekhanizmy Uprochneniya [Hardened Constructional Steel: The Structure and Hardening Mechanisms] (Novokuznetsk: Izd-vo SibGIU: 2010) (in Russian).
  64. V. I. Trefilov, S. A. Firstov, and Yu. V. Mil'man, Fizicheskie Osnovy Prochnosti Tugoplavkikh Metallov [Physical Basis of the Strength of Refrac-tory Metals] (Kiev: Naukova Dumka: 1975) (in Russian).
  65. P. B. Hirsch and F. J. Humphreys, Fizika Prochnosti i Plastichnosti [Physics of Strength and Plasticity] (Moscow: Metallurgiya: 1972), p. 158 (Russian translation).
  66. A. J. E. Foreman and M. I. Maki, Phil. Mag., 14, No. 9: 911 (1966). Crossref
  67. P. Haazen, Fizicheskoe Metallovedenie [Physical Metallurgy] (Moscow: Mir: 1968), p. 248 (Russian translation).
  68. R. Fleischer and W. Hibbard, The Relation Between Structure and Mechanical Properties of Metals, (H.M.S.O.: London: 1963), vol. 1., p. 262.
  69. M. I. Gol'dshtein and B. M. Farber, Dispersionnoe Uprochnenie Stali [Pre-cipitation-Hardening Steels] (Moscow: Metallurgiya: 1979) (in Russian).
  70. Eh. V. Kozlov, N. A. Popova, Yu. F. Ivanov, and L. A. Teplyakova, Izves-tiya VUZov. Fizika, No. 10: 13 (1992) (in Russian).
  71. L. A. Norstrom, Scandinavian J. Met., 5, No. 4: 159 (1976).
Cited By (3)
  1. V. E. Gromov, A. A. Yur’ev, Yu. F. Ivanov, S. V. Konovalov et al., Metallofiz. Noveishie Tekhnol. 39, 1599 (2018).
  2. V. E. Kormyshev, V. E. Gromov, Yu. F. Ivanov and S. V. Konovalov, Usp. Fiz. Met. 18, 111 (2017).
  3. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 18, 155 (2017).