Basic Physics of Long-Term Strength of Solid Solutions with Various Kinetics of Mobile Defects

V. G. Tkachenko

I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine

Received: 02.03.2016. Download: PDF

A new dynamical model of time-dependent dislocation microyielding has been proposed using the propounded structure-energy-concept of long-continued strength in terms of dragging mechanisms responsible for microyield resistance increase in solid solutions below macroscopic yield stress. A physical theory of long-term, non-destructive strength is being developed taking as a basis the derived relations for strain rates in metal alloy systems with mobile modes of dislocation pinning. The new approach, thermoactivated analysis and energy (dislocation, quantitative) criterion of time-dependent strength account for influence of the short-range dislocation-solute interaction in real scale of time and predicts a transition from homogeneous to localized shear deformation contributing to a probable fracture. In accordance with the revised equations of the dislocation stress relaxation and derived energy relations the threshold stress of long-term strength of a given alloy is associated with shear instability of its dislocated crystalline lattice, density and rate of sliding dislocations, their excess energy (line tension) as well as fields of internal elastic stresses produced by solutes. The theoretical results are in reasonable agreement with published experimental data obtained by using dislocation relaxation and creep strain rate measuring techniques. They are suitable to advanced alloys with the Portevine–Le Chatelier effect, and could be useful for quantitative assessment of alloying effectiveness, potential of heat-resistance and expected service resource.

Keywords: long-term strength, microyielding mechanisms, dislocation-solute dragging.

PACS: 61.72.Bb, 61.72.Cc, 61.72.Hh, 61.72.Yx, 81.40.Cd, 81.40.Ef, 83.60.La


Citation: V. G. Tkachenko, Basic Physics of Long-Term Strength of Solid Solutions with Various Kinetics of Mobile Defects, Usp. Fiz. Met., 17, No. 2: 173—200 (2016) (in Russian), doi: 10.15407/ufm.17.02.173

References (41)  
  1. B. V. Petukhov and P. A. Klyuchnik, Crystall. Rep., 57, No. 3: 388 (2012). Crossref
  2. E. Ma, Progress in Mater. Sci., 50, No. 4: 413 (2005). Crossref
  3. V. S. Ivanova, Vvedenie v Mezhditsiplinarnoe Nanomaterialovedenie [Introduction to the Interdisciplinary Nanomaterials Science] (Moscow: Sains-Press: 2005) (in Russian).
  4. M. A. Meyers, A. Mishra, and D. J. Benson, Progress in Mater. Sci., 51, No. 4: 427 (2006). Crossref
  5. S. A. Kotrechko and Yu. Ya. Meshkov, Predel'naya Prochnoct'—Kristally, Metally, Elementy, Konstruktsii [Ultimate Strength—Crystals, Metals, Elements, Constructions] (Kiev: Naukova Dumka: 2008) (in Russian).
  6. B. Tang, X.-S. Wang, S.-S. Li, D.-B. Zeng, and R. Wu, Mater. Sci. Techn., 21, No. 5: 574 (2005). Crossref
  7. K. Khantha, V. Vitek, and D. P. Pope, Mater. Sci. Eng. A, 319–321: 484 (2001). Crossref
  8. V. G. Tkachenko, Uspehi Fiziki Metallov, 10, No. 1: 103 (2009) (in Russian). Crossref
  9. I. P. Suzdalev and P. I. Suzdalev, Russ. Chem. Rev., 75, No. 8: 637 (2006) (in Russian). Crossref
  10. N. P. Lyakishev and M. P. Alymov, Russian Nanotechnologies, Nos. 1–2: 71 (2006) (in Russian).
  11. P. Glansdorff and I. Prigogine, Thermodynamics Theory of Structure, Stability and Fluctuations (London: Wiley-Interscience: 1971).
  12. V. A. Pozdnyakov and A. M. Glezer, Fizika Tverdogo Tela, 44, No. 4: 705 (2002) (in Russian).
  13. K. S. B. Rose and S. G. Glever, Acta Metall., 14: 1505 (1966). Crossref
  14. A. M. Brown and M. F. Ashby, Scripta Metall., 14, No. 12: 1297 (1980). Crossref
  15. D. Sherby, R. H. Klundt, and A. K. Miller, Metallurg. Trans. A, 8: 843 (1977).
  16. V. G. Tkachenko, Nanostructurnoe Materialovedenie, No. 4: 61 (2012) (in Russian).
  17. R. I. Kuznetsov and V. A. Pavlov, Fiz. Met. Metalloved., 25, No. 5: 934 (1968) (in Russian).
  18. V. I. Dotsenko, phys. stat. sol. (b), 93: 11 (1979).
  19. G. P. Pochivalova, Relaksatsiya Napryazheniy i Ustalost' Polikristallov GTsK Splavov v Oblasti Mikroplasticheskoy Deformatsii [Relaxation and Stress Fatigue of Polycrystalline F.C.C. Alloys in a Microplastic Deformation Field] (Thesis of Disser. for Cand. Phys.-Mat. Sci.) (Tomsk: Tomsk State University: 1987) (in Russian).
  20. K. Lucke and A. V. Granato, Phys. Rev. B, 24, No. 12: 6991 (1981). Crossref
  21. L. A. Shuvalov, Sovremennaya Kristallografiya [Contemporary Crystallography] (Moscow: Nauka: 1981), vol. 4 (in Russian).
  22. A. Evans and R. Rawlings, Termicheski Aktivirovannaya Deformatsiya Kristallicheskikh Materialov [Thermally-Activated Deformation of Crystalline Materials] (Ed. A. N. Orlov) (Moscow: Mir: 1973), p. 172 (Russian translation).
  23. V. G. Tkachenko, K. H. Kim, B. G. Moon, and A. S. Vovchok, J. Mater. Sci., 46, No. 14: 4880 (2011). Crossref
  24. M. Kheilova and M. Strunc, J. Non-Equilib. Thermodynamics, 20, No. 1: 19 (1995).
  25. J. C. M. Li, Canadian J. Phys., 45: 493 (1967). Crossref
  26. R. W. Hayes and W. C. Hayes, Acta Metall., 30, No. 7: 1295 (1982). Crossref
  27. H. Yoshinaga and S. A. Morozumi, Phil. Mag., 23: 1351 (1971). Crossref
  28. R. E. Reed-Hill, Techniques of Metals Research (Ed. R. F. Bunshah) (New York: Interscience: 1968), vol. 2, p. 257.
  29. D. H. Sastry, Y. V. R. K. Prasad, and K. I. Vasu, J. Mater. Sci., 6: 332 (1971). Crossref
  30. H. Conrad and W. Hayes, Trans. ASM, 56: 249 (1963).
  31. J. Glen, J. Iron Steel Inst., 186: 21 (1957).
  32. R. E. Reed-Hill, Physical Metallurgy Principles (2nd ed.) (New York: D. Van Nostrand Company: 1973).
  33. I. C. Ritchie, Scripta Metall., 16: 249 (1982). Crossref
  34. V. G. Tkachenko, K. H. Kim, B. G. Moon, O. I. Dekhtyar, O. P. Karasevska, and O. S. Vovchok, Uspehi Fiziki Metallov, 11, No. 2: 249 (2010) (in Russian). Crossref
  35. O. V. Ovsjannikov, Osoblyvosti Deformatsii ta Ruinuvannya Perekhidnykh OTsK Metaliv u Nanoob'yemi [Peculiarities of Plastic Deformation and Fracture of Transition B.C.C. Metals on Nanoscale] (Thesis of Disser. for Cand. Phys.-Math. Sci.) (Kyiv: G. V. Kurdyumov Institute for Metal Physics of N.A.S. of Ukraine: 2006) (in Ukrainian).
  36. O. D. Kancheev, Metally, No. 3: 144 (1983) (in Russian).
  37. K. A. Osipov and S. G. Fedotov, Izvestiya Akademii Nauk SSSR, No. 2: 96 (1956) (in Russian).
  38. C. A. Schuh, A. S. Argon, T. G. Niex, and J. Wadsworth, Phil. Mag., 83, No. 22: 2585 (2003). Crossref
  39. H. Yoshida, K. Toma, K. Abe, and S. Morozumi, Phil. Mag., 23, No. 186: 1387 (1971). Crossref
  40. B. A. Kolachev and A. V. Mal'kov, Fizicheskie Osnovy Razrusheniya Titana [Physical Principles of Titanium Destruction] (Moscow: Metallurgy: 1983) (in Russian).
  41. H. Conrad, Canadian J. Phys., 45: 581 (1967). Crossref
Cited By (1)
  1. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 18, 155 (2017).