Increase of a Fatigue Life of a Silumin by Electron-Beam Processing

V. E. Gromov$^{1}$, K. V. Aksyonova$^{1}$, S. V. Konovalov$^{1}$, Yu. F. Ivanov$^{2,3}$

$^1$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^2$Institute of High Current Electronics SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^3$National Research Tomsk Polytechnic University, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia

Received: 27.04.2015. Download: PDF

At present, the aluminium-alloy productions become increasingly popular in different branches of industry. However, the relatively low strength properties of silumin significantly restrict its scope of application. Silumins are not strengthened by heat treatment due to the small differences in the solubility of silicon at the high and low temperatures. Therefore, modification is the most important method of improving their mechanical properties. Processing of eutectic silumin by high-intensive electron beam in various regimes is carried out. High-cycle fatigue tests are performed to determine irradiation regime allowing increasing the material fatigue life by more than 3.5 times. Investigations of structure–phase states and defect substructure of silumin subjected to high-cycle fatigue tests up to failure are carried out by methods of the scanning and transmission electron-diffraction microscopy. As shown for the regime of partial melting of the irradiation surface, the process of surface modification is accompanied with the formation of numerous large micropores over the boundary plate–matrix and microcracks located in the silicon plates. A multimodal structure (grains of 30–50 $\mu$m sizes and silicon particles of up to 10 $\mu$m located on the boundaries) is formed in stable melting regime as well as subgrain structure in the form of crystallization cells of sizes from 100 nm up to 250 nm). As revealed, the sources of fatigue microcracks are silicon plates of the micron and submicron sizes, which are not soluble at the electron-beam treatment. The possible reasons of the silumin fatigue life increasing under electron-beam treatment are discussed. As shown, the main reasons for silumin fatigue-life increase are the considerable increase of the critical crack length, the safety coefficient, and the reduction of average distance between fatigue striations (crack path for loading cycle), the formation of multimodal, multiphase, submicro- and nanosize structure. The tribology and strength properties of silumin surface after electron-beam treatment and fatigue tests are studied; and hardness decrease, wear rate, and friction coefficient increase with the growth of cycles’ number are revealed. The possible reasons for deterioration of the tribology and strength properties of silumin surface layers are discussed.

Keywords: silumin, structure, fatigue, electron beam, cellular crystallization.

PACS: 61.72.-y,61.80.Bg,62.20.me,62.20.Qp,68.37.Lp,81.40.Np,81.40.Pq,81.70.Bt

DOI: https://doi.org/10.15407/ufm.16.04.265

Citation: V. E. Gromov, K. V. Aksyonova, S. V. Konovalov, and Yu. F. Ivanov, Increase of a Fatigue Life of a Silumin by Electron-Beam Processing, Usp. Fiz. Met., 16, No. 4: 265—297 (2015) (in Russian), doi: 10.15407/ufm.16.04.265


References (50)  
  1. G. B. Stroganov, V. A. Rotenberg, and G. B. Gershman, Splavy Alyuminiya s Kremniem [Alloys of Aluminium and Silicon] (Moscow: Metallurgiya: 1977) (in Russian).
  2. V. S. Zolotorevskiy and N. A. Belov, Metallovedenie Liteynykh Alyuminievykh Splavov [Metallurgy of Cast Aluminium Alloys] (Moscow: MISIS: 2005) (in Russian).
  3. J. M. Poate, G. Foti, and D. C. Jacobson, Surface Modification and Alloying by Laser, Ion and Electron Beams (New York: Plenum Press: 1983). Crossref
  4. A. P. Laskovnev, Yu. F. Ivanov, E.vA. Petrikova, N.vN. Koval, V. V. Uglov, N. N. Cherenda, N. V. Bibik, and V. M. Astashinskiy, Modifikatsiya Struktury i Svoystv Evtekticheskogo Silumina Elektronno-Ionno-Plazmennoy Obrabotkoy [Modification of the Structure and Properties of the Eutectic Silumin Electron–Ion-Plasma Treatment] (Minsk: Belorusskaya Nauka: 2013) (in Russian).
  5. Y. Hao, B. Gao, G. F. Tu, H. Cao, S. Z. Hao, and C. Dong, Appl. Surf. Sci., 258, No. 6: 2052 (2012). Crossref
  6. Y. Hao, B. Gao, G. F. Tu, S. W. Li, C. Dong, and Z. G. Zhang, Nucl. Instr. Meth. Phys. Res. B, 269: 1499 (2011). Crossref
  7. C. Dong, A. Wu, S. Hao, J. Zou, Z. Liu, P. Zhong, A. Zhang, T. Xu, J. Chen, J. Xu, Q. Liu, and Z. Zhou, Surf. Coat. Tech., 163–164: 620 (2003). Crossref
  8. Y. Hao, B. Gao, G. F. Tu, S.W. Li, S. Z. Hao, and C. Dong, Appl. Surf. Sci., 257, No. 9: 3913 (2011). Crossref
  9. S. Hao, P. Wu, J. Zou, T. Grosdidier, and C. Dong, Appl. Surf. Sci., 253, No. 12: 5349 (2007). Crossref
  10. Q. F. Guan, H. Zou, G. T. Zou, A. M. Wu, S. Z. Hao, J. X. Zou, Y. Qin, C. Ding, and Q. Y. Zhang, Surf. Coat. Tech., 196, Nos. 1–3: 145 (2005). Crossref
  11. Yu. F. Ivanov and N. N. Koval, Nizkoenergeticheskie Elektronnyye Puchki Submillisekundnoy Dlitelnosti: Poluchenie i Nekotoryye Aspekty Primeneniya v Oblasti Materialovedeniya [Low-Energy Electron Beams of Submillisecond Duration: Obtaining and Some Aspects of Application in Materials Science], Struktura i Svoystva Perspektivnykh Materialov [Structure and Properties of Advanced Materials] (Tomsk: Izd-vo NTL: 2007) (in Russian).
  12. V. E. Gromov, Yu. F. Ivanov, S. V. Vorobiev, S. V. Konovalov, Fatigue of Steels Modified by High Intensity Electron Beams (Cambridge: Cambridge International Science Publishing Ltd: 2015).
  13. V. V. Sizov, V. E. Gromov, Yu. F. Ivanov, S. V. Vorobiev, and S. V. Konovalov, Izv. VUZov. Chern. Metallurgiya, 55, No. 10: 56 (2012) (in Russian).
  14. V. V. Sizov, V. E. Gromov, Yu. F. Ivanov, S. V. Vorobiev, and S. V. Konovalov, Izv. VUZov. Chern. Metallurgiya, 55, No. 6: 35 (2012) (in Russian).
  15. V. V. Sizov, V. E. Gromov, Yu. F. Ivanov, S. V. Vorobiev, and S. V. Konovalov Fund. Probl. Sovremennogo Materialovedeniya, 9, No. 2: 136 (2012) (in Russian).
  16. Yu. F. Ivanov, V. E. Gromov, V. V. Sizov, S. V. Vorobiev, and V. I. Bazaykin, Probl. Chern. Metallurgii i Materialovedeniya, No. 1: 66 (2012) (in Russian).
  17. Yu. F. Ivanov, V. E. Gromov, V. V. Sizov, S. V. Vorobiev, and A. F. Sofroshenkov, Fund. Probl. Sovremennogo Materialovedeniya, 8, No. 4: 131 (2011) (in Russian).
  18. S. V. Vorobiev, V. E. Gromov, Yu. F. Ivanov, V. V. Sizov, and A. F. Sofroshenkov, Izv. VUZov. Chern. Metallurgiya, 55, No. 4: 151 (2012) (in Russian).
  19. V. E. Gromov, Yu. F. Ivanov, V. V. Sizov, S. V. Vorobiev, and S. V. Konovalov, Poverkhnost. Rentgenovskie, Sinkhrotronnyye i Neitronnyye Issledovaniya, No. 1: 99 (2013) (in Russian).
  20. Yu. F. Ivanov, V. E. Gromov, V. V. Sizov, S. V. Vorobiev, and S. V. Konovalov, Fiz. Mezomekhanika, 16, No. 1: 85 (2013) (in Russian).
  21. Yu. F. Ivanov, V. E. Gromov, V. V. Sizov, S. V. Vorobiev, and S. V. Konovalov, Materialovedenie, No. 4: (2013) (in Russian).
  22. Yu. F. Ivanov, V. E. Gromov, D. A. Bessonov, S. V. Vorobiev, A. D. Teresov, N. N. Koval, and S. V. Konovalov, Fund. Probl. Sovremennogo Materialovedeniya, 8, No. 3: 28 (2011) (in Russian).
  23. Yu. F. Ivanov, V. E. Gromov, S. V. Vorobiev, D. A. Bessonov, Yu. A. Kolubaeva, and S. V. Konovalov, Fiz. Mezomekhanika, 14, No. 6: 111 (2011) (in Russian).
  24. Yu. F. Ivanov, V. E. Gromov, D. A. Bessonov, S. V. Vorobiev, and S. V. Konovalov, Deformatsiya i Razrushenie Materialov, No. 12: 19 (2011) (in Russian).
  25. D. A. Bessonov, S. V. Vorobiev, and Yu. F. Ivanov, Izv. VUZov. Chern. Metallurgiya, 54, No. 10: 48 (2011) (in Russian).
  26. S. V. Vorobiev, Yu. F. Ivanov, V. E. Gromov, D. A. Bessonov, N. N. Koval, and A. D. Teresov, Fizika i Khimiya Obrabotki Materialov, No. 4: 97 (2012) (in Russian).
  27. D. A. Bessonov, Yu. F. Ivanov, V. E. Gromov, Yu. F. Ivanov, and V. Ya. Tsellermaer, Izv. VUZov. Chern. Metallurgiya, 55, No. 2: 44 (2012) (in Russian).
  28. D. A. Bessonov, S. V. Vorobiev, V. E. Gromov, and Yu. F. Ivanov, Nanoinzhen-eriya, No. 3: 20 (2013) (in Russian).
  29. V. E. Gromov, V. A. Grishunin, Yu. F. Ivanov, and S. V. Konovalov, Probl. Chern. Metallurgii i Materialovedeniya, No. 3: 23 (2012) (in Russian).
  30. V. E. Gromov, V. A. Grishunin, Yu. F. Ivanov, and S. V. Konovalov, Probl. Chern. Metallurgii i Materialovedeniya, No. 4: 49 (2012) (in Russian).
  31. Yu. F. Ivanov, V. E. Gromov, V. A. Grishunin, A. D. Teresov, and S. V. Konovalov, Fiz. Mezomekhanika, 16, No. 2: 47 (2013) (in Russian).
  32. V. A. Grishunin, V. E. Gromov, Yu. F. Ivanov, K. V. Volkov, and S. V. Konovalov, Izv. VUZov. Chern. Metallurgiya, 56, No. 11: 58 (2013) (in Russian).
  33. V. A. Grishunin, V. E. Gromov, Yu. F. Ivanov, A. B. Yurev, and S. V. Vorobiev, Izv. VUZov. Chern. Metallurgiya, 56, No. 2: 51 (2013) (in Russian).
  34. Yu. F. Ivanov, V. E. Gromov, V. A. Grishunin, and S. V. Konovalov, Voprosy Materialovedeniya, No. 1(73): 20 (2013) (in Russian).
  35. V. A. Grishunin, Yu. F. Ivanov, V. E. Gromov, A. D. Teresov, and S. V. Konovalov, Perspektivnye Materialy, No. 6: 75 (2013) (in Russian).
  36. V. A. Grishunin, V. E. Gromov, Yu. F. Ivanov, A. D. Teresov, and S. V. Konovalov, Poverkhnost. Rentgenovskie, Sinkhrotronnyye i Neitronnyye Issledovaniya, No. 10: 82 (2013) (in Russian).
  37. V. E. Gromov, V. A. Grishunin, S. V. Raikov, Yu. F. Ivanov, and S. V. Konovalov, Deformatsiya i Razrushenie Materialov, No. 6: 37 (2013) (in Russian).
  38. V. E. Gromov, Yu. F. Ivanov, V. A. Grishunin, S. V. Raikov, and S. V. Konovalov, Usp. Fiz. Met., 14, No. 1: 67 (2013) (in Russian). Crossref
  39. V. A. Grishunin, V. E. Gromov, Yu. F. Ivanov, and Yu. A. Denisova, Elektronno-Puchkovaya Modifikatsiya Struktury i Svoystv Stali [Electron-Beam Modification of the Structure and Properties of Steel] (Novokuznetsk: Izd-vo 'Poligrafist': 2012) (in Russian).
  40. K. V. Volkov, V. E. Gromov, Yu. F. Ivanov, and V. A. Grishunin, Povyshenie Ustalostnoy Vynoslivosti Relsovoy Stali Elektronno-Puchkovoy Obrabotkoy [Increase in Fatigue Endurance of Rail Steel by Electron-Beam Treatment] (Novokuznetsk: Izd-vo 'Inter-Kuzbass': 2013) (in Russian).
  41. Yu. F. Ivanov, K. V. Alsaraeva, V. E. Gromov, E. A. Petrikova, A. D. Teresov, and A. V. Tkachenko, Fund. Probl. Sovremennogo Materialovedeniya, 11, No. 3: 281 (2014) (in Russian).
  42. O. V. Sosnin, V. E. Gromov, E. V. Kozlov, and Yu. F. Ivanov, Ustalost Staley pri Impulsnom Tokovom Vozdeystvii [Fatigue of Steels at a Pulsed Tone Exposure] (Novokuznetsk: Izd-vo SibGIU: 2004) (in Russian).
  43. V. S. Ivanova and A. A. Shanyavskiy, Kolichestvennaya Fraktografiya. Ustalostnoe Razrushenie [Quantitative Fractography. Fatigue Failure] (Chelyabinsk: Metallurgiya: 1988) (in Russian).
  44. V. F. Terentev, Ustalost Metallicheskikh Materialov [Fatigue of Metallic Materials] (Moscow: Nauka: 2002) (in Russian).
  45. S. Kocańda, Ustalostnoe Razrushenie Metallov [Fatigue Failure of Metals] (Moscow: Metallurgiya: 1976) (Russian translation).
  46. O. V. Sosnin, Yu. F. Ivanov, V. V. Tsellermaer, D. V. Lychagin, V. E. Gromov, and E. V. Kozlov, Fiz. Mezomekhanika, 6, No. 3: 91 (2003) (in Russian).
  47. O. V. Sosnin, Yu. F. Ivanov, V. E. Gromov, E. V. Kozlov, and V. V. Tsellermaer, Izv. VUZov. Chern. Metallurgiya, 46, No. 12: 27 (2003) (in Russian).
  48. Fraktografiya i Atlas Fraktogramm [Fractography and Atlas of Fractographs] (Ed. J. A. Fellows) (Moscow: Metallurgiya: 1982) (Russian translation).
  49. L. Engele and H. Klingele, Rastrovaya Elektronnaya Mikroskopiya. Razrushenie [Scanning Electron Microscopy of Plastics Failure] (Moscow: Metallurgiya: 1986) (Russian translation).
  50. A. P. Babichev, N. A. Babushkina, and A. M. Bratkovskiy, Fizicheskie Velichiny: Spravochnik [Physical Quantities: Handbook] (Moscow: Energoatomizdat: 1991) (in Russian).
Cited By (2)
  1. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 18, 155 (2017).
  2. V. E. Kormyshev, V. E. Gromov, Yu. F. Ivanov and S. V. Konovalov, Usp. Fiz. Met. 18, 111 (2017).