Absorption of Hydrogen by Thin Films

V. V. Vlasov, O. G. Guglya, Yu. O. Marchenko, O. S. Melnikova

National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1 Akademicheskaya Str., 61108 Kharkov, Ukraine

Received: 16.03.2015. Download: PDF

This review systematizes the investigation results on hydrogen absorption mechanisms up to the concentrations of $\cong$ 7 wt.% into magnesium, niobium, and vanadium thin films. The distinctive features of the hydride formation in single-layer and multilayer films are demonstrated. It is shown how such properties as the electrical resistance and the optical transparency, measured using thin films, can correlate with hydride formation processes. The possibility of the improvement of kinetic and thermodynamic characteristics of thin films through the formation of nanocrystalline structure and the injection of catalysts is studied. The principles have been formulated and the results on an increase in the gravimetric capacity of vanadium (niobium) due to creation of V(Nb)-based nanoporous thin-film structures are given.

Keywords: hydrogen, absorption, thin films, nanoporous structures.

PACS: 73.61.At, 78.40.-q, 78.67.Rb, 79.60.Jv, 81.07.Bc, 81.15.Jj, 88.30.rd

DOI: https://doi.org/10.15407/ufm.16.02.085

Citation: V. V. Vlasov, O. G. Guglya, Yu. O. Marchenko, and O. S. Melnikova, Absorption of Hydrogen by Thin Films, Usp. Fiz. Met., 16, No. 2: 85—117 (2015) (in Russian), doi: 10.15407/ufm.16.02.085


References (69)  
  1. J. H. Kunstler, The Long Emergency: Surviving the End of Oil, Climate Change, and Other Converging Catastrophes of the Twenty-First Century (New York: Grove Press: 2009), p. 300.
  2. Targets for On-Board Hydrogen Storage Systems: Current R&D Focus is on 2010 Targets. http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/ freedomcar_targets_explanations.pdf
  3. V. Vishnyakov, Vacuum, 80, No. 10: 1053 (2006). Crossref
  4. A. Züttel, P. Sudan, and Ph. Mauron, Int. J. Hydrogen Energy, 27: 203 (2002). Crossref
  5. I. Jain, P. Jain, and A. Jain, J. Alloys and Compounds, 503, No. 2: 303 (2010). Crossref
  6. M. Song, E. Ivanov, B. Darriet, M. Pezat, and P. Hagenmuller, Int. J. Hydrogen Energy, 10, No. 3: 169 (1985). Crossref
  7. J. Hurris, W. Curtin, and L. Schultz, J. Mater. Res., 3: 872 (1988). Crossref
  8. K. Aoki, A. Memezava, and T. Masumoto, J. Mater. Res., 8: 307 (1993). Crossref
  9. S. Doppiu, L. Schultz, and O. Gutfleisch, J. Alloys and Compounds, 427: 204 (2007). Crossref
  10. I. Jain, K. Vijay, L. Malhotra, and K. Uppadhyay, Int. J. Hydrogen Energy, 13: 15 (1988). Crossref
  11. J. Reilly, J. Johnson, F. Reidinger, J. F. Lynch, J. Tanaka, and R. H. Wiswall, J. Less-Common Met., 73, No. 1: 175 (1980). Crossref
  12. M. Malinovski, J. Less-Common Met., 89, No. 1: 1 (1983). Crossref
  13. E. Eatons, C. Olson, H. Scheinberg, and W. Steyert, Int. J. Hydrogen Energy, 6, No. 6: 609 (1981). Crossref
  14. V. Bryk, A. Guglya, M. Litvinenko, I. Marchenko, E. Melnikova, I. Sassa, and R. Vasilenko, Radiat. Eff. Defects Solids, 166, No. 4: 282 (2011). Crossref
  15. A. Goncharov, A. Guglya, and E. Melnikova, Int. J. Hydrogen Energy, 37, No. 23: 18061 (2012). Crossref
  16. A. Zaluska, L. Zaluski, and J. Ström-Olsen, J. Alloys and Compounds, 288: 217 (1999). Crossref
  17. L. Schlapbach, D. Shaltiel, and P. Oelhafen, Mater. Res. Bull., 14: 1235 (1979). Crossref
  18. A. Kroser and B. Kasemo, J. Phys.: Condensed Matter, 1, No. 8: 1533 (1989). Crossref
  19. Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T. K. Bose, and R. Schulz, J. Alloys and Compounds, 347, No. 1: 319 (2002). Crossref
  20. R. Schulz, S. Boily, L. Zaluski, A. Zaluska, P. Tessier, and J. O. Ström-Olsen, Innov. Metall. Mater., 529 (1995).
  21. J. Qu, B. Sun, R. Yang, W. Zhao, Yu. Wang, and X. Li, Scr. Mater, 62: 317 (2010). Crossref
  22. K. Yoshimura, Metals, 2: 253 (2012). Crossref
  23. J. Ares, F. Leardini, P. Díaz-Chao, J. Bodega, D. W. Koon, I. J. Ferrer, J. F. Fernandez, and C. Sanchez, J. Alloys and Compounds, 495, No. 2: 650 (2010). Crossref
  24. U. Eberle, M. Felderhoff, and F. Schüth, Chem. Int. Edit., 48: 6608 (2009). Crossref
  25. T. Moriwaki, Y. Akahama, H. Kawamura, S. Nakano, and K. Takemurs, J. Phys. Soc. Jpn., 75, No. 7: 074603 (2006). Crossref
  26. P. Vajeeston, P. Ravindran, A. Kjekshus, and H. Fjellvag, Phys. Rev. Lett., 89, No. 17: 175506 (2002). Crossref
  27. B. Hum, A. Junkaew, R. Arróyave, J. Chen, H. Wang, P. Wang, J. Majewski, J. Park, H.-C. Zhou, Ravi K. Arvapally, U. Kaipa, Mohammad A. Omary, X. Y. Zhang, Y. Ren, and X. Zhang, Int. J. Hydrogen Energy, 38, No. 20: 8328 (2013).
  28. B. Hum, A. Junkaew, R. Arróyave, J. Park, H.-C. Zhou, D. Foley, S. Rios, H. Wang, X. Zhang, Int. J. Hydrogen Energy, 39, No. 6: 2597 (2014). Crossref
  29. I. Matsumoto, K. Asano, K. Sakaki, and Y. Nakamura, Int. J. Hydrogen Energy, 36, No. 22: 14488 (2011). Crossref
  30. K. Higuchi, H. Kajioka, K. Toiyama, H. Fujii, S. Orimo, and Y. Kikuchi, J. Alloys and Compounds, 293–295, No. 1: 484 (1999). Crossref
  31. N. Bazzanella, R. Checchetto, and A. Miotello, Appl. Phys. Lett., 85, No. 22: 5212 (2004). Crossref
  32. G. Reddy and S. Kumar, Int. J. Hydrogen Energy, 39, No. 9: 4421 (2014). Crossref
  33. C. Fry, D. Grant, and G. Walker, Int. J. Hydrogen Energy, 38, No. 2: 982 (2013). Crossref
  34. K. Higuchi, K. Yamamoto, H. Kajioka, K. Toiyama, M. Honda, S. Orimo, and H. Fujii, J. Alloys and Compounds, 330–332: 526 (2002). Crossref
  35. X. Tan, C. Harrower, B. Amirkhiz, and D. Mitlin, Int. J. Hydrogen Energy, 34, No. 18: 7741 (2009). Crossref
  36. B. Zahiri, S. Amirkhiz, and D. Mitlin, Appl. Phys. Lett., 97, No. 8: 083106 (2010). Crossref
  37. L. Pranevicius, D. Milcius, C. Templier, and M. Lelis, J. Alloys and Compounds, 480, No. 1: 360 (2009). Crossref
  38. L. Mooij and B. Dam, Phys. Chem. Chem. Phys., 15, No. 27: 11501 (2013). Crossref
  39. J. Qu, Y. Wang, L. Xie, J. Zheng, Y. Liu, and X. Li, Int. J. Hydrogen Energy, 34, No. 4: 1910 (2009). Crossref
  40. Y. Gautam, A. Chawla, S. Khan, R. D. Agrawal, and R. Chandra, Int. J. Hydrogen Energy, 37, No. 4: 3772 (2012). Crossref
  41. D. Borsa, R. Gremaud, A. Baldi, H. Schreuders, J. H. Rector, B. Kooi, P. Vermeulen, P. H. L. Notten, B. Dam, and R. Griessen, Phys. Rev. B, 75, No. 20: 205408 (2007). Crossref
  42. J. Cermak and L. Kral, Int. J. Hydrogen Energy, 37, No. 19: 14257 (2012). Crossref
  43. W. Lohstroh, R. Westerwaal, L. Mechelen, C. Chacon, E. Johansson, B. Dam, and R. Griessen, Phys. Rev. B, 70, No. 16: 165411 (2004). Crossref
  44. W. Lohstroh, R. Westerwaal, D. Noheda, S. Enache, I. A. Giebels, B. Dam, and R. Griessen, Phys. Rev. Lett., 93, No. 19: 197404 (2004). Crossref
  45. E. Veleckis and R. Edwards, J. Phys. Chem., 73: 683 (1969). Crossref
  46. J. Joubert and A. Percheron-Guégnan, J. Alloys and Compounds, 317–318: 71 (2001). Crossref
  47. T. Kuriiwa, T. Tamura, T. Amemiya, T. Fuda, A. Kamegawa, H. Takamura, and M. Okada, J. Alloys and Compounds, 293–295: 433 (1999). Crossref
  48. J. Steiger, S. Blässer, and A. Weidinger, Phys. Rev. B, 49, No. 8: 5570 (1994). Crossref
  49. S. Moehlecke, C. Majkrzak, and M. Stroning, Phys. Rev. B, 31, No. 10: 6804 (1985). Crossref
  50. S. Blässer, J. Steiger, and A. Weidinger, Methods Phys. Res. B, 85, Nos. 1–4: 24 (1994).
  51. G. Reisfeld, N. Jisrawi, M. Ruckman, and M. Strongin, Phys. Rev. B, 53, No. 8: 4974 (1996). Crossref
  52. Ch. Rehm, H. Fritzsche, H. Maletta, and F. Klose, Phys. Rev. B, 59, No. 4: 3142 (1999). Crossref
  53. P. Miceli, H. Zabel, and J. Cunningham, Phys. Rev. Lett., 54, No. 9: 917 (1985). Crossref
  54. I. Jain, Y. Vijay, L. Malhotra, and K. Uppadhyay, Int. J. Hydrogen Energy, 13, No. 1: 15 (1988). Crossref
  55. H. Yukawa, M. Takagi, A. Teshima, and M. Morinada, J. Alloys and Compounds, 330–332: 105 (2002). Crossref
  56. G. Andersson, K. Aits, and B. Hjörvarsson, J. Alloys and Compounds, 334, Nos. 1–2: 14 (2002). Crossref
  57. J. Bloch, B. Hjörvarsson, S. Olsson, and R. Brukas, Phys. Rev. B, 75, No. 16: 165418 (2007). Crossref
  58. G. Andersson, B. Hjörvarsson, and P. Isberg, Phys. Rev. B, 55, No. 3: 1774 (1997). Crossref
  59. G. Andersson, B. Hjörvarsson, and H. Zabel, Phys. Rev. B, 55, No. 23: 15905 (1997). Crossref
  60. B. Hjörvarsson, J. Rydén, E. Karlsson, J. Birch, and J.-E. Sundgren, Phys. Rev. B, 43, No. 8: 6440 (1991). Crossref
  61. F. Stillesjö, S. Ólafsson, P. Isberg, and B. Hjörvarsson, J. Phys.: Condensed Matter, 7, No. 42: 8139 (1995). Crossref
  62. R. Griessen and T. Riesterer, Hydrogen in Intermetallic Compounds 1 (Eds. L. Schlapbach). Topics Appl. Phys. (Springer: Berlin: 1988), vol. V, p. 63.
  63. S. Orimo, F. Kimmerle, and G. Majer, Phys. Rev. B, 63, No. 9: 094307 (2001). Crossref
  64. V. Bryk, R. Vasilenko, A. Goncharov, T. Grigorova, A. Guglya, V. Kolobrodov, M. Litvinenko, I. Marchenko, and I. Sassa, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 6: 66 (2011) (in Russian).
  65. L. Belyakov, T. Makarova, V. Sakharov, I. Serenkov, and O. Sresely, Fiz. Tekh. Poluprovodn., 32: 1122 (1998) (in Russian).
  66. L. Palatnik, P. Cheremskoy, and M. Fooks, Pori v Plyonkakh [Pores in Films] (Moscow: Energoizdat: 1982) (in Russian).
  67. A. Gringoz, N. Glandut, and S. Valette, Electrochem. Commun., 11: 2044 (2009). Crossref
  68. H. Ding, X. Fan, C. Li, X. Liu, D. Jiang, and Ch. Wang, J. Alloys and Compounds, 551: 67 (2013). Crossref
  69. J. L'ecuyer, C. Brassard, C. Cardinal, J. Chabbal, L. Deschênes, J. P. Labrie, B. Terreault, J. G. Martel, and R. Saint Jacques, J. Appl. Phys., 47: 381 (1976). Crossref