Structure and Properties of the Wear-Resistant Coatings Fused on Steel with Flux Cored Wires by an Electric Arc Method

V. E. Gromov$^{1}$, E. V. Kapralov$^{1}$, S. V. Raikov$^{1}$, Yu. F. Ivanov$^{2,3}$, E. A. Budovskikh$^{1}$

$^1$Siberian State Industrial University, 42 Kirov Str., 654007 Novokuznetsk, Russia
$^2$Institute of High Current Electronics SB RAS, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia
$^3$National Research Tomsk Polytechnic University, 2/3 Akademicheskiy Ave., 634055 Tomsk, Russia

Received: 30.09.2014. Download: PDF

The structural–phase states and mechanical properties of the coatings fused on Hardox 400 (0.18 С; 0.7 Si; 1.6 Mn) martensite steel with welding wires of 1.6 mm diameter and different chemical compositions EnDOtec DO$^{*}$33 (2.06 C; 0.6 Si; 2.51 Mn; 13.5 Cr; 6.4 Nb), EnDOtec DO$^{*}$30 (0.5 C; 0.4 Si; 1.4 Mn; 1 Cr), and SK A 70-G (2.6 C; 0.6 Si; 1.7 Mn; 2.2 B; 14.8 Cr; 4.7 Nb) are studied using the methods of optical, transmission and scanning electron microscopies, x-ray structural analysis, measurements of microhardness, wear resistance, and friction coefficient. The forming of deposit welding on the steel surface is accompanied with the formation of multilayer structure with different morphology of substructure elements. The deposit welding bulk is characterized by the micropore and microcrack presence that indicates the elastically stressed material state. The sources of the cracks appear due to the large inclusions of the second phase and crystallization dendrites. It is demonstrated that the coatings have much higher microhardness (by 2–3 times) and wear resistance (by 2 times) than the substrate has, while the friction coefficient is 1.2 times lower as compared with that for the substrate; the microhardness of fused coating is a constant along the whole depth up to 4.0 mm. The strengthening is caused by the formation of submicrosize and nanosize structures containing particles of the second phase (Fe$_{3}$C, Fe$_{23}$(CB)$_{6}$, NbC, (FeSi)$_{3}$B, Cr$_{3}$C$_{2}$, Fe$_{3}$B, and Fe$_{3}$Si$_{0,97}$). Their volume content reaches 40%.

Keywords: microstructure, wear-resistant coatings, surfacing, flux cored wire.

PACS: 61.72.Qq, 62.20.Qp, 68.37.-d, 81.15.Pq, 81.20.Vj, 81.40.Pq, 81.65.Lp

DOI: https://doi.org/10.15407/ufm.15.04.213

Citation: V. E. Gromov, E. V. Kapralov, S. V. Raikov, Yu. F. Ivanov, and E. A. Budovskikh, Structure and Properties of the Wear-Resistant Coatings Fused on Steel with Flux Cored Wires by an Electric Arc Method, Usp. Fiz. Met., 15, No. 4: 213—234 (2014) (in Russian), doi: 10.15407/ufm.15.04.213


References (24)  
  1. S. Kocanda, Ustalostnoe Razrushenie Metallov [Fatigue Fracture of Metals] (Moscow: Metallurgy: 1976) (Russian translation).
  2. B. E. Paton, Elektroshlakovaya Svarka i Naplavka [Electroslag Welding and Surfacing] (Moscow: Mashinostroenie: 1980) (in Russian).
  3. N. V. Molodykh and A. S. Zenkin, Vosstanovlenie Detaley Mashin [Restoration of Machine Parts] (Moscow: Mashinostroenie: 1989) (in Russian).
  4. N. A. Sosnin, S. A. Ermakov, and P. A. Topolyanskiy, Plazmennyye Tekhnologii: Rukovodstvo dlya Inzhenerov [Plasma Technology: A Guide for Engineers] (St. Petersburg: Izd-vo SPbPU: 2008) (in Russian).
  5. M. M. Khrushchov, M. A. Babichev, E. S. Berkovich, S. P. Kozyrev, L. B. Kraposhina, and L. Yu. Pruzhanskiy, Iznosostoykost' i Struktura Tverdykh Naplavok [Wear Resistance and Structure of Solid Weld Overlays] (Moscow: Mashinostroenie: 1971) (in Russian).
  6. I. V. Kragelskiy, Trenie i Iznos [Friction and Wear] (Moscow: Mashinostroenie: 1968) (in Russian).
  7. N. G. Sokolov, Formirovanie Kompozitsionnoy Struktury Naplavlennogo Metalla dlya Raboty v Usloviyakh Termosilovogo Vozdeystviya i Razrabotka Tekhnologii EShN Pressovykh Shtampov i Instrumenta [Formation of the Composite Structure of Weld Metal to Work in a Thermopower Exposure and Development of Electroslag Hard-Facing Technology of Press Dies and Tools] (Disser. for … Dr. Tech. Sci.; 05.03.06) (Volgograd: VGTU: 2007) (in Russian).
  8. A. M. Glezer and V. E. Gromov, Nanomaterialy, Sozdannye Putem Ekstremal'nykh Vozdeystviy [Nanomaterials, Created by Extreme Influences] (Novokuznetsk: Typography SibGIU: 2010) (in Russian).
  9. A. M. Glezer, V. E. Gromov, Yu. F. Ivanov, and Yu. P. Sharkeev, Nanomaterialy: Struktura, Svoystva, Primenenie. Seriya 'Fundamental'nye Problemy Sovremennogo Materialovedenia' [Nanomaterials: Structure, Properties, Application. A Series 'Basic Problems of Material Science'] (Novokuznetsk: 'Inter-Kuzbass': 2011) (in Russian).
  10. M. D. Borisov, G. V. Kraev, and I. M. Poletika, Izv. VUZov: Fizika, No. 2: 70 (1992) (in Russian).
  11. I. S. Konovalenko, A. Yu. Smolin, and S. G. Psakh'ye, Izv. VUZov: Fizika, No. 6: 48 (2005) (in Russian).
  12. I. M. Poletika and M. D. Borisov, Perspektivnye Materialy, No. 4: 78 (1995) (in Russian).
  13. V. S. Popova, Iznosostoykost' Splavov, Vosstanovlenie i Uprochnenie Detaley Mashin [Wear Resistance of Alloys, Restoration and Strengthening of Machine Elements] (Zaporozh'ye: OAO 'Motor Sich': 2006) (in Russian).
  14. H. Waschull, Prakticheskaya Metallografiya. Metody Prigotovleniya Obraztsov [Präparative Metallographie. Präparationstechnik für die Lichtmikroskopie] (Moscow: Metallurgiya: 1988) (Russian translation).
  15. D. Brandon and W. Kaplan, Mikrostruktura Materialov. Metody Issledovaniya i Kontrolya [Microstructural Characterization of Materials. Investigation and Control Methods] (Moscow: Tekhnosfera: 2006) (Russian translation).
  16. M. M. Krishtal, I. S. Yasnikov, and V. I. Polunin, Skaniruyushchaya Elektronnaya Mikroskopiya i Rentgenospektral'nyy Mikroanaliz v Primerakh Prakticheskogo Primeneniya [Scanning Electron Microscopy and X-Ray Spectral Microanalysis in the Examples of Practical Application] (Moscow: Tekhnosfera: 2009) (in Russian).
  17. L. M. Utevskiy, Difraktsionnaya Elektronnaya Mikroskopiya v Metallovedenii [The Diffraction Electron Microscopy in the Physical Metallurgy] (Moscow: Metallurgiya: 1973) (in Russian).
  18. K. Andrews, D. Dyson, and S. Keown, Elektronogrammy i Ikh Interpretatsiya [Interpretation of Electron Diffraction Patterns] (Moscow: Mir: 1971) (Russian translation).
  19. Prakticheskie Metody v Elektronnoy Mikroskopii [Practical Methods in Electron Microscopy] (Ed. A. M. Glauert) (Leningrad: Mashinostroenie, Leningrad Branch: 1980) (Russian translation).
  20. G. V. Kurdyumov, L. M. Utevskiy, and R. I. Entin, Prevrashcheniya v Zheleze i Stali [Transformations in Iron and Steel] (Moscow: Nauka: 1977) (in Russian).
  21. V. I. Trefilov, V. F. Moiseev, and Eh. P. Pechkovskiy, Deformatsionnoe Uprochnenie i Razrushenie Polikristallicheskikh Metallov [Strain Strengthening and Fracture of Polycrystalline Metals] (Kiev: Naukova Dumka: 1987) (in Russian).
  22. M. I. Goldshtein and V. M. Farber, Dispersionnoe Uprochnenie Stali [Dispersion Steel Strengthening] (Moscow: Metallurgiya: 1979).
  23. G. V. Samsonov and I. M. Vinnitskiy, Tugoplavkie Soedineniya [Refractory Compounds] (Moscow: Metallurgiya:1976) (in Russian).
  24. G. V. Samsonov, T. I. Serebryakova, and V. A. Neronov, Boridy [Borides] (Moscow: Atomizdat: 1975) (in Russian).
Cited By (3)
  1. D. A. Romanov, V. E. Gromov, Е. А. Budovskikh and Yu. F. Ivanov, Usp. Fiz. Met. 16, 119 (2015).
  2. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 18, 155 (2017).
  3. V. E. Kormyshev, V. E. Gromov, Yu. F. Ivanov and S. V. Konovalov, Usp. Fiz. Met. 18, 111 (2017).