Change of Magnetic Characteristics of Magnetic Nanofilms and Control of a Spin Current by means of a Laser Radiation

M. M. Krupa, I. V. Sharai

Institute of Magnetism under NAS and MES of Ukraine, 36b Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 27.09.2012. Download: PDF

For the high-frequency components of spintronics, the high-speed systems to control magnetization of materials in the local microregions are required. Solving this problem, using conventional magnetic systems, is extremely difficult. Short laser pulses are promising to control the spin current in multilayer magnetic films. Laser radiation makes possible to excite the current along the laser beam and obtain a strong magnetic field due to the inverse Faraday effect. A given article describes some features of electron–photon drag effect and concerns the mechanisms of remagnetization of magnetic nanofilms under the laser irradiation. The results of studies of the effect of nanosecond and picosecond laser pulses on the magnetic properties of NiFe films as well as conductivity of the Tb$_{19}$Co$_{5}$Fe$_{76}$/Pr$_{6}$O$_{11}$/Tb$_{22}$Co$_{5}$Fe$_{73}$ and Co$_{80}$Fe$_{20}$/Pr$_{6}$O$_{11}$/Co$_{30}$Fe$_{70}$ tunnel junctions are presented. As shown, using the ultra-short laser pulses, one can change the structure and magnetic properties of thin films, study dynamics of their remagnetization, and control spin current in the high-speed devices of spintronics.

Keywords: laser radiation, photon drag effect, multi-layered magnetic nanofilms, spin current, spintronic.

PACS: 72.25.-b, 75.25.-j, 75.70.Ak, 75.75.-c, 81.40.Rs, 81.40.Wx, 85.75.Mm

DOI: https://doi.org/10.15407/ufm.14.01.001

Citation: M. M. Krupa and I. V. Sharai, Change of Magnetic Characteristics of Magnetic Nanofilms and Control of a Spin Current by means of a Laser Radiation, Usp. Fiz. Met., 14, No. 1: 1—32 (2013) (in Russian), doi: 10.15407/ufm.14.01.001


References (50)  
  1. H. Ohno, Science, 281: 951 (1998). Crossref
  2. J. Cibert, J. Bobo, and U. Lüders, Comptes Rendus Physique, 6: 977 (2005). Crossref
  3. M. I. Katsnelson, V. Yu. Irkhin, L. Chionsel, A. I. Lichtenstein, and R. A. de Groot, Rev. Mod. Phys., 80, Iss. 2: 315 (2008). Crossref
  4. Xiao-Lin Wang, Shi Xue Dou, and Chao Zhang, NPG Asia Mater., 2: 31 (2010). Crossref
  5. J. C. Slonczewski, J. Magn. Magn. Mater., 159: 1191 (1996). Crossref
  6. J. Katine, F. Albert, R. Buhrman et al., Phys. Rev. Lett., 84: 3149 (2000). Crossref
  7. A. M. Danishevskiy et al., ZhETF, 58: 544 (1970).
  8. A. F. Gibson, M. F. Kimmitt, and A. C. Walker, Appl. Phys. Lett., 17: 75 (1970). Crossref
  9. J. E. Goff and W. L. Schaich, Phys. Rev. B, 61, No. 15: 10471 (2000). Crossref
  10. W. Kautek, P. Rudolph, G. Daminelli, and J. Krüger, Appl. Phys. A, 81, No. 1: 65 (2005). Crossref
  11. A. E. Pogorelov and V. M. Avdeev, Metallofiz. Noveishie Tekhnol., 19: 567 (2001).
  12. A. F. Zhuravlev, A. E. Pogorelov, K. P. Ryaboshapka, Metallofiz. Noveishie Tekhnol., 23: 36 (2001).
  13. W. Kautek et al., J Appl. Phys. A, 81: 65 (2005). Crossref
  14. M. Oane, I. Morjan, and R. Medianu, Optics Laser Technol., 36: 677 (2004). Crossref
  15. B. B. Xua, Z. Shenb, X. Nib, J. Wanga, J. Guanb, and J. Lub, Optics Laser Technol., 38: 138 (2006). Crossref
  16. G. A. Askar'yan, M. C. Rabinovich, A. D. Smirnova, V. B. Studentov, Pis'ma v ZhETF, 5: 116 (1967).
  17. M. M. Krupa and A. M. Korostil, Int. J. Mod. Phys. B, 21: 2339 (2007). Crossref
  18. N. N. Krupa, ZhETF, 135: 981 (2009).
  19. L. P. Pitaevskiy, ZhETF, 12: 190 (1965).
  20. L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred (Moskva: Fizmatlit: 2005).
  21. P. Lebedew, Annalen der Physik, 4, Bd. 6: 433 (1901).
  22. E. F. Nuchols and G. F. Hull, Phys. Rev. (Series I), 17, No 1: 26 (1903). Crossref
  23. N. N. Krupa, A. M. Korostil', Yu. B. Skirta, Izvestiya vuzov. Radiofizika, XLVIII: 45 (2005).
  24. G. Matare, Elektronika defektov v poluprovodnikakh (Moskva: Mir: 1974).
  25. V. A. Bibik, N. A. Davydova, B. R. Kiyak, N. N. Krupa, L. V. Mizrukhin, Fiz. tverdogo tela, 26: 80 (1984).
  26. N. N. Krupa, Opticheskiy zhurnal, 65: 303 (1998).
  27. S. V. Plyatsko, Fizika i tekhnika poluprovodnikov, 36: 666 (2002).
  28. N. N. Krupa, ZhETF, 120, No. 11: 10 (2001).
  29. N. N. Krupa, Yu. B. Skirta, Izvestiya vuzov. Radiofizika, XLIKh: 513 (2006).
  30. M. M. Krupa, A. N. Pogorily, L. L. Sartinska, Yu. V. Skirta, and R. Zaharov, Curr. Appl. Phys., 10: 294 (2010). Crossref
  31. R. Merservey and P. M. Tedrov, Phys. Rep., 238, No. 4: 175 (1994).
  32. A. Brataas, Yu. V. Nazarov, and G. E. W. Bauer, Phys. Rev. Lett., 84, No. 11: 2481 (2000). Crossref
  33. N. N. Krupa, ZhETF, 132: 782 (2007).
  34. R. Pittini and P. Wachter, J. Magn. Magn. Mater, 186: 306 (1998). Crossref
  35. N. N. Krupa, Metallofiz. Noveishie Tekhnol., 33, No. 1: 1 (2011).
  36. M. M. Krupa, Magnetic Thin Films: Properties, Performance and. Application (Eds. J. P. Volkers) (New York: Nova Science Publishers: 2011).
  37. H. J. Leamy and A. G. Dirks, J. Appl. Phys., 50: 2871 (1979). Crossref
  38. M. Komori, T. Nukata, and K. Tsutsumi, IEEE Trans. Magn., 20: 1042 (1984). Crossref
  39. M. Julliere, Phys. Lett., 54A: 225 (1975). Crossref
  40. J. S. Moodera and G. Mathon, J. Magn. Magn. Mater., 200: 248 (1999). Crossref
  41. I. Zutic, Rev. Mod. Phys., 76: 323 (2004). Crossref
  42. P. Chen, J. Moser, Ph. Kotissek, J. Sadowski, M. Zenger, D. Weiss, and W. Wegscheider, Phys. Rev. B, 74, No. 24: 241 (2006).
  43. A. V. Kimel, A. Kirilyuk, F. Hansteen, R. V. Pisarev, and T. Rasing, J. Phys.: Condens. Matter, 19, No. 4: 043201 (2007). Crossref
  44. P. S. Pershan, J. P. Ziel, and L. D. Malmstrom, Phys. Rev., 143, No. 2: 574 (1966). Crossref
  45. G. P. Zhang and W. Hübner, Phys. Rev. Lett., 85, No. 14: 3025 (2000). Crossref
  46. Yu. V. Gulyaev et al., ZhETF, 100: 1005 (2005).
  47. E. V. Gomonay, V. M. Loktev, Fiz. nizk. temperatur, 34: 256 (2008).
  48. U. M. Maykldzhon, TIIER, 74: 112 (1986).
  49. R. Hertel, J. Magn. Magn. Mater, 303: L1 (2006). Crossref
  50. N. N. Krupa, Pis'ma v ZhETF, 87: 635 (2008).