Thermodynamics of Formation of the Hydrogenated Permalloy under High Pressure on the Basis of the Approach from the First Principles

O. E. Krasovskii

Institute of Magnetism under NAS and MES of Ukraine, 36b Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 27.06.2012. Download: PDF

Thermodynamics of formation of the hydrogenated permalloy is explored at a high pressure within the scope of the ab initio approach. Thermodynamic potentials of reactions of formation of the phases with the various content of hydrogen are calculated on the basis of the density functional theory. The permalloy–hydrogen phase diagram in a wide range of pressures is plotted and confirms stability of such compounds at given thermodynamic parameters. Comparison with available experimental data shows a good agreement between the theoretical and experimental phase diagrams.

Keywords: hydrogen in metals, permalloy, high pressures, thermodynamics of hydrogen-saturation of metals.

PACS: 61.50.Ks, 71.15.Mb, 71.15.Nc, 75.50.Bb, 81.30.Bx, 82.60.Cx, 82.60.Lf

DOI: https://doi.org/10.15407/ufm.13.04.383

Citation: O. E. Krasovskii, Thermodynamics of Formation of the Hydrogenated Permalloy under High Pressure on the Basis of the Approach from the First Principles, Usp. Fiz. Met., 13, No. 4: 383—395 (2012) (in Russian), doi: 10.15407/ufm.13.04.383


References (43)  
  1. W. B. Holzapfel, Rep. Prog. Phys., 59: 29 (1996). Crossref
  2. J. P. Poirier, Phys. Earth Planet. Inter., 85: 319 (1994). Crossref
  3. A. Jephcoat and P. Olson, Nature, 325: 332 (1987). Crossref
  4. D. J. Stevenson, Nature, 268: 130 (1977). Crossref
  5. Y. Fukai and T. Suzuki, J. Geophys. Res., 91, No. B9: 9222 (1986). Crossref
  6. T. Okuchi, Science, 278, No. 5344: 1781 (1997). Crossref
  7. Q. Williams and R. J. Hemley, Ann. Rev. Earth Planet. Sci., 29: 365 (2001). Crossref
  8. V. E. Antonov, I. T. Belash, V. F. Degtyareva et al., Doklady Akademii Nauk SSSR, 252, No. 6: 1384 (1980) (in Russian); English translation: Soviet Physics–Dokl., 25: 490 (1980).
  9. Y. Fukai, A. Fukizawa, K. Watanabe, and M. Amano, Japan. J. Appl. Phys, 21, No. 5: L318 (1982). Crossref
  10. Y. Fukai and H. Sugimoto, Trans. Japan Inst. Metals, 24, No. 11: 733 (1983). Crossref
  11. Y. Sakamoto, K. Yuwasa, and K. Hirayama, J. Less-Common Metals, 88: 115 (1982). Crossref
  12. Y. Shizuku, S. Yamamoto, and Y. Fukai, J. Alloys Comp., 336: 159 (2002).
  13. M. L.Wayman and G. C. Smith, J. Phys. Chem. Solids, 32: 103 (1971). Crossref
  14. V. E. Antonov, I. T. Belash, V. F. Degtyareva et al., Fizika Tverdogo Tela, 20, No. 9: 2680 (1978) (in Russian); English translation: Soviet Physics–Solid State, 20: 1548 (1978)).
  15. B. Baranowski, Ber. Bunsen-Gesellschaft Phys. Chem., 76, No. 8: 714 (1972).
  16. B. Baranowski and S. Filipek, Roczniki Chemii, 41, No. 11: 2165 (1973) (in Polish).
  17. S. Yu. Zaginaychenko, Z. A. Matysina, and M. I. Milyan, Phys. Met. Metallogr., 70: 60 (1990) (Translated from Fizika Metallov i Metallovedenie, 9: 63 (1990)).
  18. Z. A. Matysina and M. I. Milyan, Russ. Metall., 2: 171 (1990) (Translated from Izvestiya Akademii Nauk SSSR. Metally, 2: 175 (1990)).
  19. A. E. Krasovskiy, Usp. Fiz. Met., 11: 295 (2010). Crossref
  20. O. B. Christensen et al., Phys. Rev. B, 41, No. 18: 12413 (1990). Crossref
  21. H. Smithson et al., Phys. Rev. B, 66, No. 14: 144107 (2002). Crossref
  22. X. San et al., Phys. Rev. B, 74, No. 5: 052405 (2006). Crossref
  23. M. E. Pronsato, G. Brizuela, and A. Juan, J. Phys. Chem. Solids, 64: 593 (2003). Crossref
  24. S. Simonetti, L. Moro, N. E. Gonzalez, G. Brizuela, and A. Juan, Int. J. Hydrogen Energy, 29: 649 (2004). Crossref
  25. S. Mikhaylushkin et al., Second International Symposium on Hydrogen in Matter—ISOHIM (Eds. G. R. Myneni and B. Hjorvarsson) (2006), vol. 164, CP837.
  26. A. E. Krasovskii, Phys. Rev. B, 60, No. 18: 12788 (1999). Crossref
  27. J. Perdew, K. Burke, and M. Ernzhofer, Phys. Rev. Lett., 77, No. 18: 3865 (1996). Crossref
  28. A. E. Krasovskii, Phys. Rev. B, 67, No. 7: 134407 (2003). Crossref
  29. M. A. Blanco, E. Francisco, and V. Lua-a, Comput. Phys. Commun., 158: 57 (2004). Crossref
  30. J. P. O'Connell and J. M. Haile, Thermodynamics. Fundamentals for Applications (New York: Cambridge University Press: 2005). Crossref
  31. G. M. Anderson, Thermodynamics of Natural Systems. 2nd Edition (New York: Cambridge University Press: 2005). Crossref
  32. L. D. Landau, E. M. Lifshits, Statisticheskaya fizika. Ch. 1. (Moskva: Nauka: 1976).
  33. H.-K. Mao and R. J. Hemley, Rev. Mod. Phys., 66, No. 2: 671 (1994). Crossref
  34. W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys., 73, No. 1: 33 (2001). Crossref
  35. K. Matsuishi, E. Gregoryanz, Ho-kwang Mao, and R. J. Hemley, J. Chem. Phys., 118, No. 23: 10683 (2003). Crossref
  36. P. Vinet, J. Ferrante, J. Rose, and J. Smith, J. Geophys. Res., 92: 9319 (1987͒).
  37. I. D. M. Ceperley and B. J. Adler, Phys. Rev. B, 36, No. 4: 2092 (1987). Crossref
  38. I. F. Silvera, Rev. Mod. Phys., 52, No. 2: 393 (1980). Crossref
  39. I. F. Silvera and R.J. Wijngaarden, Phys. Rev. Lett., 47: 39 (1981). Crossref
  40. E. G. Maksimov, Yu. I. Shilov, Uspekhi Fiz. Nauk, 19, No. 11: 1223 (1999). Crossref
  41. Y. Fukai and H. Suigimoto, Trans. Japan Inst. Metals, 24, No. 11: 733 (1983). Crossref
  42. D. Y. Kim et al., Phys. Rev. Lett., 107: 117002 (2011). Crossref
  43. V. E. Antonov et al., J. Phys.: Condens. Matter, 14: 6427 (2002). Crossref