Nitrogenated Carbon Nanotubes: Methods of Fabrication, Properties, and Prospect of Application

L. L. Kondratenko$^{1}$, O. V. Mykhailenko$^{1}$, Yu. I. Prylutskyy$^{1}$, T. M. Radchenko$^{2}$, V. A. Tatarenko$^{2}$

$^1$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 10.06.2010; final version — 24.09.2010. Download: PDF

A compilation of data on a structure, basic methods of fabrication, mechanical and electrical properties of nitrogen-containing carbon nanotubes (N–CNT), which make possible their use in a nanotechnology, is presented. Depending on the N–CNT configuration, their thermodynamic stability is studied using the molecular dynamics and Monte Carlo methods. Possible ordered configurations of substitutional dopant (N) atoms and kinetics of their ordering in a graphene-based lattice are considered.

Keywords: Nitrogen-containing carbon nanotubes, chemical synthesis methods, mechanical and electrical properties, molecular dynamics and Monte-Carlo methods, doping of graphene lattice, atomic ordering.

PACS: 61.48.-с,68.37.-d,72.80.Rj,78.30.Na,79.70.+q,81.05.U-,81.16.Be

Citation: L. L. Kondratenko, O. V. Mykhailenko, Yu. I. Prylutskyy, T. M. Radchenko, and V. A. Tatarenko, Nitrogenated Carbon Nanotubes: Methods of Fabrication, Properties, and Prospect of Application, Usp. Fiz. Met., 11, No. 3: 369–411 (2010) (in Ukrainian), doi: 10.15407/ufm.11.03.369


References (70)  
  1. S. Iijima, Nature, 354: 56 (1991). Crossref
  2. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (New York: Academic Press: 1996).
  3. P. J. F. Harris, Carbon Nanotubes and Related Structures (Cambridge: Cambridge University Press: 1999). Crossref
  4. Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. Series: Carbon Materials: Chemistry and Physics. Vol. 1 (New York: Springer: 2008).
  5. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306: 666 (2004). Crossref
  6. L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett., 76: 971 (1996). Crossref
  7. H. W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, and J. Dekker, Science, 293: 76 (2001). Crossref
  8. A. V. Eletskii, UFN, 167: 945 (1997). Crossref
  9. E. J. Fischer and A. T. Johnson, Curr. Opt. Solid St. Mater. Sci., 4: 28 (1999). Crossref
  10. A. V. Eletskii, UFN, 177: 233 (2007). Crossref
  11. G. Y. Zhang, X. C. Ma, D. Y. Zhong, and E. G. Wang, J. Appl. Phys., 91: 9324 (2002). Crossref
  12. T. M. Minea, S. Point, A. Granier, and M. Touzeau, J. Appl. Phys., 85: 1244 (2004).
  13. B. O. Boskovic, V. B. Golovko, M. Cantoro, B. Kleinsorge, A. T. H. Chuang, C. Ducati, S. Hofmann, J. Robertson, and B. F. G. Johnson, Carbon, 43: 2643 (2005). Crossref
  14. S. Point, T. Minea, M.-P. Besland, and A. Granier, Eur. Phys. J. Appl. Phys., 34: 157 (2006). Crossref
  15. N. Q. Zhao, C. N. He, X. W. Du, C. S. Shi, J. J. Li, and L. Cui, Carbon, 44: 1859 (2006). Crossref
  16. E. G. Wang, J. Mater. Res., 21: 2767 (2006). Crossref
  17. J. Yu and E. G. Wang, Lecture Notes in Nanoscale Science and Technology. Vol. 6 (New York: Springer: 2009).
  18. S. Ma, V. S. Srikanth, D. Maik, G. Y. Zhang, T. Staedler, and X. Jiang, J. Appl. Phys., 94: 5592 (2009).
  19. X. W. Liu, L. H. Chan, K. H. Hong, and H. C. Shih, Thin Sol. Films, 420–421: 212 (2002). Crossref
  20. S. Maldonado, S. Morin, and K. J. Stevenson, Carbon, 44: 1429 (2006). Crossref
  21. E. N. Nxumalo and N. J. Coville, J. Mater., 3: 2141 (2010). Crossref
  22. L. H. Chan, K. H. Hong, D. Q. Xiao, T. C. Lin, S. H. Lai, and W. J. Hsieh, Phys. Rev. B, 70: 408 (2004).
  23. F. L. Normand, J. Hommet, T. Szörényi, C. Fuchs, and E. Fogarassy, Phys. Rev. B, 64: 416 (2001).
  24. G. J. Pap, I. Bertóti, T. Szörényi, and P. Heszler, Surf. Coat. Tech., 180: 271 (2004). Crossref
  25. P. Gao, J. Xu, Y. Piao, W. Ding, D. Wang, X. Deng, and C. Dong, Surf. Coat. Tech., 201: 5298 (2007). Crossref
  26. L. G. Bulusheva, A. V. Okotrub, A. G. Kudashov, E. M. Pazhetnov, A. I. Boronin, and D. V. Vyalikh, Phys. Stat. Sol. (b), 244: 4078 (2007). Crossref
  27. L. G. Bulusheva, A. V. Okotrub, I. A. Kinloch, I. P. Asanov, A. G. Kurenya, A. G. Kudashov, X. Chen, and H. Song, Phys. Stat. Sol. (b), 245: 1971 (2008). Crossref
  28. D. Wei, Y. Liu, Yu. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett., 9: 1752 (2009). Crossref
  29. D. H. Lee, W. J. Lee, and S. O. Kim, Nano Lett., 9: 1427 (2009). Crossref
  30. D. H. Lee, W. J. Lee, and S. O. Kim, Chem. Mater., 21: 1368 (2009). Crossref
  31. V. O. Khavrus, A. Leonhardt, S. Hampel, Ch. Taschner, Ch. Muller, W. Gruner, S. Oswald, P. E. Strizhak, and B. Buchner, Carbon, 45: 2889 (2007). Crossref
  32. J. L. Bantignies, M. R. Babaa, L. Alvarez, P. Parent, F. Le Normand, O. Stephan, P. Poncharal, A. Loiseau, and B. Doyle, J. Nanosci. Nanotech., 7: 3524 (2007).
  33. C. Ducati, K. Koziol, S. Friedrichs, T. J. V. Yates, M. S. Shaffer, P. A. Midgley, and A. H. Windle, Small, 2: 774 (2008). Crossref
  34. P. Ghosh, M. Zamri, M. Subramanian, T. Soga, T. Jimbo, R. Katoh, and M. Tanemura, J. Phys. D: Appl. Phys., 41: 405 (2008).
  35. R. Droppa, P. Hammer, A. C. M. Carvalho, M. C. dos Santos, and F. Alvarez, J. Non-Cryst. Sol., 299: 874 (2002).
  36. T. Mu, J. Huang, Z. Liu, Z. Li, and B. Han, J. Mater. Res., 19: 1736 (2004). Crossref
  37. C. Morant, J. Andrey, P. Prieto, D. Mendiola, J. M. Sanz, and E. Elizalde, Phys. Stat. Sol. (a), 6: 1069 (2006). Crossref
  38. J. Li, C. Cao, and H. Zhu, Nanotech., 18: 11 (2007). Crossref
  39. S. van Dommele, A. Romero-Izquirdo, R. Brydson, K. P. de Jong, and J. H. Bitter, Carbon, 46: 138 (2008). Crossref
  40. A. V. Okotrub, L. G. Bulusheva, A. G. Kudashov, V. V. Belavin, D. V. Vyalikh, and S. L. Molodtsov, J. Appl. Phys., 94: 3 (2009).
  41. R. M. Yadav, P. S. Dobal, T. Shripathi, R. S. Katiyar, and O. N. Srivastava, Nanoscale Res. Lett., 4: 3 (2009). Crossref
  42. J. P. Paraknowitsch, J. Zhang, D. Su, A. Thomas, and M. Antonietti, Carbon Adv. Mater., 22: 87 (2009). Crossref
  43. B. I. Yakobson and L. S. Couchman, Carbon Nanotubes: Supramolecular Mechanics. 2nd edition (Dekker Encyclopaedia of Nanoscience and Nanotechnology: 2009).
  44. R. Czerw, M. Terrones, J.-C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, and D. L. Carroll, Nano Lett., 1: 457 (2001). Crossref
  45. M. Terrones, Small, 1: 1032 (2005). Crossref
  46. S. H. Lim, R. Li, W. Ji, and J. Lin, Phys. Rev. B, 76: 19 (2007). Crossref
  47. C.-L. Sun, H.-W. Wang, M. Hayashi, L.-C. Chen, and K.-H. Chen, J. Am. Chem. Soc., 128: 8368 (2006). Crossref
  48. H. Gades and H. M. Urbassek, Nucl. Instr. and Meth., 69: 232 (1992). Crossref
  49. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge, UK: Cambridge University Press: 1995).
  50. J. Tersoff, Phys. Rev. B, 39: 5566 (1989). Crossref
  51. S. Dorfman, K. C. Mundim, and D. Fuks, Mater. Sci. Eng. C, 15: 191 (2001). Crossref
  52. H. S. Ahn, S.-C. Lee, S. Han, K.-R. Lee, and D.-Y. Kim, J. Nanotech., 17: 909 (2006).
  53. M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, and E. Hernandez, J. App. Phys., 11: 165 (2008).
  54. K. Sanjay, V. Srivastava, V. D. Vankar, V. Kumar, and V. N. Singh, Nanoscale Res. Lett., 3: 205 (2008). Crossref
  55. C. Wang, L. Qiao, C. Qu, W. Zheng, and Q. Jiang, J. Phys. Chem. C, 113: 812 (2009). Crossref
  56. Y.-M. Choi, D.-S. Lee, R. Czerw, P.-W. Chiu, N. Grobert, M. Terrones, M. Reyes-Reyes, H. Terrones, J.-C. Charlier, P. M. Ajayan, S. Roth, D. L. Carroll, and Y.-W. Park, Nano Lett., 3: 839 (2003). Crossref
  57. 1007/978-3-540-72865-8_17
  58. H. Kumar, B. Viswanathan, and S. S. Murthy, Int. J. Hydrogen Energy, 33: 366 (2007). Crossref
  59. Sunil Kumar Pandey, Rajesh Kumar Singh, O.N. Srivastava, Int. J. Hydrogen Energy, 34: 9379 (2007). Crossref
  60. Іnformation at http://en.wikipedia.org/wiki/Graphene.
  61. T. M. Radchenko, Metallofiz. Noveishie Tekhnol., 30, No. 8: 1021 (2008).
  62. T. M. Radchenko, V. A. Tatarenko, Nanosistemi, Nanomaterіali, Nanotehnologії, 6, No. 3: 867 (2008).
  63. T. M. Radchenko and V. A. Tatarenko, Solid State Phenom., 150: 43 (2009). Crossref
  64. T. M. Radchenko and V. A. Tatarenko, Solid State Sci., 12, No. 2: 204 (2010). Crossref
  65. T. M. Radchenko and V. A. Tatarenko, Physica E, 42, No. 8: 2047 (2010). Crossref
  66. I. Yu. Sagalianov, Yu. I. Prylutskyy, T. M. Radchenko, and V. A. Tatarenko, Usp. Fiz. Met., 11, No. 1: 95 (2010). Crossref
  67. T. M. Radchenko and V. A. Tatarenko, Int. J. Hydrogen Energy, 36, No. 1: 1338 (2011). Crossref
  68. A. G. Khachaturyan, Teoriya fazovykh prevrashchenii i struktura tverdykh rastvorov (Moskva: Nauka: 1974).
  69. A. G. Khachaturyan, Theory of Structural Transformations in Solids (New York: John Wiley & Sons: 1983).
  70. T. M. Radchenko, V. A. Tatarenko, Nanosistemi, Nanomaterіali, Nanotehnologії, 8, No. 3: 623 (2010).