Physics of Microyield of Magnesium Alloys with Titanium

V. G. Tkachenko$^{1}$, K. H. Kim$^{2}$, B. G. Moon$^{2}$, O. I. Dekhtyar$^{3}$, O. P. Karasevska$^{3}$, O. S. Vovchok$^{1}$

$^1$Centre of Electronic Materials Science and Applied Problems Aerospace Technology, 3 Academician Krzhizhanovskoho Str., UA-03680 Kyiv-142, Ukraine
$^2$Korea Institute of Materials Science, Changwon, 641-831 Gyeongnam, 531 Changwondaero, Republic of Korea
$^3$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 26.01.2010. Download: PDF

Softening effect of grain-boundary sliding (GBS) in h.c.p. $\alpha$-Mg polycrystals arises in the stress—temperature ranges of interest for automotive applications. Furthermore, decomposition of the oversaturated $\alpha$-Mg solid solution is accompanied by apparition of a microstructure, which is unstable during a creep. These two main effects deteriorate most likely the microyield resistance and long-term strength of magnesium alloys of Mg—Al—Mn and Mg— Al—Zn systems. According to the data of internal-friction measurements, the introduction of Ca suppresses GBS that gives rise to the GB strengthening of the ternary Mg—Al—Ca system. An introduction of small additions of Ti (about 0.1—0.2%) causes significant solid-solution strengthening due to solute-atmosphere retardation of moving dislocations by the Cottrell mechanism with binding energy of about 0.27 eV. The idea of dynamical self-strengthening of $\alpha$-Mg matrix during the creep is also supported by precise x-ray diffractometry. As deduced, observed high microyield resistance and excellent long-term strength of the magnesium alloys of Mg—Al—Ca system containing inexpensive additions of Ti are due to minimizing recovery and softening effects at elevated temperatures at the expense of thermal phase-composition and concentration stabilization of $\alpha$-Mg solid solution. Thermally-activated dislocation relaxation accommodated by the diffusion of alloying elements (Al, Ca, Ti in their best combination) should be considered as dominant (rate-controlled) microyield mechanism, which provides creep strain rate of $10^{−9}—10^{−10}$ s$^{−1}$. Its activation increases essentially (by 150—200°C) the heat resistivity of new experimental alloys.

Keywords: microyielding, retardation of mobile dislocations, magnesium alloy, titanium, long-term strength.

PACS: 61.05.cp, 61.72.Ff, 61.72.Hh, 62.20.Hg, 62.40.+i, 81.40.Jj, 81.40.Lm


Citation: V. G. Tkachenko, K. H. Kim, B. G. Moon, O. I. Dekhtyar, O. P. Karasevska, and O. S. Vovchok, Physics of Microyield of Magnesium Alloys with Titanium, Usp. Fiz. Met., 11, No. 2: 249—272 (2010) (in Russian), doi: 10.15407/ufm.11.02.249

References (28)  
  1. V. R. Regel', A. I. Slutskii, E. B. Tomashevskii, Kineticheskaya priroda prochnosti tverdykh tel (Moskva: Nauka: 1974).
  2. A. V. Stepanov, Osnovy prakticheskoi prochnosti kristallov (Moskva: Nauka: 1974).
  3. K. A. Osipov, Voprosy teorii zharoprochnosti metallov (Moskva: Izd-vo AN SSSR: 1960).
  4. Zh.-P. Puar'e, Polzuchest' kristallov. Mekhanizmy deformatsii metallov, keramiki i mineralov pri vysokikh temperaturakh (Moskva: Mir: 1988); J.-P. Poirier, Creep of Crystals (Cambridge: University Press: 1987).
  5. V. G.Tkachenko, I. N. Maksimchuk, V. I.Trefilov, DAN SSSR, 320, No. 3: 615 (1991).
  6. V. G.Tkachenko, I. N. Maksimchuk, V. I. Trefilov, DAN SSSR, 320, No. 3: 873 (1991).
  7. V. G. Tkachenko, Usp. Fiz. Met., 10, No. 1: 103 (2009). Crossref
  8. B. Ya. Lyubov, Teoriya kristallizatsii v bol'shikh ob"emakh (Moskva: Nauka: 1975).
  9. N. F. Mott, Proc. Roy. Soc. A, 220: 1 (1953). Crossref
  10. K. A. Osipov, Issledovaniya po zharoprochnym splavam (Moskva: Izd-vo AN SSSR: 1956).
  11. A. Das and E. J. Mittemeijer, Metallurg. and Mater. Trans. A, 31: 2049 (2000).
  12. A. Taylor, X-Ray Metallography (New York: John Wiley and Sons. Inc.: 1961).
  13. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Berlin–Heidelberg: Springer-Verlag: 1996). Crossref
  14. V. G. Tkachenko, I. N. Maksimchuk, P. Yu. Volosevich et al., High Temperature Materials and Processes, 25, No. 1–2: 97 (2006).
  15. V. G. Tkachenko, I. I. Shuljak, A. M. Strutinsky et al., Hydrogen Materials Science and Chemistry of Metal Hydrides (Eds. N. Veziroglu et al.) (Dordrecht, Netherlands: Kluwer Academic Publ.: 2002), p. 77. Crossref
  16. M. A. Krishtal, S. A. Golovin, Vnutrennee trenie i struktura metallov (Moskva: Metallurgiya: 1976).
  17. B. Ya. Pines, A. A. Karmazin, Fiz. Met. Metalloved., 22, No. 4: 532 (1966).
  18. V. G. Tkachenko, V. G. Khoruzhya, K. A. Meleshevich et al., Powder Metallurgy and Metal Ceramics, 42, No. 5–6: 268 (2003).
  19. Ke Tin Sui, Uprugost' i neuprugost' metallov (Moskva: Inostr. lit.: 1954), s. 9.
  20. J. Deleplace, J. C. Nicond, and L. Trabut, J. Nucl. Mater., 35, No. 2: 167 (1970). Crossref
  21. K. A. Osipov, Voprosy teorii zharoprochnosti metallov i splavov (Moskva: Izd-vo AN SSSR: 1960).
  22. R. G. Davies and R. C. Ku, Trans. Met. Soc. AIME, 236, No. 7: 1691 (1966).
  23. H. A. Calderon and G. Kostorz, Mater. Sci. Eng. A, 160, No. 2: 189 (1993). Crossref
  24. J. L. Murray, Bull. Alloy Phase Diagrams, 7, No. 3: 1554 (1986). Crossref
  25. M. O. Pekguleryuz and A. A. Kaya, Proc. of the 6th Int. Conf. 'Magnesium Alloys and Their Applications' (Nov. 18–20, 2003) (Ed. K. U. Kainer) (Weinheim: Wiley–VCH: 2004), p. 74.
  26. Zh. Fridel', Dislokatsii (Moskva: Mir: 1967).
  27. F. Garofalo, Zakony polzuchesti i dlitel'noi prochnosti metallov (Moskva: Metallurgiya: 1968).
  28. F. Garofalo, Trans. AIME, 230: 1400 (1964).
Cited By (2)
  1. V. G. Tkachenko, Usp. Fiz. Met. 17, 173 (2016).
  2. I. M. Maksymchuk, V. G. Tkachenko, O. S. Vovchok, N. P. Medalovych et al., Metallofiz. Noveishie Tekhnol. 36, 1 (2016).