Laser-Assisted Modification of a Surface of Titanium Implants

M. O. Vasyliev, M. M. Nyshchenko, P. O. Gurin

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 27.01.2010. Download: PDF

Basic materials for the dental and orthopaedic implants production are commercially pure titanium and titanium alloys. Currently, the different methods of the metallic-surface treatments are developed for the purpose of their biocompatible-properties improvement and acceleration of the healing process of titanium implants. These methods are based on the morphological or biochemical modification of physical, chemical and mechanical properties, in particular, changes of surface energy, surface charge, chemical composition, and surface topography. Lately, there is a new prospective area related to the use of laser technology for treatment of the metallic materials for the purpose of improvement of biocompatible, tribology and corrosive characteristics of metallic-implants surface. By such a technology, it is possible to solve a problem of the surface-properties complex modification, in particular, for titanium implants. In a given review, the analysis of works dealing with the researches of an influence of the laser treatment of titanium-implants surface with regard to different aspects of the biocompatibility problem (for in vitro and in vivo experiments) is carried out. The goal of this review is an acquaintance of readers with some works of the last years undertaken by foreign authors in area of the laser-assisted modification of a structure, physicochemical and physical-mechanical properties of a surface of titanium implants as well as researches of both their influence on the behaviour of cell cultures and their interplays with bone tissues. An offered review does not claim to be exhaustive analysis of all known publications in this area. The primary aim of this review lies in demonstration of the most successful areas of the laser-radiation application for increase of the biocompatible-properties complex of titanium implants.

Keywords: titanium, implants, biocompatibility, surface, laser processing.

PACS: 62.20.Qp, 79.20.Eb, 81.15.Fg, 81.16.Mk, 81.40.Wx, 81.65.-b, 87.85.J-

DOI: https://doi.org/10.15407/ufm.11.02.209

Citation: M. O. Vasyliev, M. M. Nyshchenko, and P. O. Gurin, Laser-Assisted Modification of a Surface of Titanium Implants, Usp. Fiz. Met., 11, No. 2: 209—247 (2010) (in Russian), doi: 10.15407/ufm.11.02.209


References (70)  
  1. V. S. Onishchenko, R. R. Іlik, Vіsnik stomatologії, No. 4: 716 (1997).
  2. R. R. Іlik, Sovremennaya stomatologiya, No. 3: 62 (1998).
  3. R. R. Іlik, Sovremennaya stomatologiya, No. 3: 65 (1998).
  4. A. M. Potapchik, Ortopediya, travmatologiya i protezirovanie, No. 3: 34 (1998).
  5. R. R. Іlik, Vіsnik stomatologії, No. 1: 55 (1999).
  6. V. S. Onishchenko, R. R. Іlik, Novini stomatologії, No. 1: 16 (1999).
  7. S. Yu. Ivanov, A. F. Bizyaev, M. V. Lomakin et al., Stomatologicheskaya implantologiya (Moskva: GOU VUNMTs MZ RF: 2000).
  8. Ya. Zablotskii, Іmplantatsіya v neznіmnomu protezuvannі (L'vіv: GalDent: 2006).
  9. S. A. Balabannikov, N. A. Nochevnaya, I. V. Gaiduk, Stomatologicheskaya implantologiya (Moskva: GOU VUNMTs MZ RF: 2000).
  10. V. L. Paraskevich, Dental'naya implantologiya (Minsk: OOO "Meditsinskoe informatsionnoe agentstvo": 2006).
  11. S. P. Oshkaderov, Materialy dlya meditsiny. Neorganicheskoe materialovedenie (Red. G. G. Gnesin, V. V. Skorokhod) (Kiev: Naukova dumka: 2008), s. 629.
  12. A. I. Igolkin, Titan, No. 1: 86 (1993).
  13. A. A. Prokhonchukov, A. I. Smirnov, V. I. Rebrov et al., Stomatologiya, No. 3: 43 (1999).
  14. A. A. Prokhonchukov, N. A. Zhizhina, Lazery v stomatologii (Moskva: Meditsina: 1986), s. 176.
  15. I. Ya. Dekhtyar, M. M. Nishchenko, Yu. N. Petrov, Metallofizika, 68: 42 (1977).
  16. I. Ya. Dekhtyar, M. M. Nishchenko, Metallofizika, 4: 29 (1982).
  17. M. M. Nishchenko, Metallofizika, 14: 39 (1993).
  18. M. M. Nishchenko, B. P. Kovalyuk, Yu. N. Nikiforov, Metallofiz. Noveishie Tekhnol., 26, No. 9: 1227 (2004).
  19. M. M. Nishchenko, M. A. Vasil'ev, S. I. Sidorenko, S. M. Voloshko, N. Yu. Vilkova, Metallofiz. Noveishie Tekhnol., 23: 983 (2001).
  20. M. M. Nishchenko, M. A. Vasil'ev, S. I. Sidorenko, S. M. Voloshko, N. Yu. Vilkova, Metallofiz. Noveishie Tekhnol., 24: 203 (2002).
  21. M. M. Nishchenko, M. A. Vasil'ev, S. I. Sidorenko, S. M. Voloshko, N. Yu. Vilkova, Metallofiz. Noveishie Tekhnol., 25: 603 (2003).
  22. M. O. Vasil'єv, P. A. Gurin, V. S. Fіlatova, Naukovii vіsnik Uzhgorods'kogo unіversitetu. Ser. Fіzika, No. 17: 87 (2005).
  23. E. Gyorgy, A. Perez del Pino, P. Serra et al., Appl. Surf. Sci., 197–198: 851 (2002). Crossref
  24. M. Bereznaia, I. Pelsoczi, Z. Toth et al., Biomaterials, 24: 4197 (2003). Crossref
  25. M. Tsukamotoa, K. Asukab, H. Nakanoc et al., Vacuum, 80: 1346 (2006). Crossref
  26. W. Xue, B. Vamsi Krishna, A. Bandyopadhyay, and S. Bose, Acta Biomaterialia, 3: 1007 (2007). Crossref
  27. F. J. C. Braga and F. C. Rodrigo, Appl. Surf. Sci., 253: 9203 (2007). Crossref
  28. A. Y. Vorobyev and C. Guo, Appl. Surf. Sci., 253: 7272 (2007). Crossref
  29. V. Oliveira, S. Ausset, and R. Vilar, Appl. Surf. Sci., 255: 7556 (2009). Crossref
  30. H. Li, S. Costil, V. Barnier et al., Surf. Coat. Technol., 201: 1383 (2006). Crossref
  31. M. E. Khosroshahi, M. Mahmoodi, and J. Tavakoli, Appl. Surf. Sci., 253: 8772 (2007). Crossref
  32. A. Zielińskia, M. Jażdżewska, A. Narożniak-Łuksza, and W. Serbiński, J. Achievements in Materials and Manufacturing Engineering, 18: 123 (2006).
  33. A. Y. Fasasi, S. Mwenifumbo, N. Rahbar et al., Mater. Sci. Eng. C, 29: 5 (2009). Crossref
  34. L. Hao, J. Lawrence, and L. Li, Appl. Surf. Sci., 247: 602 (2005). Crossref
  35. D. A. Hollandera, M. von Waltera, T. Wirtzb et al., Biomaterials, 27: 955 (2006). Crossref
  36. J. Lawrence, L. Hao, and H. R. Chew, Surf. Coat. Technol., 200: 5581 (2006). Crossref
  37. N. Mirhosseini, P. L. Crouse, M. J. J. Schmidth et al., Appl. Surf. Sci., 253: 7738 (2007). Crossref
  38. R. Banerjee, S. Nag, and H. L. Fraser, Mater. Sci. Eng. C, 25: 282 (2005). Crossref
  39. X. D. Zhang, C. Brice, D. W. Mahaffey et al., Scripta Mater., 44: 2419 (200).
  40. K. I. Schwendner, R. Banerjee, P. C. Collins et al., Scripta Mater., 45: 1123 (2001). Crossref
  41. R. Banerjee, P. C. Collins, A. Gen, and H. L. Fraser, Mater. Sci. Eng. A, 358: 343 (2003). Crossref
  42. W. Xue, B. Vamsi Krishna, A. Bandyopadhyay, and S. Bose, Acta Biomaterialia., 3: 1007 (2007). Crossref
  43. J. Chen, J. P. Ulerich, E. Abelev et al., Mater. Sci. Eng. C, 29: 1442 (2009). Crossref
  44. C. Hallgrena, H. Reimersb, D. Chakarovb et al., Biomaterials, 24: 701 (2003). Crossref
  45. S.-A. Cho and S.-K. Jung, Biomaterials, 24: 4859 (2003). Crossref
  46. A. Karacsa, A. Joob Fancsaly, T. Divinyi et al., Mater. Sci. Eng. C, 23: 431 (2003). Crossref
  47. Sh.-H. Hsu, B.-Sh. Liu, W.-H. Lin et al., Bio-Med. Mater. Eng., 17: 53 (2007).
  48. G. Peto, A. Karacs, Z. Paszti et al., Appl. Surf. Sci., 186: 7 (2002). Crossref
  49. M. Muller, F.F. Hennig, T. Hothornc et al., J. Biomechanics, 39: 2123 (2006). Crossref
  50. H. E. Gotza, M. Muller, A. Emmelc et al., U. Biomaterials, 25: 4057 (2004). Crossref
  51. M. Rong, L. Zhou, Z. Gou et al., J. Mater. Sci.: Mater. Med., 20: 1721 (2009). Crossref
  52. N. Moritza, S. Arevab, J. Wolked, and T. Peltolaa, Biomaterials, 26: 4460 (2005). Crossref
  53. K. Das, V. Krishna Balla, A. Bandyopadhyay, and S. Bose, Scripta Materialia, 59: 822 (2008). Crossref
  54. J. M. Fernandez-Pradas, L. Cleries, G. Sardin, and J. L. Morenza, Biomaterials, 23: 1989 (2002). Crossref
  55. O. Blinda, L. H. Kleinb, B. Daileya, and L. Jordan, Dent. Mater., 21: 1017 (2005). Crossref
  56. N. Mirhosseini, P. L. Crouse, L. Li, and D. Garrod, Appl. Surf. Sci., 253: 7998 (2007). Crossref
  57. M. Roy, B. Vamsi Krishna, A. Bandyopadhyay, and S. Bose, Acta Biomaterialia, 4: 324 (2008). Crossref
  58. M. Zheng, D. Fan, X.-K. Li et al., Appl. Surf. Sci., 255: 426 (2008). Crossref
  59. H. Katayama, M. Katto, and T. Nakayama, Surf. Coat. Technol., 204: 135 (2009). Crossref
  60. T. Nakayama, M. Kuwata, and T. Matsutani, Chinese Journal of Laser B, 10: 1 (2001).
  61. M. Katto, M. Nakamura, T. Tanaka, and T. Nakayama, Appl. Surf. Sci., 197–198: 768 (2002). Crossref
  62. M. Katto, M. Nakamura, T. Tanaka et al., Surf. Coat. Technol., 169–170: 712 (2003). Crossref
  63. T. Nakayama, T. Tanaka, Y. Tsumoto et al., Appl. Phys. A, 79: 833 (2004). Crossref
  64. H. Katayama, K. Ishibashi, M. Dodo et al., IEEJ Trans. EIS, 126: 1283 (2006). Crossref
  65. A. Perez del Pino, P. Serra, and J. L. Morenza, Appl. Surf. Sci., 197–198: 887 (2002). Crossref
  66. Z. Sun, I. Annergren, D. Pan, and T. A. Mai, Mater. Sci. Eng. A, 345: 293 (2003). Crossref
  67. T. M. Yue, J. K. Yu, Z. Mei, and H. C. Man, Materials Letters, 52: 206 (2002). Crossref
  68. N. Zaveri, M. Mahapatra, A. Deceuster et al., Electrochimica Acta, 53: 5022 (2008). Crossref
  69. M. C. Marco de Lucas, L. Lavisse, and G. Pillon, Tribology International, 41: 985 (2008). Crossref
  70. I. Watanabe, M. McBride, P. Newton, and K. S. Kurtz, Dent. Mater., 25: 629 (2009). Crossref
Cited By (1)
  1. O.O. Havryliuk and O.Yu. Semchuk, Ukr. J. Phys. 62, 20 (2017).