Graphene Systems: Methods of Fabrication and Treatment, Structure Formation, and Functional Properties

I. Yu. Sagalyanov$^{1}$, Yu. I. Prylutskyy$^{1}$, T. M. Radchenko$^{2}$, V. A. Tatarenko$^{2}$

$^1$Taras Shevchenko National University of Kyiv, 60 Volodymyrska Str., UA-01033 Kyiv, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 12.01.2010; final version — 04.03.2010. Download: PDF

The literary data on the structure, basic methods of fabrication and treatment as well as physical properties of graphene, including a doped one, which enable use of it as a functional nanomaterial, are reviewed. Ordered distributions of substitutional atoms over the sites of a two-dimensional honeycomb lattice at different compositions and temperatures are described theoretically. The ranges of values of interatomic-interaction energy parameters promoting the low-temperature stability of graphene-based superstructures are determined. Even the short-range interatomic interactions provide a stability of some superstructures, while the long-range interactions only stabilize other ones. The competition of intrasublattice and intersublattice interatomic interactions and the domination of the last ones (by energies) enable a time nonmonotony of the atomic-order-parameter relaxation.

Keywords: honeycomb lattice, graphene, doping, impurity, interatomic interactions, long-range atomic order, energy stability.

PACS: 61.48.Gh,63.22.Rc,65.80.Ck,68.65.Pq,72.80.Vp,73.22.Pr,78.67.Wj,81.05.ue

Citation: I. Yu. Sagalyanov, Yu. I. Prylutskyy, T. M. Radchenko, and V. A. Tatarenko, Graphene Systems: Methods of Fabrication and Treatment, Structure Formation, and Functional Properties, Usp. Fiz. Met., 11, No. 1: 95–138 (2010) (in Ukrainian), doi: 10.15407/ufm.11.01.095


References (149)  
  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306: 666 (2004). Crossref
  2. R. F. Curl, Rev. Mod. Phys., 69: 691 (1997). Crossref
  3. H. Kroto, Rev. Mod. Phys., 69: 703 (1997). Crossref
  4. R. E. Smalley, Rev. Mod. Phys., 69: 723 (1997). Crossref
  5. S. Iijima, Nature, 354: 56 (1991). Crossref
  6. Іnformation at http://en.wikipedia.org/wiki/Graphene.
  7. R. E. Peierls, Ann. Inst. Henri Poincare, 5: 177 (1935).
  8. L. D. Landau, Phys. Z. Sowjetunion, 11: 26 (1937).
  9. R. Peierls, Surprises in Theoretical Physics (Princeton, New Jersey: Princeton University Press: 1979); R. Paierls, Syurprizy v teoreticheskoi fizike (Moskva: Nauka: 1988).
  10. N. D. Mermin and H. Wagner, Phys. Rev. Lett., 17, No. 22: 1133 (1966). Crossref
  11. D. R. Nelson and B. I. Halperin, Phys. Rev. B, 19, No. 5: 2457 (1979). Crossref
  12. A. P. Young, Phys. Rev. B, 19, No. 4: 1855 (1979). Crossref
  13. J. M. Kosterlitz and D. I. Thouless, J. Phys. C: Solid State Phys., 6, No. 7: 1181 (1973). Crossref
  14. V. L. Berezinskii, ZhETF, 59: 907 (1970).
  15. V. N. Ryzhov, E. E. Tareeva, Teor. mat. fiz., 73, No. 3: 463 (1987).
  16. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad. Sci. USA, 102: 10451 (2005). Crossref
  17. X. Ma, Q. Wang, L.-Q. Chen, W. Cermignani, H. H. Achobert, and C. G. Pantano, Carbon, 35, No. 1011: 1517 (1997).
  18. R. H. Miwa, T. B. Martins, and A. Fazzio, Nanotechnology, 19: 155708 (2008). Crossref
  19. D. Wei, Y. Liu, Yu Wang, H. Zhang, L. Huangi, and G. Yu, Nano Lett., 9: 1752 (2009). Crossref
  20. Information at http://www.edn.com/search/siteall?q=graphene.
  21. T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, and N. T. Skipper, Nature Phys., 1: 39 (2005).
  22. N. Emery, C. Hérold, M. d'Astudo, V. Garcia, Ch. Bellin, J.F. Marêché, P. Lagrange, and G. Loupias, Phys. Rev. Lett., 95: 087003 (2005). Crossref
  23. A. Gauzzi, S. Takashima, N. Takeshita, C. Terakura, H. Takagi, N. Emery, C. Hérold, P. Lagrange, and G. Loupias, Phys. Rev. Lett., 98: 067002 (2007). Crossref
  24. K. S. Novoselov and A. K. Geim, Nature Mater., 6: 183 (2007). Crossref
  25. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B, 108: 19912 (2004). Crossref
  26. M. Calandra and F. Mauri, Phys. Rev. B, 76: 161406 (2007). Crossref
  27. J. L. McChesney, A. Bostwick, T. Ohta, K. V. Emtsev, T. Seyller, K. Horn, and E. Rotenberg, arXiv:0705.3264v1 [cond-mat.str-el].
  28. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Gregorieva, S. V. Dubonos, A. A. Firsov, Nature, 438: 197 (2005). Crossref
  29. S. Y. Zhou, G.-H. Gweon, C. D. Spataru, J. Graf, D.-H. Lee, S. G. Louie, and A. Lanzara, Phys. Rev. B, 71: 161403 (2005). Crossref
  30. S. Y. Zhou, G.-H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.-H. Lee, S. G. Louie, and A. Lanazara, Nature Phys., 2: 595 (2006). Crossref
  31. A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg, Nature Phys., 3: 36 (2007). Crossref
  32. M. Calandra and F. Mauri, Phys. Rev. Lett., 95: 237002 (2005). Crossref
  33. W.-K. Tse and S. D. Sarma, Phys. Rev. Lett., 99: 236802 (2007). Crossref
  34. C.-H. Park, F. Giustino, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett., 99: 086804 (2007). Crossref
  35. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett., 91: 063124 (2007). Crossref
  36. D. S. L. Abergel, A. Russell, and V. I. Fal'ko, Appl. Phys. Lett., 91: 063125 (2007). Crossref
  37. A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, Phys. Rev. Lett., 100: 117401 (2008). Crossref
  38. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science, 320: 1308 (2008). Crossref
  39. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97: 187401 (2006). Crossref
  40. G. M. Rutter, J. N. Crain, N. P. Guisinger, T. Li, P. N. First, and J. A. Stroscio, Science, 317: 219 (2007). Crossref
  41. D. L. Miller, K. D. Kubista, G. M. Rutter, M. Ruan, W. A. de Heer, P. N. First, and J. A. Stroscio, Science, 324: 924 (2009). Crossref
  42. N. P. Guisinger, G. M. Rutter, J. N. Crain, P. N. First, J. A. Stroscio, Nano Lett., 9: 1462 (2009). Crossref
  43. D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, Phys. Rev. Lett., 101: 157402 (2008). Crossref
  44. P. Plochocka, P. Kossacki, A. Golnik, T. Kazimierczuk, C. Berger, W.A. de Heer, and M. Potemski, Phys. Rev. B, 80: 245415 (2009). Crossref
  45. M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Phys. Rev. Lett., 97: 266405 (2006). Crossref
  46. M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. de Heer, Int. J. Mod. Phys. B, 21: 1145 (2007). Crossref
  47. M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W. A. de Heer, and M. Potemski, Phys. Rev. Lett., 101: 267601 (2008). Crossref
  48. P. Plochocka, C. Faugeras, M. Orlita, M. L. Sadowski, G. Martinez, M. Potemski, M. O. Goerbig, J.-N. Fuchs, C. Berger, and W.A. de Heer, Phys. Rev. Lett., 100: 087401 (2008). Crossref
  49. A. G. Kudashov, A. V. Okotrub, L. G. Bulusheva, I. P. Asanov, Yu. V. Shubin, N. F. Yudanov, L. I. Yudanova, V. S. Danilovich, and O. G. Abrosimov, J. Phys. Chem. B, 108, No. 26: 9048 (2004). Crossref
  50. A. K. Geim and K. S. Novoselov, Nature Mater., 6: 183 (2007). Crossref
  51. V. Huc, N. Bendiab, N. Rosman, T. Ebbesen, C. Delacourcile, and V. Bouchiat, Nanotechnology, 19: 455601 (2008). Crossref
  52. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Mater., 8: 203 (2009). Crossref
  53. A. N. Sidorov, M. M. Yazdanpanah, R. Jalilian, P. J. Ouseph, R. W. Cohn, and G. U. Sumanasekera, Nanotechnology, 18: 135301 (2007). Crossref
  54. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys., 81: 109 (2009). Crossref
  55. P. R. Wallace, Phys. Rev., 71: 622 (1947). Crossref
  56. J. C. Slonczewski and P. R. Weiss, Phys. Rev., 109: 272 (1958). Crossref
  57. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature, 438: 201 (2005). Crossref
  58. F. D. M. Haldane, Phys. Rev. Lett., 61: 2015 (1988). Crossref
  59. V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett., 95: 146801 (2005). Crossref
  60. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Phys., 2: 620 (2006). Crossref
  61. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, and J. Hone, Solid St. Commun., 146: 351 (2008). Crossref
  62. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett., 100: 016602 (2008). Crossref
  63. K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, Phys. Rev. Lett., 101: 096802 (2008). Crossref
  64. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nature Nanotech., 3: 491 (2008). Crossref
  65. J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, Nature Phys., 4: 377 (2008). Crossref
  66. J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nature Nanotech., 3: 206 (2008). Crossref
  67. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater., 6: 652 (2007). Crossref
  68. E. H. Hwang, S. Adam, and S. D. Saema, Phys. Rev. Lett., 98: 186806 (2007). Crossref
  69. T. Stauber, N. M. R. Peres, and F. Guinea, Phys. Rev. B, 76: 205423 (2007). Crossref
  70. E. H. Hwang, S. Sarma, and S. Das, Phys. Rev. B, 77: 115449 (2008). Crossref
  71. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature, 448: 571 (2007). Crossref
  72. M. C. Lemme, T.J. Echtermeyer, M. Baus, and H. Kurz, Electron Device Lett., 28: 282 (2007). Crossref
  73. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science, 320: 356 (2008). Crossref
  74. J. Winterrlin and M. L. Bocquet, Surf. Sci., 603: 1841 (2009). Crossref
  75. S. Y. Zhou, G. H. Gweon, A. V. Fedorov, P. N. First, W. A. de Heer, and D. H. Lee, Nat. Mater., 6: 916 (2007). Crossref
  76. E. Rotenberg, A. Bostwick, T. Ohta, J. L. McChesney, T. Seyller, and K. Horn, Nat. Mater., 7: 258 (2008). Crossref
  77. D. A. Siegel, S. Y. Zhou, E. I. Gabaly, A. V. Fedorov, A. K. Schmid, and A. Lanzara, Appl. Phys. Lett., 93: 243119 (2008). Crossref
  78. V. Barone, O. Hod, and G. E. Scuseria, Nano Lett., 6: 2748 (2006). Crossref
  79. P. Shemella, Y. Zhang, M. Mailman, P. M. Ajayan, and S. K. Nayak, Appl. Phys. Lett., 91: 042101 (2007). Crossref
  80. K. Wakabayashi, Y. Takane, M. Yamamoto, and M. Sigrist, New J. Phys., 11: 095016 (2009). Crossref
  81. D. Gunlycke, D. A. Areshkin, J. Li, J. W. Mintmire, and C. T. White, Nano Lett., 7: 3608 (2007). Crossref
  82. V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett., 95, 146801 (2005). Crossref
  83. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Phys. Rev. Lett., 96: 256802 (2006). Crossref
  84. Yu. B. Gaididei, V. M. Loktev, Fizika Nizk. Temper., 32, No. 7: 923 (2006); idem, Low Temperature Physics, 32: 1111 (2006) Crossref
  85. Yu. V. Skrypnyk and V. M. Loktev, Phys. Rev. B, 73: 241402-4 (2006). Crossref
  86. V. M. Loktev and V. M. Turkowski, Fizika Nizk. Temper., 32, No. 8: 1055 (2006); idem, Low Temperature Physics, 32: 802 (2006) Crossref
  87. Yu. V. Skrypnyk and V. M. Loktev, Fizika Nizk. Temper., 33, No. 9: 1002 (2007); idem, Low Temperature Physics, 33: 762 (2007)
  88. Yu. V. Skrypnyk and V. M. Loktev, Phys. Rev. B, 75: 245401-4 (2007). Crossref
  89. Yu. V. Skrypnyk and V. M. Loktev, Fizika Nizk. Temper., 34, No. 10: 1040 (2008); idem, Low Temperature Physics, 34: 818 (2008) Crossref
  90. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Phys. Rev. Lett., 98: 157402 (2007). Crossref
  91. S. Pershoguba, Yu. V. Skrypnyk, and V. M. Loktev, Phys. Rev. B, 80: 420121 (2009). Crossref
  92. V. M. Loktev and V. M. Turkowski, Phys. Rev. B, 79: 233402-4 (2009). Crossref
  93. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, New J. Phys., 11: 095013 (2009). Crossref
  94. V. P. Gusynin, V. A. Miransky, S. G. Sharapov, I. A. Shovkovy, and C. M. Wyenberg, Phys. Rev. B, 79, 115431 (2009). Crossref
  95. J. P. Carbotte, E. J. Nicol, and S. G. Sharapov, Phys. Rev. B, 81: 045419 (2010). Crossref
  96. Ch. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321: 385 (2008). Crossref
  97. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature, 446: 60 (2007). Crossref
  98. A. Fasolino, J. H. Los, and M. I. Katsnelson, Nature Mater., 6: 858 (2007). Crossref
  99. K. A. Ritter and J. W. Lyding, Nature Mater., 8: 235 (2008). Crossref
  100. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett., 8: 2458 (2008). Crossref
  101. O. Leenaerts, B. Partoens, and F. M. Peeters, Phys. Rev. B, 77: 125416 (2008). Crossref
  102. T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, Appl. Phys. Lett., 93: 202110 (2008). Crossref
  103. J. Sabio, C. Seoánez, S. Fratini, F. Guinea, A. H. Castro, and F. Neto, Phys. Rev. B, 77: 195409 (2008). Crossref
  104. R. M. Ribeiro, N. M. R. Peres, J. Coutinho, and P. R. Briddon, Phys. Rev. B, 78: 075442 (2008). Crossref
  105. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science, 323: 610 (2009). Crossref
  106. S. Frøyen, Aa. S. Sudbø, and P. C. Hemmer, Physica A, 85, Iss. 2: 399 (1976). Crossref
  107. M. Schick, J. S. Walker, and M. Wortis, Phys. Lett. A, 58, Iss. 7: 479 (1976). Crossref
  108. J. Dóczi-Réger and P. C. Hemmer, Physica A, 109, Iss. 3: 541 (1981). Crossref
  109. K. Wada, H. Takayama, and T. Ishikawa, J. Magn. Magn. Mater., 31–34, Pt. 3: 1043 (1983). Crossref
  110. M. Danino, Solid State Commun., 52, Iss. 10: 885 (1984). Crossref
  111. S. Lacková, M. Jaščur, and T. Horiguchi, Physica A, 339, Iss. 3–4: 416 (2004). Crossref
  112. T. Horiguchi, Phys. Lett. A, 104, Iss. 4: 228 (1984). Crossref
  113. H. Kitatani, S. Miyashita, and M. Suzuki, Phys. Lett. A, 108, Iss. 1: 45 (1985). Crossref
  114. T. Horiguchi, Physica A, 136, Iss. 1: 109 (1986). Crossref
  115. K. Ziegler, J. Magn. Magn. Mater., 60, Iss. 2–3: 311 (1986). Crossref
  116. V. Urumov, Physica A, 150, Iss. 1: 293 (1988). Crossref
  117. I. Jäger, Surface Sci., 331–333, Pt. 1: 156 (1995); idem, 398, Iss. 3: 342 (1998). Crossref
  118. G. Z. Wei, Z. H. Xin, and Jiang Wei, J. Magn. Magn. Mater., 204, Iss. 1–2: 144 (1999). Crossref
  119. S. Lacková and M. Jaščur, J. Magn. Magn. Mater., 217, Iss. 1–3: 216 (2000); idem, Phys. Rev. E, 64: 036126 (2001). Crossref
  120. T. Kaneyoshi, Physica A, 353: 297 (2005). Crossref
  121. A. G. Khachaturyan, Teoriya fazovykh prevrashchenii i struktura tverdykh rastvorov (Moskva: Nauka: 1974).
  122. A. G. Khachaturyan, Theory of Structural Transformations in Solids (New York: John Wiley & Sons: 1983).
  123. T. M. Radchenko, Metallofiz. Noveishie Tekhnol., 30, No. 8: 1021 (2008).
  124. T. M. Radchenko, V. A. Tatarenko, Nanosistemi, nanomateriali, nanotekhnologii, 6, No. 3: 867 (2008).
  125. T. M. Radchenko and V. A. Tatarenko, Solid State Phenom., 150: 43 (2009). Crossref
  126. T. M. Radchenko and V. A. Tatarenko, Solid State Sci., 12, No. 2: 204 (2010). Crossref
  127. N. M. Matveeva, E. V. Kozlov, Uporyadochennye fazy v metallicheskikh sistemakh (Moskva: Nauka: 1989).
  128. E. V. Kozlov, V. M. Dement'ev, N. M. Kormin, D. M. Shtern, Struktury i stabil'nost' uporyadochennykh faz (Tomsk: Izd-vo Tomskogo un-ta: 1994).
  129. V. N. Bugaev, V. A. Tatarenko, Vzaimodeistvie i raspredelenie atomov v splavakh vnedreniya na osnove plotnoupakovannykh metallov (Kiev: Naukova dumka: 1989).
  130. T. M. Radchenko and V. A. Tatarenko, Physica E, 42, No. 8: 2047 (2010). Crossref
  131. L.-Q. Chen and A. G. Khachaturyan, Phys. Rev. B, 44, No. 9: 4681 (1991). Crossref
  132. L. Q. Chen and A. G. Khachaturyan, Kinetics of Ordering Transformations in Metals (Eds. H. Chen and V. K. Vasudevan) (Warrendale, Pennsylvania: TMS: 1992), p. 197.
  133. L.-Q. Chen and A. G. Khachaturyan, Phys. Rev. B, 46, No. 10: 5899 (1992). Crossref
  134. R. Poduri and L.-Q. Chen, Acta Mater., 45, No. 1: 245 (1997). Crossref
  135. R. Poduri and L.-Q. Chen, Acta Mater., 46, No. 5: 1719 (1998). Crossref
  136. Y. Wang, D. Banerjee, C. C. Su, and A. G. Khachaturyan, Acta Mater., 46, No. 9: 2983 (1998). Crossref
  137. G. Rubin and A. G. Khachaturyan, Acta Mater., 47, No. 7: 1995 (1999). Crossref
  138. S. Park and R. S. Ruoff, Nature Nanotech., 4: 217 (2009). Crossref
  139. S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature, 442: 282 (2006). Crossref
  140. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett., 8: 902 (2008). Crossref
  141. D. Lee, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nature Nanotech., 3: 101 (2008). Crossref
  142. H. V. Heersche, P. Jarillo-Herrero, J. B. Oostinga, L. M. K. Vandersypen, and A. F. Morpurgo, Nature, 446: 56 (2007). Crossref
  143. B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nature Phys., 3: 192 (2007). Crossref
  144. Z. Chen, Yu-M. Lin, M. J. Rooks, and P. Avour, Physica E, 40: 228 (2007). Crossref
  145. Nanomaterials Handbook (Ed. Yuri Gogotsi) (Boca Raton–London–New York: CRC Press–Taylor & Francis Group: 2006).
  146. M. A. Krivoglaz, A. A. Smirnov, Teoriya uporyadochivayushchikhsya splavov (Moskva: Fizmatgiz: 1958) (a); M. A. Krivoglaz and A. A. Smirnov, The Theory of Order–Disorder in Alloys (Elsevier: New York: 1965) (b).
  147. A. A. Smirnov, Molekulyarno-Kineticheskaya Teoriya Metallov (Moskva: Nauka: 1966).
  148. A. A. Smirnov, Obobshchennaya Teoriya Uporyadocheniya Splavov (Kiev: Naukova dumka: 1986).
  149. A. V. Shytov, D. A. Abanin, and L. S. Levitov, Phys. Rev. Lett., 103: 016806 (2009). Crossref
Cited By (6)
  1. Iyor Yu. Sagalianov, Taras M. Radchenko, Yuriy I. Prylutskyy, Valentyn A. Tatarenko et al., Eur. Phys. J. B 90, 112 (2017).
  2. P. P. Gorbyk, M. V. Abramov, I. V. Dubrovin, S. M. Makhno et al., Usp. Fiz. Met. 18, 59 (2017).
  3. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 18, 155 (2017).
  4. L. L. Kondratenko, O. V. Mykhailenko, Yu. I. Prylutskyy, T. M. Radchenko et al., Usp. Fiz. Met. 11, 369 (2010).
  5. T.M. Radchenko and V.A. Tatarenko, Mat.-wiss. u. Werkstofftech. 44, 231 (2013).
  6. V. V. Kurylyak and G. I. Khimicheva, Usp. Fiz. Met. 17, 375 (2016).