Mechanical Stability — Universal Measure of Resistance to Transition in a Brittle State of Metal

S. O. Kotrechko, Yu. Ya. Meshkov, A. V. Shiyan

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 23.03.2009. Download: PDF

Conception of physical nature of ductile state of metal is formulated grounded on physical ideas of micromechanism of ductile-to-brittle transition. Macroscopic characteristics of plastic state stability, namely, ‘the parameter of mechanical stability’, $P_{ms}$, and ‘the coefficient of mechanical stability’, $K_{ms}$, are offered as well. New characteristic—‘the force equivalent of embrittlement’, $E_{m}$, is introduced. It enables to describe equally the effect of embrittlement of such factors different by their nature as combined stress state, stress concentration, low temperatures, dynamic loading. The obtained criterion describes stability of ductile state of metal ahead of macrocrack tip. The technique of experimental finding of the value of $E_{m}$ parameter for standard specimen with a crack is suggested. For typical structural steels of low, medium and high strength, experimental values of the coefficient of mechanical stability, $K_{ms}$, are presented. The structural steels are compared by their ability to resist brittle fracture under the stress concentration.

Keywords: plastic state, brittle state, local fracture stress, fracture toughness.

PACS: 46.50.+a, 61.72.Hh, 62.20.fk, 62.20.fq, 62.20.mj, 62.20.mm, 62.20.mt

DOI: https://doi.org/10.15407/ufm.10.02.207

Citation: S. O. Kotrechko, Yu. Ya. Meshkov, and A. V. Shiyan, Mechanical Stability — Universal Measure of Resistance to Transition in a Brittle State of Metal, Usp. Fiz. Met., 10, No. 2: 207—228 (2009) (in Russian), doi: 10.15407/ufm.10.02.207


References (27)  
  1. F. M. Beremin, Metall Trans., A14: 2277 (1983). Crossref
  2. F. Mudry, Nucl. Engng. Des., 105: 65 (1987). Crossref
  3. G. Bernauer, W. Brocks, and W. Schmitt, Engng. Fract. Mech., 64: 305 (1999). Crossref
  4. S. Kotrechko and Yu. Ja. Meshkov, Materials Science, 37, No 4: 583 (2001). Crossref
  5. S. A. Kotrechko, Problemy prochnosti, No. 4: 14 (2003).
  6. H. Stockl, R. Boschen, W. Schmitt, I. Varfolomeyev, and J. H. Chen, Engng. Fract. Mech., 67, No 2: 119 (2000). Crossref
  7. B. Z. Margolin, A. G. Gulenko, and V. A. Shvetsova, Int. J. Pres. Ves. Pip., 75, No. 12: 843 (1998). Crossref
  8. M. Kroon and J. Faleskog, Int. J. Fract., 118: 99 (2002). Crossref
  9. Ya. B. Fridman, Mekhanicheskie svoystva metallov (Moskva: Mashinostroenie: 1974).
  10. N. N. Davidenko, Dinamicheskie ispytaniya metallov (Moskva: ONTI: 1936).
  11. S. A. Kotrechko, Yu. Ya. Meshkov, Ukrainian Journal of Physics, 36, No. 7: 1087 (1991).
  12. S. A. Kotrechko, Yu. Ya. Meshkov, G. S. Mettus, Metallofizika, 12, No. 6: 3 (1990).
  13. S. A. Kotrechko, Yu. Ya. Meshkov, G. S. Mettus, D. I. Nikonenko, Problemy prochnosti, No. 1: 72 (2000).
  14. V. I. Vladimirov, Fizika Metallov i Metallovedenie, 30, No. 3: 450 (1970).
  15. V. I. Vladimirov, Fizicheskaya priroda razrusheniya metallov (Moskva: Metallurgiya: 1984).
  16. S. A. Kotrechko, Metallofiz. Noveishie Tekhnol., 16, No. 10: 37 (1994).
  17. S. A. Kotrechko, Metallofiz. Noveishie Tekhnol., 23, No. 1: 103 (2001).
  18. V. I. Betekhtin, V. I. Vladimirov, A. G. Kadomtsev, A. I. Petrov, Problemy prochnosti, No. 7: 38 (1979).
  19. Yu. Ya. Meshkov, G. A. Pakharenko, Struktura metalla i khrupkost' stal'nykh izdeliy (Kiev: Naukova dumka: 1985).
  20. S. R. Bordet, A. D. Karstensen, D. M. Knowles, and C. S. Wiesner, Engng. Fract. Mech., 72: 435 (2005). Crossref
  21. S. A. Kotrechko, Metallofizika, 14, No. 5: 37 (1992).
  22. S. A. Kotrechko, Yu. Ya. Meshkov, Problemy prochnosti, No. 3: 5 (1999).
  23. G. S. Pisarenko, A. A. Lebedev, Deformirovanie i prochnost' materialov pri slozhnom napryazhennom sostoyanii (Kiev: Naukova dumka: 1976).
  24. S. Kotrechko, Transferability of Fracture Mechanical Characteristics (Ed. I. Dlouhy), NATO Science Series. II. Vol. 78 (Kluwer Academic Publishers: 2002), p. 135.
  25. G. Z. Wang, J. H. Chen, and G. H. Liu, Int. J. Fract., 118: 57 (2002). Crossref
  26. I. Dlouhy, M. Holzmann, and Z. Chlup, Transferability of Fracture Mechanical Characteristics (Ed. I. Dlouhy), NATO Science Series. II. Vol. 78 (Kluwer Academic Publishers: 2002), p. 47.
  27. H. J. Rathbun, G. R. Odette, T. Yamamoto, and G. E. Lucas, Engng. Fract. Mech., 73: 134 (2006). Crossref
Cited By (6)
  1. Yu. Ya. Meshkov, А. V. Shyyan and О. І. Zvirko, Mater Sci 50, 830 (2015).
  2. Yu. Ya. Meshkov, S. A. Kotrechko and A. V. Shiyan, Steel Transl. 43, 846 (2013).
  3. S. A. Kotrechko, Yu. Ya. Meshkov, A. V. Shiyan, E. F. Soroka et al., Steel Transl. 43, 399 (2013).
  4. A. V. Shiyan, Steel Transl. 43, 762 (2013).
  5. Yu. Ya. Meshkov, S. A. Kotrechko, A. V. Shiyan, V. I. Bol’shakov et al., Steel Transl. 42, 663 (2012).
  6. Yu. Ya. Meshkov and A. V. Shiyan, Steel Transl. 44, 857 (2014).