Unique Informativity of the Diffuse Dynamical Combined Diffractometry of Materials and Products of Nanotechnologies

A. P. Shpak$^{1}$, M. V. Koval’chuk$^{2}$, I. M. Karnaukhov$^{3}$, V. V. Molodkin$^{1}$, E. G. Len$^{1}$, A. I. Nizkova$^{1}$, S. J. Olikhovskii$^{1}$, B. V. Sheludchenko$^{1}$, G. E. Ice$^{4}$, R. I. Barabash$^{4}$

$^1$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$A.V. Shubnikov Institute of Crystallography of RAS, 59 Leninskiy Ave., 119333 Moscow, Russia
$^3$National Science Center Kharkov Institute of Physics and Technology, NAS of Ukraine, 1 Akademicheskaya Str., 61108 Kharkov, Ukraine
$^4$Oak Ridge National Laboratory, Oak Ridge, 37831-6118 Tennessee, USA

Received: 26.05.2008. Download: PDF

In a given work, the detailed systematic analysis of the discovered phenomenon is carried out. This phenomenon of unique informativity of the dynamical-scattering pattern in crystals with many types of defects is described, its physical nature and possibilities of practical application are determined. The phenomenon nature lies in the fact that, for each reflex of the scattering pattern, while transition from kinematic case to dynamical one takes place, the dependences on conditions of dynamical diffraction are radically different from each other for Bragg and diffuse components, which always remain the same in the kinematic theory. This essential difference is caused by the substantially different nature and magnitudes of the fundamental characteristics of materials, namely, scattering factors, for Bragg and diffuse components. For the Bragg component, it is the scattering potential averaged over all defects’ configurations (periodical), and for the diffuse one, these ones are the fluctuating deviations of scattering potential from its average value (nonperiodical). As a result, the dynamical extinction factors for the coherent and diffuse-scattered waves differ from each other as well as other regularities of the multiple-scattering effects for Bragg and diffuse components. The ascertainment of a nature of the mentioned effects has provided the unique possibility of the operated change of diffuse-component contribution for the fixed defect structure just due to the purposive variation of the dynamical-diffraction conditions. The influences of defects on the Bragg and diffuse components of the scattering pattern have opposite nature, i.e. they always decrease the Bragg component, but increase the diffuse one. Due to this fact, the abovementioned phenomenon provides the possibility of the controllable variations of the total defects’ influence on the scattering pattern as a whole, which is used for its characterization. In case of the defects’ diagnostics in the dynamical diffraction conditions, this one governed the essential revision of principles of the quantitative and qualitative classification of defects by their influence on the scattering pattern, which has been performed within the scope of the kinematic theory. The possibility to control the diffuse-component contribution is the most important advantage of the dynamical diffraction, which has increased radically the informativity and has provided the fundamentally new functional possibilities of the dynamical diffractometry. The dynamical diffraction only gives the possibility of realization and combined (joint) processing of full set of the independent diffraction experiments due to the changing diffraction conditions for a sample of fixed defect structure with the goal to solve an inverse problem of the multiparametric diagnostics of crystalline materials and products of nanotechnology with several types of defects. Thus, the new generation of crystallography, i.e. the diffuse dynamical combined diffractometry of complex defect structures in single crystals and heterogeneous systems, has been developed.

Keywords: dynamic theory of X-ray scattering, X-ray diffractometry, diagnostics of microdefects in crystals, diffraction condition, combination approach.

PACS: 07.85.-m, 61.10.-i, 61.72.Dd, 68.65.-k, 78.70.Ck, 81.07.-b, 81.70.Ex

DOI: https://doi.org/10.15407/ufm.09.03.305

Citation: A. P. Shpak, M. V. Koval’chuk, I. M. Karnaukhov, V. V. Molodkin, E. G. Len, A. I. Nizkova, S. J. Olikhovskii, B. V. Sheludchenko, G. E. Ice, and R. I. Barabash, Unique Informativity of the Diffuse Dynamical Combined Diffractometry of Materials and Products of Nanotechnologies, Usp. Fiz. Met., 9, No. 3: 305—356 (2008) (in Russian), doi: 10.15407/ufm.09.03.305


References (91)  
  1. Von Laue M., Rontgenstrahlinterferezen (Leipzig: Akademishe Verlagsges: 1948), p. 410.
  2. C. Hammond, The Basics of Crystallography and Diffraction. 2nd ed. (London: Oxford University Press: 2001), p. 320.
  3. R. W. James, Solid State Phys., 15: 55 (1963). Crossref
  4. B. W. Batterman and H. Cole, Rev. Mod. Phys., 36: 681 (1964). Crossref
  5. S. Takagi, Acta Crystallogr., 15, No. 12: 1131 (1962). Crossref
  6. S. Takagi, J. Phys. Soc. Jpn., 26, No. 5: 1239 (1969). Crossref
  7. D. Taupin, Bull. Soc. Franc. Miner. Cryst., 87, No. 2: 469 (1964).
  8. P. Penning and D. Polder, Philips Res. Repts., 16, No. 2: 419 (1961).
  9. P. Penning, Philips Res. Repts. Suppl., 21, No. 5: 1 (1966).
  10. N. Kato, Acta Crystallogr., 16, No. 4: 276 (1963). Crossref
  11. N. Kato, Z. Naturforsch. A., 28, No.1: 604 (1973).
  12. L. V. Azaroff, R. Kaplow, N. Kato, R. J. Weiss et al., X-Ray Diffraction (New York: Me Graw-Hill: 1974), p. 652.
  13. A. Authier, Dynamical Theory of X-Ray Diffraction (London: Oxford University Press: 2001), p. 661.
  14. M. A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal Crystals (Berlin: Springer: 1996), p. 466. Crossref
  15. V. B. Molodkin, E. A. Tikhonova, Fiz. Met. Metalloved., 24, No. 3: 385 (1967).
  16. V. B. Molodkin, FMM, 25, No. 3: 410 (1968).
  17. V. B. Molodkin, FMM, 27, No. 4: 582 (1969).
  18. V. B. Molodkin, Metallofiz., 2, No. 1: 3 (1980).
  19. V. B. Molodkin, Phys. Metals, 3: 615 (1981).
  20. V. B. Molodkin, S. I. Olikhovskii, and M. E. Osinovskii, Phys. Metals, 5: 1 (1984).
  21. V. B. Molodkin, S. I. Olikhovskii, and M. E. Osinovskii, Phys. Metals, 5: 847 (1985).
  22. V. V. Kochelab, V. B. Molodkin, S. I. Olikhovskii, and M. E. Osinovskii, Phys. Stat. Solidi A, 108, No. 1: 67 (1988). Crossref
  23. L. I. Datsenko, V. B. Molodkin, M. E. Osinovskiy, Dinamicheskoe rasseyanie rentgenovskikh luchey real'nymi kristallami (Kiev: Naukova dumka: 1988), s. 200.
  24. V. B. Molodkin, G. I. Gudzenko, S. I. Olikhovskiy, M. E. Osinovskiy, Metallofizika, 5, No. 3: 10 (1983).
  25. V. B. Molodkin, S. I. Olikhovskiy, M. E. Osinovskiy, A. N. Gureev et al., Metallofizika, 6, No. 2: 18 (1984).
  26. V. B. Molodkin, S. I. Olikhovskiy, M. E. Osinovskiy, A. N. Gureev et al., Metallofizika, 6, No. 3: 105 (1984).
  27. V. B. Molodkin, S. I. Olikhovskii, M. E. Osinovskii, A. N. Gureev et al., Phys. Status Solidi (a), 87, No. 2: 597 (1985). Crossref
  28. V. V. Nemoshkalenko, V. B. Molodkin, E. N. Kislovskii, and M. T. Kogut, Metallofizika, 16, No. 2: 48 (1994).
  29. A. P. Shpak, V. B. Molodkin, A. I. Nizkova, Uspehi Fiziki Metallov, 5, No. 1: 51 (2004).
  30. A. I. Nizkova, V. B. Molodkin, I. A. Moskovka, Metallofiz. Noveishie Tekhnol., 26, No. 6: 783 (2004).
  31. P. H. Dederichs, Phys. Stat. Solidi B, 23, No. 1: 377 (1967). Crossref
  32. P. H. Dederichs, Solid State Phys., 27: 135 (1972). Crossref
  33. V. B. Molodkin, A. I. Nizkova, A. P. Shpak, V. Ph. Machulin et al., Diffractometry of Nanosized Defects and Heterolayers of Crystals (Kiev: Akademperiodyka: 2005), p. 364 (in Russian).
  34. V. V. Ratnikov, E. K. Kov'ev, L. M. Sorokin, FTT, 26, No. 7: 2155 (1984).
  35. V. V. Ratnikov, L. M. Sorokin, FTT, 26, No. 11: 3445 (1984).
  36. V. V. Ratnikov, R. N. Kyutt, ZhTF, 55, No. 2: 391 (1985).
  37. R. N. Kyutt, V. V. Ratnikov, Metallofizika, 7, No. 1: 36 (1985).
  38. A. N. Kostyuk, V. B. Molodkin, and S. I. Olikhovskii, Phys. Stat. Solidi B, 178, No. 1: 45 (1993). Crossref
  39. V. B. Molodkin, S. I. Olikhovskii, and A. N. Kostyuk, Phys. Stat. Solidi V, 183, No. 1: 59 (1994). Crossref
  40. V. B. Molodkin, S. I. Olikhovskii, E. N. Kislovskii, E. G. Len et al., Phys. Stat. Solidi B, 227, No. 2: 429 (2001). Crossref
  41. S. I. Olikhovskii, V. B. Molodkin, E. N. Kislovskii, E. G. Len et al., Phys. Stat. Solidi B, 231, No. 1: 199 (2002). Crossref
  42. V. G. Baryakhtar, V. V. Nemoshkalenko, V. B. Molodkin, A. P. Shpak et al., Metallofiz. Noveishie Tekhnol., 16, No. 1: 21 (1994).
  43. V. B. Molodkin, V. V. Nemoshkalenko, S. I. Olikhovskii, E. N. Kislovskii et al., Metallofiz. Noveishie Tekhnol., 20, No. 1: 29 (1998).
  44. I. V. Prokopenko, E. N. Kislovskii, S. I. Olikhovskii, V. M. Tkach et al., Semiconductor Physics, Quantum Electronics  Optoelecronics, 3, No. 3: 275 (2000).
  45. V. B. Molodkin, S. I. Olikhovskii, E. N. Kislovskii, V. P. Krivitsky et al., J. Phys. D: Appl. Phys., 34, No. 5: A82 (2001). Crossref
  46. E. N. Kislovskii, S. I. Olikhovskii, V. B. Molodkin, V. V. Nemoshkalenko et al., Phys. Stat. Solidi B, 231, No. 1: 213 (2002). Crossref
  47. V. B. Molodkin, M. Ando, E. N. Kislovskii, S. I. Olikhovskii et al., Metallofiz. Noveishie Tekhnol., 24, No. 4: 541 (2002).
  48. Ye. M. Kyslovskyy, T. P. Vladimirova, S. I. Olikhovskii, V. B. Molodkin et al., Phys. Stat. Solidi A, 204, No. 8: 2591 (2007). Crossref
  49. A. P. Shpak, V. B. Molodkin, S. I. Olikhovskii, Ye. M. Kyslovskyy et al., Phys. Stat. Solidi, 204, No. 8: 2651 (2007). Crossref
  50. N. Kato, Acta Crystallogr. A, 36: 763 (1980); ibidem, 36: 770 (1980); ibidem, 47: 1 (1991). Crossref
  51. V. Holý and K. T. Gabrielyan, Phys. Stat. Solidi B, 140, No. 1: 39 (1987). Crossref
  52. V. Holý and J. Kuběna, Phys. Stat. Solidi B, 151: 23 (1989); ibidem, 155: 339 (1989).
  53. M. Al Haddad and P. Becker, Acta Crystallogr. A, 44, No. 3: 262 (1988). Crossref
  54. A. M. Polyakov, F. N. Chukhovskiy, D. I. Piskunov, ZhETF, 99: 589 (1991).
  55. J. P. Guigay and F. N. Chukhovskii, Acta Crystallogr. A, 51: 288 (1995). Crossref
  56. N. M. Olekhnovich, A. L. Karpey, A. I. Olekhnovich, and L. D. Puzenkova, Acta Crystallogr. A, 39: 116 (1983). Crossref
  57. J. R. Schneider, R. Bouchard, H. A. Graf, and H. Nagasava, Acta Crystallogr. A, 48, No. 6: 804 (1992). Crossref
  58. V. V. Nemoshkalenko, V. B. Molodkin, S. I. Olikhovskii, M. V. Kovalchuk et al., Nucl. Instrum. and Meth. in Physics. A, 308: 294 (1991).
  59. V. V. Kochelab, V. B. Molodkin, S. I. Olikhovskiy, Metallofizika, 13, No. 6: 84 (1991).
  60. V. G. Bar'yakhtar, E. N. Gavrilova, V. B. Molodkin, S. I. Olikhovskiy, Metallofizika, 14, No. 11: 68 (1992).
  61. Z. G. Pinsker, Rentgenovskaya kristallooptika (Moskva: Nauka: 1982), s. 392.
  62. V. V. Nemoshkalenko, V. B. Molodkin, A. I. Nizkova, S. I. Olikhovskiy et al., Metallofizika, 14, No. 8: 79 (1992).
  63. V. G. Bar'yakhtar, M. V. Kovalchuk, Yu. M. Litvinov, V. V. Nemoshkalenko et al., Nucl. Instrum. and Meth. in Physics. A, 308: 291 (1991).
  64. E. N. Gavrilova, E. N. Kislovskiy, V. B. Molodkin, S. I. Olikhovskiy, Metallofizika, 14, No. 3: 70 (1992).
  65. V. G. Bar'yakhtar, V. V. Nemoshkalenko, V. B. Molodkin, S. I. Olikhovskiy et al., Metallofizika, 15, No. 12: 18 (1993).
  66. A. P. Shpak, V. B. Molodkin, S. V. Dmitriev, E. V. Pervak et al., Metallofiz. Noveishie Tekhnol., 29, No. 8: 1009 (2007).
  67. A. P. Shpak, V. B. Molodkin, S. V. Dmitriev, E. V. Pervak et al., Metallofiz. Noveishie Tekhnol., 30, No. 9 (2008) (in press).
  68. A. P. Shpak, V. B. Molodkin, S. V. Dmitriev, E. V. Pervak et al., Metallofiz. Noveishie Tekhnol., 30, No. 10 (2008) (in press).
  69. L. I. Datsenko, V. I. Khrupa, and E. N. Kislovskii, Phys. Status Solidi A, 68, No. 2: 399 (1981). Crossref
  70. V. I. Khrupa, E. N. Kislovskiy, L. I. Datsenko, Metallofizika, 2, No. 4: 55 (1980).
  71. F. N. Chukhovskiy, Metallofizika, 2, No. 6: 3 (1980).
  72. V. B. Molodkin, S. V.Dmitriev, E. V. Pervak, A. A. Belotskaya et al., Metallofiz. Noveishie Tekhnol., 28,No. 8: 1077 (2006).
  73. V. B. Molodkin, S. I. Olikhovskii, E. N. Kislovskii, I. M. Fodchuk et al., Phys. Stat. Sol. (a), 204, No. 8: 2606 (2007). Crossref
  74. V. B. Molodkin, S. I. Olikhovskiy, S. V. Dmitriev, E. G. Len' et al., Metallofiz. Noveishie Tekhnol., 28, No. 9: 1177 (2006).
  75. A. P. Shpak, V. B. Molodkin, S. I. Olikhovskii, Ye. M. Kyslovskyy et al., Phys. Stat. Sol. (a), 204, No. 8: 2651 (2007). Crossref
  76. V. B. Molodkin, M. V. Kovalchuk, A. P. Shpak, S. I. Olikhovskii et al., Dynamical Bragg and Diffuse Scattering Effects and Implications for Diffractometry in the Twenty-First Century. In: Diffuse Scattering and the Fundamental Properties of Materials (New Jersey: Momentum Press: 2008) (to be published).
  77. V. B. Molodkin, L. I. Datsenko, V. I. Khrupa, M. E. Osinovskii et al., Phys. Metals, 5, No. 6: 1072 (1985).
  78. V. G. Bar'yakhtar, A. N. Gureev, V. V. Kochelab, V. B. Molodkin et al., Metallofizika, 11, No. 3: 73 (1989).
  79. A. P. Shpak, V. B. Molodkin, A. I. Nizkova, Uspehi Fiziki Metallov, 5, No. 1: 51 (2004).
  80. V. B. Molodkin, V. V. Nemoshkalenko, A. I. Nizkova, S. I. Olikhovskiy et al., Metallofiz. Noveishie Tekhnol., 22, No. 3: 3 (2000).
  81. V. B. Molodkin, S. I. Olikhovskiy, S. V. Dmitriev, E. G. Len' et al., Metallofiz. Noveishie Tekhnol., 28, No. 7: 947 (2006).
  82. V. B. Molodkin, S. I. Olikhovskiy, M. E. Osinovskiy et al., Metallofiz. Noveishie Tekhnol., 6, No. 3: 7 (1984).
  83. S. Y. Olikhovs'kiy, Ye. M. Kislovs'kiy, T. P. Vladimirova, V. B. Molodkin ta in., Metallofiz. Noveishie Tekhnol., 29, No. 6: 721 (2008).
  84. S. Y. Olikhovs'kiy, Ye. M. Kislovs'kiy, V. B. Molodkin ta in., Metallofiz. Noveishie Tekhnol., 22, No. 6: 3 (2000).
  85. Ye. M. Kislovs'kiy, S. Y. Olikhovs'kiy, V. B. Molodkin, Ye. G. Len' ta in., Metallofiz. Noveishie Tekhnol., 26, No. 9: 1241 (2004).
  86. V. B. Molodkin, S. I. Olikhovskiy, S. V. Dmitriev, E. G. Len' et al., Metallofiz. Noveishie Tekhnol., 27, No. 12: 1659 (2005).
  87. S. Y. Olikhovs'kiy, V. B. Molodkin, L. G. Tkachuk, Metallofiz. Noveishie Tekhnol., 28, No. 9: 1229 (2006).
  88. S. I. Olikhovskiy, V. B. Molodkin, O. S. Kononenko, A. A. Katasonov et al., Metallofiz. Noveishie Tekhnol., 29, No. 7: 887 (2007).
  89. S. I. Olikhovskiy, V. B. Molodkin, O. S. Kononenko, A. A. Katasonov et al., Metallofiz. Noveishie Tekhnol., 29, No. 9: 1225 (2007).
  90. S. I. Olikhovskiy, V. B. Molodkin, A. I. Nizkova, O. S. Kononenko et al., Metallofiz. Noveishie Tekhnol., 29, No. 10: 1333 (2007).
  91. V. B. Molodkin, A. I. Nizkova, A. P. Shpak, V. F. Machulin et al., Difraktometriya nanorazmernykh defektov i geterosloev kristallov (Kiev: Akademperiodika: 2005), s. 364.
Cited By (4)
  1. V. B. Molodkin, A. P. Shpak, M. V. Kovalchuk, V. L. Nosik et al., Crystallogr. Rep. 55, 1122 (2010).
  2. V. V. Lizunov, V. B. Molodkin, S. I. Olikhovskii, S. V. Lizunova et al., Metallofiz. Noveishie Tekhnol. 37, 265 (2016).
  3. A. P. Shpak, M. V. Kovalchuk, V. B. Molodkin, V. L. Nosik et al., Usp. Fiz. Met. 10, 229 (2009).
  4. V. B. Molodkin, M. V. Kovalchuk, V. F. Machulin, Eh. H. Muhamedjanov et al., Usp. Fiz. Met. 12, 295 (2011).