Structure, Properties and Fabrication of the Solid Nanocrystalline Coatings Deposited in Several Ways

V. M. Beresnev$^{1}$, A. D. Pogrebnyak$^{1,2}$, N. A. Azarenkov$^{3}$, G. V. Kirik$^{4,5}$, N. K. Erdybayeva$^{6}$, V. V. Ponaryadov$^{7}$

$^1$Scientific Center of Physical Technologies of MES and NAS of Ukraine, 6 Svobody Sq., 61022 Kharkiv, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^3$V.N. Karazin Kharkiv National University, 4 Svobody Sqr., 61022 Kharkiv, Ukraine
$^4$I. M. Frantsevich Institute for Problems in Materials Science, NAS of Ukraine, 3 Academician Krzhyzhanovsky Str., UA-03142 Kyiv, Ukraine
$^5$Concern ‘Ukrrosmetall’, 6 Kursk Ave., 40002 Sumy, Ukraine
$^6$East Kazakhstan technical university, 69 Protozanov, 070004 Ust-Kamenogorsk, Kazakhstan
$^7$Belarusian State University, 4 Nezavisimosti Ave., 220030 Minsk, Republic of Belarus

Received: 05.06.2007; final version - 28.09.2007. Download: PDF

The review deals with a novel trend in nanomaterial fabrication and the nanotechnologies allowing one to fabricate the nanocomposite and nanocrystalline coatings with very high hardness and other perfect mechanical characteristics. Nitrides, silicides, oxides, and their combinations are used as examples to demonstrate fabrication ways, to study structures and properties of the resulting coatings, which are dependent on conditions and parameters of the deposition process. A special attention is paid to fabrication of nanocrystalline, multicomponent, and nanocomposite materials deposited using a vacuum-arc, magnetron, and ion-assisted deposition. Fields of possible future applications of such coatings are described briefly. The works dealing with the same aspects are analyzed, and physics of the processes occurring in hard and very hard coating fabrication is considered.

Keywords: nanocrystalline nanocomposite coatings, ion-plasma and magnetron deposition methods, physical and mechanical properties, multicomponent and superhard wear-resistant coatings.

PACS: 62.20.Qp, 68.47.Gh, 68.60.Bs, 81.05.Je, 81.15.Gh, 81.15.Jj, 81.65.-b

DOI: https://doi.org/10.15407/ufm.08.03.171

Citation: V. M. Beresnev, A. D. Pogrebnyak, N. A. Azarenkov, G. V. Kirik, N. K. Erdybayeva, and V. V. Ponaryadov, Structure, Properties and Fabrication of the Solid Nanocrystalline Coatings Deposited in Several Ways, Usp. Fiz. Met., 8, No. 3: 171—246 (2007) (in Russian), doi: 10.15407/ufm.08.03.171


References (136)  
  1. W.-D. Munz, J. Vac. Sci. Technol. A, 4: 2717 (1986).
  2. L. A. Donohue, I. J. Smith, W.-D. Munz, I. Petrov et al., Surf. Coat. Technol., 94–95: 226 (1997).
  3. I. Wadsworth, I. J. Smith, L. A. Donohue, and W.-D. Munz, Surf. Coat. Technol., 94–95: 226 (1997).
  4. S. Veprek, M. Haussmann, and S. Reiprich, Mater. Res. Soc. Symp. Proc., 400: 261 (1996).
  5. J. Musil, Acta Metall. Sin., 18: 1 (2005).
  6. J. Musil, Physical and Mechanical Properties of Hard Nanocomposite Films Prepared by Reactive Magnetron Sputtering, in Nanostructured Hard Coatings (Eds. A. Cavaleiro and J. Th. M. de Hosson) (New York: Kluwer Academic–Plenum Publishers: 2005), chap. 10.
  7. S. Veprek, J. Vac. Sci. Technol. A, 17: 2401 (1999). Crossref
  8. F. Kauffmann, G. Dehm, E. Arzt, and V. Schier, Mater. Res. Soc. Symp. Proc., 704, No. W7.3.1 (2002).
  9. W. J. Meng, X.-D. Zhang, B. Shi, R. C. Tittsworth et al., J. Mater. Res., 17: 2628 (2002).
  10. M. Nose, Y. Deguchi, T. Mae, E. Honbo et al., Surf. Coat. Technol., 174–175: 261 (2003). Crossref
  11. N. Jiang, Y. G. Shen, Y. -M. Mai, T. Chan et al., Mater. Sci. Eng. B, 106: 163 (2004).
  12. X. D. Zhang, W. J. Meng, W. Wang, L. E. Rehn et al., Surf. Coat. Technol., 177–178: 325 (2004).
  13. Z. G. Li, M. Mori, S. Miyake, M. Kumagai et al., Surf. Coat. Technol., 193: 345 (2005).
  14. H. Zeman, J. Musil, and P. Zeman, J. Vac. Sci. Technol. A, 22: 646 (2004).
  15. J. Musil, R. Daniel, P. Zeman, and O. Takai, Thin Solid Films, 478: 238 (2005).
  16. J. Musil, R. Daniel, J. Soldan, and P. Zeman, Surf. Coat. Technol., (2005) (in press).
  17. F. Kauffmann, G. Dehm, V. Schier, A. Schattke et al., Thin Solid Films, 473: 114 (2005).
  18. K. Yamada and N. Kamiya, Mater. Sci. Eng. A, 261: 270 (1999).
  19. H. Klem and S Schubert, J. Am. Ceram. Soc., 84: 2430 (2001).
  20. H. Klemm, S Taut, and G. Wotting, J. Eur. Ceram. Soc., 23: 619 (2003).
  21. V. Medri and A. Bellosi, J. Mater. Res., 19: 1567 (2004).
  22. J. D. Wilcock and D. S. Campbell, Thin Solid Films, 3: 3 (1969).
  23. J. Musil, S. Kadlec, V. Valvoda, R. Kuzel et al., Surf. Coat. Technol., 43/44: 259 (1990).
  24. Smithells Metals Reference Book (Ed. E. A. Brandes) (London: Butterworth Heinemann: 1992), p. 8.
  25. Cohesion in Metals–Transition Metal Alloys (Eds. R. Boom, W. S. Martens, A. R. Miedema, and A. K. Niessen) (Amsterdam: North Holland: 1998), chap. 3 and 12, p. 411.
  26. H. Holleck, J. Vac. Sci. Technol. A, 496: 2661 (1986).
  27. S. T. Oyama, The Chemistry of Transition Metal Carbides and Nitrides (Glasgow: Blackie Academic and Professional: 1996).
  28. M. Hansen, Constitution of Binary Alloys (New York: McGraw-Hill: 1958).
  29. J. D. Kuntz, G.-D. Zhan, A. K. Mukherjee, Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness (MRS Bulletin, Jan., 2004), r. 22.
  30. S. Zhang, D. Sun, Y. Fu, H. Du, Surf. Coat. Technol., 198: 2 (2005).
  31. S. Zhang, X. L. Bui, X. T. Zeng, X. Li, Thin Solid Films, 482: 138 (2005).
  32. W. D. Callister, Jr., Materials Science and Engineering an Introduction, 6-th Edition (New York: Wilery: 2003).
  33. W. F. Brown Jr. and J. E. Srawley, ASTM STP, 410: 12 (1996).
  34. A. D. S. Jayatilaka, Fracture of Engineering Brittle Materials, (London: Applied Science Publishers: 1979).
  35. J. Musil, Surf. Coat. Technol., 125: 322 (2000). Crossref
  36. J. Musil, F. Kunc, H. Zeman, and H. Polakova, Surf. Coat. Technol., 154: 304 (2002).
  37. J. Musil, J. Vlcek, F. Regent, F. Kunc et al., Key Engineering Materials, 230–232: 613 (2002).
  38. T. Y. Tsui, G. M. Pharr, W. C. Oliver, C. S. Bhatia et al., Mater. Res. Soc. Symp. Proc., 383: 447 (1995).
  39. S. Zhang, X. L. Bui, Y. Fu, D. L. Butler et al., Diamond and Related Materials, 13: 867 (2004).
  40. J. Musil, R. Daniel, P. Zeman, and O. Takai, Thin Solid Films, 478: 238 (2005). Crossref
  41. J. Musil, P. Dohnal, and P. Zeman, J. Vac. Sci. Technol. B, 23, No. 4: 1568 (2005).
  42. J. Musil, R. Daniel J. Soldan, and P. Zeman, Surf. Coat. Technol. (2005) (in press).
  43. H. Gleiter, Progress in Materials Science, 33: 223 (1989).
  44. S. Yip, Nature, 391: 532 (1998). Crossref
  45. J. Musil and J. Vlcek, Materials Chemistry and Physics, 54: 116 (1998).
  46. S. Veprek, J. Vac. Sci. Technol. A, 17: 2401 (1999).
  47. J. Musil, Surf. Coat. Technol., 125: 322 (2000).
  48. A. A. Voevodin and J. S. Zabinski, Thin Solid Films, 370: 223 (2000).
  49. V. V. Brazhkin, A. G. Lyapin et al., Philosophical Magazine A, 82, No. 2: 231 (2002),.
  50. J. Musil, J. Vlcek, F. Regent et al., Key Engineering Materials, 230–232: 613 (2002).
  51. J. Musil, Acta Metallurgica Sinica (English Letters), 18, No. 3: 433 (2005).
  52. S. Zhang, D. Sun, Y. Fu, and H. Du, Surf. Coat. Technol., 198, No. 1–2: 2 (2005).
  53. J. Musil, Nanostructured Hard Coatings (New York: Kluwer Academic–Plenum Publishers: 2005).
  54. T. Y. Tsui, G. M. Pharr, W. C. Oliver et al., Mater. Res. Soc. Symp. Proc., 383: 447 (1995).
  55. J. Musil, F. Kunc, H. Zeman, and H. Polakova, Surf. Coat. Technol., 154: 304 (2002).
  56. J. Musil and M. Jirout, Enhanced Toughness in Nanostructured Ceramic Thin Films, 5-th Asian–European International Conference on Plasma Surface Engineering (Sept. 12–16, 2005, Qingdao City, China).
  57. H. Zeman, J. Musil, and P. Zeman, J. Vac. Sci. Technol. A, 22, No. 3: 646 (2004).
  58. J. Musil, R. Daniel, P. Zeman, and O. Takai, Thin Solid Films, 478: 238 (2005).
  59. J. Musil, P. Dohnal, and P. Zeman, J. Vac. Sci. Technol. B, 23, No. 4: 1568 (2005).
  60. J. Musil, R. Daniel, J. Soldan, and P. Zeman, Surf. Coat. Technol. (2005) (in press).
  61. P. Zeman, J. Musil, and R. Daniel, Surf. Coat. Technol. (2005) (in press).
  62. S. Linder, A. Dommann, G. Staufert, and M.-A. Nicolet, Sens. Actuators A, 61: 387 (1997).
  63. Y. J. Lee, B. S. Suh, S. K. Rha, and S. O. Park, Thin Solid Films, 320: 141 (1998).
  64. J. W. Nan, S. K. Hwang, and S. M. Lee, Mater. Chem. Phys., 62: 115 (2000).
  65. J. W. Nan, W. S. Choi, S. K. Hwang, and S. M. Lee, Surf. Coat. Technol., 123: 1 (2000).
  66. J. O. Olowolafe, I. Rau, K. M. Unruh, S. P. Swann et al., Thin Solid Films, 365: 19 (2000).
  67. W.-D. Miinz, J. Vac. Sci. Technol. A, 4: 2717 (1986).
  68. L. A. Donohue, I. J. Smith, W.-D. Miinz, I. Petrov et al., Surf. Coat. Technol., 94–95: 226 (1997).
  69. I. Wadsworth, I. J. Smith, L. A. Donohue and W.-D. Miinz, Surf. Coat. Technol., 94–95: 315 (1997).
  70. S. Veprek, M. Haussmann, and S. Reiprich, Mater. Res. Soc. Symp. Proc., 400: 261 (1996).
  71. H. Holleck, J. Vac. Sci. Technol. A, 4: 2661 (1986).
  72. C. Berg, C. Friedrich, E. Broszeit, and C. Berger, Handbook of Ceramic Materials (Ed. R. Riedel) (Weinheim: Wiley-VCH: 2000), Table I, p. 968.
  73. D. G. Morris, Material Science Foundation. Vol. 2. Trans. Tech. Publication (Switzerland, Germany, UK, USA: LVD: 1998), p. 1.
  74. P. Z. Valiev, I. V. Aleksandrov, Nanostrukturnye materialy, poluchennye intensivnoy plasticheskoy deformatsiey (Moskva: Logos: 2000).
  75. N. I. Noskova i A. R. Mulyukov, Submikrokristallicheskie i nanokristallicheskie metally i splavy (Ekaterinburg: UrO RAN: 2003).
  76. S. Veprek, J. Vac. Sci. Technol. A, 17, No. 5: 2401 (1999).
  77. S. Christiansen, M. Albrecht, H. P. Strunk, and S. Veprek., J. Vac. Sci. Technol. V, 16, No. 1: 19 (1998).
  78. S. Veprek, M. Haussmann, and S. Reiprich, J. Vac. Sci. Technol. A, 14, No. 1: 46 (1996).
  79. S. Veprek and S. Reiprich, Thin Solid Films, 368: 64 (1995).
  80. S. Veprek, P. Nesladek, A. Niederhofer, F. Glatz et al., Surf. Coat. Technol., 108–109: 138 (1998).
  81. S. Veprek, S. Mukharjee, P. Karvankova et al., J. Vac. Sci. Technol. A, 21, No. 3: 532 (2003).
  82. J. Musil, Surf. Coat. Technol., 125: 322 (2000).
  83. P. Zeman, R. Cerstvy, P. H. Mayrhoter, S. Mutteres, and J. Musil, Mater. Sci. Engrs. A, 289: 189 (2000).
  84. J. Musil and H. Hruby, Thin Solid Films, 365: 104 (2000).
  85. J. Musil and H. Polakova, Surf. Coat. Technol., 127: 99 (2000).
  86. J. Musil, P. Zeman, H. Hruby, and P. H. Mayrhofer, Surf. Coat. Technol., 120–121: 179 (1999).
  87. J. Musil and J. Vlcek, Proc. of 1st Intern. Congress and Radiation Physics, High Current Electronics and Modification of Materials (Tomsk: 2000), vol. 3, p. 393.
  88. A. D. Korotaev, A. N. Tyumentsev, Yu. P. Pinzhin, S. V. Ovchinnikov i dr., Fizika i khimiya obrabotki materialov, No. 1: 22 (2004).
  89. A. D. Korotaev, A. N. Tyumentsev, and I. Yu. Litovchenko, The Physics of Metals and Metallography, 20, suppl. 1: 36 (2000).
  90. A. N. Tyumentsev, A. D. Korotaev, Yu. P. Pinzhin, N. N. Koval et al., Proc. of 1st Intern. Congress and Radiation Physics, High Current Electronics and Modification of Materials (Tomsk: 2000), vol. 3, p. 442.
  91. J. Musil, J. Vlcek, V. Jezek, M. Kolega et al., Surf. Coat. Technol., 76: 274 (1995).
  92. J. Musil, J. Matous, and V. Valvoda, Vacuum, 46: 203 (1995).
  93. R. Birringer, Mater. Sci. Eng. A, 117: 33 (1989).
  94. A. Nakayama, T. Yoshioka, and T. Nomura, Proceedings of the Seventh International Conference (Oct. 31–Nov. 2, 1993) (Institute of Materials: 1994), p. 315.
  95. S. Veprek, S. Reiprich, and L. Shizi, Appl. Phys. Lett., 66: 2640 (1995).
  96. P. Duwez and J. L. Taylor, Trans. ASM, 44: 495 (1952).
  97. R. Z. Valiev, I. V. Aleksandrov, Nanostrukturnye materialy, poluchennye intensivnoy plasticheskoy deformatsiey (Moskva: Logos: 2000).
  98. R. A. Andrievskiy, Uspekhi khimii, 66, No. 1: 57 (1997).
  99. A. I. Gusev, Nanomaterialy, nanostruktury, nanotekhnologii (Moskva: Fizmalit: 2004).
  100. H. Glieter, Acta mater., 48: 1 (2000).
  101. H. Gleiter, Progress in Materials Sceince, 33: 223 (1989).
  102. V. G. Gryaznov and L. I. Trusov, Progress in Materials Science, 37: 289 (1993).
  103. R. A. Andrievskiy, A. M. Glezer, Fiz. met. metalloved., 88, No. 1: 50 (2000).
  104. R. A. Andrievskiy, A. M. Glezer, Fiz. met. metalloved., 89, No. 1: 91 (2001).
  105. M. A. Vasil'ev, G. I. Prokopenko, V. S. Filatova, Uspekhi fiz. met., 5: 345 (2004).
  106. S. V. Shevchenko, N. N. Stetsenko, Uspekhi fiz. met., 4: 219 (2004).
  107. L. N. Larikov, Metallofiz. noveyshie tekhnol., 17, No. 9: 56 (1994).
  108. V. A. Pozdnyakov, Fiz. met. metalloved., 96, No. 1: 114 (2003).
  109. L. N. Larikov, Metallofiz. noveyshie tekhnol., 19, No. 1: 19 (1997).
  110. C. Gautier and J. Magnet, Thin Solid Films, 294: 43 (1997).
  111. V. M. Beresnev, Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy, No. 1: 109 (2006).
  112. V. M. Shulaev, A. A. Andreev, Vestnik Khar'kovskogo natsional'nogo avtomobil'no-dorozhnogo universiteta, No. 33: 57 (2006).
  113. Yu. V. Kunchenko, V. V. Kunchenko, G. N. Kartmazov, I. M. Neklyudov, Fizicheskaya inzheneriya poverkhnosti, 2, No. 1: 102 (2004).
  114. V. N. Antsiferov, S. P. Kosogor, Metally, No. 6: 93 (1997).
  115. A. S. Vereshchaka, A. A. Vereshchaka, L. G. Dyubner, Rezanie i instrument v tekhnologicheskikh sistemakh, No. 69: 21 (2004).
  116. R. A. Andrievskiy, I. A. Anisimova, V. P. Anisimov, Fizika i khimiya obrabotki materialov, No. 2: 99 (1992).
  117. V. M. Matsevityy, B. A. Polyanin, M. S. Borushko, L. M. Romanova, Elektronnaya obrabotka materialov, No. 3: 29 (1983).
  118. V. M. Beresnev, Fizicheskaya inzheneriya poverkhnosti, 3, No. 1–2: 79 (2004).
  119. S. V. Zlotskiy, V. V. Chaevskiy, Materialy 6-y Mezhdunar. konferen. «Vzaimodeystvie izlucheniy s tverdym telom» (Minsk: 2004), s. 170.
  120. O. Knoteck, M. Bohmer, and T. Leyendecker, J. Vac. Sci. Technol., 4, No. 6: 2695 (1986).
  121. I. M. Goncharenko, Yu. F. Ivanov, Yu. A. Kolubaeva i dr., Vakuumnye nanotekhnologii i oborudovanie, 1: 221 (2006).
  122. Yu. V. Kunchenko, V. V. Kunchenko, I. M. Neklyudov, G. Karmazov i dr., Vakuumnye nanotekhnologii i oborudovanie, 1: 226 (2006).
  123. V. P. Sergeev, M. V. Fedorishcheva, A. V. Voronov, O. V. Sergeev i dr., Izvestiya Tomskogo politekhnicheskogo universiteta, 309, No. 2: 149 (2006).
  124. J. L. He, Y. Sethuhara, I. Shimuzu, and S. Miyake, Surf. Coat. Technol., 137: 38 (2001).
  125. I. M. Goncharenko, Yu. F. Ivanov, Yu. A. Kolubaeva, Fiz. met. metalloved., 96, No. 1: 100 (2003).
  126. V. M. Matsevityy, V.M. Beresnev, I.B. Kazak, A.K. Oleynik i dr., Iznosostoykoe pokrytie (A.s. 1202284 SSSR, MKI S23 S14/00, No. 37633724-21) (Opubl. 01 sent. 1984).
  127. A. F. Belyanin, M. I. Samoylovich, V. D. Zhitkovskiy, A. L. Kameneva, Tekhnologiya i kostruirovanie v elektronnoy apparature, No. 4: 35 (2004).
  128. A. F. Belyanin, V. A. Krivchenko, D. V. Lopaev, S. N. Pavlushkin i dr., Tekhnologiya i kostruirovanie v elektronnoy apparature, No. 6: 48 (2006).
  129. A. S. Bakay, V. E. Strel'nitskiy, Strukturnye i fizicheskie svoystva uglerodnykh kondensatov (Moskva: TsNIIatominform.: 1984).
  130. V. E. Strel'nitskiy, I. I. Aksenov, Plenki almazopodobnogo ugleroda (Khar'kov: NNTs «KhFTI»: 2006).
  131. A. Matthews and D. Tither, Proc. of 5-th Internat. Cong. on Tribology (1989), vol. 2, p. 96.
  132. V. E. Strel'nitskiy, I. I. Aksenov, V. V. Vasil'ev, A. A. Voevodin i dr., Fizicheskaya inzheneriya poverkhnosti, 3, No. 1–2: 43 (2004).
  133. V. K. Struts, V. M. Matvienko, A. V. Petrov, N. M. Polkovnikova, Trudy V Mezhdunarod. konferents. «Raditsionno-termicheskie effekty i protsessy v neorganicheskikh materialakh» (Tomsk: 2006), s. 89.
  134. S. H. Yao, Y. L. Su, W. H. Kao, and T. H. Liu, Materials Science and Engineering, 392, No. 1–2: 340 (2004).
  135. P. Eh. Hovsepian, D. V. Lewis, and W.-D. Munz, Surf. Coat. Technol., 133–134: 166 (2000).
  136. C. Ducros, V. Benevent, and F. Sanchette, Surf. Coat. Technol., 163–164: 681 (2003).