Kinetics of Formation and Growth of Microdefects in Crystals

S. J. Olikhovsky, M. M. Belova, Ye. V. Kochelab

G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 17.11.2005. Download: PDF

In the review, the main results of numerous direct observations of microdefects’ formation (oxygen precipitates and dislocation loops) in a silicon crystal during its growth and heat treatments are described. Thermodynamic conceptions concerning formation of new-phase particles in the supersaturated solid solution of oxygen in silicon are briefly presented. Classical approaches to the description of oxygen-precipitation kinetics are represented too. Modern models of kinetics of growth and decomposition of precipitates and dislocation loops in silicon are described.

Keywords: silicon, microdefects, point defects, supersaturated solid solution, oxygen precipitate.

PACS: 61.72. Bb, 61.72. Cc, 61.72.Jj, 61.72.Yx, 64.60.Qb, 82.60.Nh, 82.60.Qr

DOI: https://doi.org/10.15407/ufm.07.03.135

Citation: S. J. Olikhovsky, M. M. Belova, and Ye. V. Kochelab, Kinetics of Formation and Growth of Microdefects in Crystals, Usp. Fiz. Met., 7, No. 3: 135—171 (2006) (in Russian), doi: 10.15407/ufm.07.03.135


References (81)  
  1. A. Borghesi, B. Pivac, A. Sassella, and A. Stella, J. Appl. Phys., 77, No. 9: 4169 (1995).
  2. M. G. Mil'vidskiy, Poluprovodnikovye materialy v sovremennoy elektronike (Moskva: Nauka: 1986).
  3. V. M. Babich, N. I. Bletskan, E. F. Venger, Kislorod v monokristallakh kremniya (Kyiv: Interpres LTD: 1997).
  4. A. R. Chelyadinskiy, F. F. Komarov, UFN, 173, No. 8: 813 (2003).
  5. T. Sinno, E. Dornberger, W. von Ammon et al., Mater. Sci. Eng., 28: 149 (2000).
  6. H. Föll, U. Gösele, and B. O. Kolbesen, J. Cryst. Growth, 40, 90 (1977). Crossref
  7. Yu. M. Babitskiy, P. M. Grinshteyn, M. G. Mil'vidskiy, V. Ya. Reznik, Kristallografiya, 23, No. 3: 740 (1988).
  8. D. M. Maher, A. Staudinger, and J. R. Patel, J. Appl. Phys., 47, No. 9: 3813 (1976).
  9. W. Patrick, E. Hearn, W. Westdorp, and A. Bohg, J. Appl. Phys., 50, No. 11: 7156 (1979).
  10. J. R. Patel, K. A. Jackson, and H. Reiss, J. Appl. Phys., 48, No. 12: 5279 (1977).
  11. Ch. Y. Kung, J. Appl. Phys., 65, No. 12: 4654 (1989).
  12. K. Yasutake, M. Umeno, and H. Kawabe, Phys. Stat. Sol. A, 83, No. 1: 207 (1984).
  13. R. Köhler, W. Möhling, and M. Pasemann, Phys. Stat. Sol. A, 53, No. 2: 509 (1979).
  14. W. Bergholz, M. J. Binns, G. R. Booker et al., Phil. Mag. B, 59, No. 5: 499 (1989).
  15. H. Bender, Phys. Stat. Sol. A, 86, No. 2: 245 (1984).
  16. N. Yamamoto, P. M. Petroff, and J. R. Patel, J. Appl. Phys., 54, No. 6: 3475 (1983). Crossref
  17. F. M. Livingston, S. Messoloras, R. C. Newman et al., J. Phys. C: Solid State Phys., 17, No. 34: 6253 (1984).
  18. I. Baltaks, Diffuziya i tochechnye defekty v poluprovodnikakh (Leningrad: Nauka: 1972).
  19. Atomnaya diffuziya v poluprovodnikakh (Red. B. Shou) (Moskva: Mir: 1975).
  20. Dzh. Manning, Kinetika diffuzii atomov v kristallakh (Moskva: Mir: 1971).
  21. T. Sinno, R. A. Brown, W. von Ammon, and E. Dornberger, J. Electrochem. Soc., 145, No. 1: 302 (1998).
  22. V. V. Voronkov and R. Falster, J. Appl. Phys., 86, No. 11: 5975 (1999). Crossref
  23. A. Romanovski, G. Rozgonyi, and M. Tamatsuka, J. Appl. Phys., 85, No. 9: 6408 (1999).
  24. T. Sinno and R. A. Brown, J. Electrochem. Soc., 146, No. 6: 2300 (1999).
  25. J. Kim, F. Kirchhoff, J. W. Wilkins, and F. S. Khan, Phys. Rev. Lett., 84, No. 3: 503 (2000).
  26. N. E. B. Cowern, G. Mannino, P. A. Stolk et al., Phys. Rev. Lett., 82, No. 22: 4460 (1999).
  27. S. K. Estreicher, M. Gharaibeh, P. A. Fedders, and P. Ordejon, Phys. Rev. Lett., 86, No. 7: 1247 (2001).
  28. A. Seeger and U. Gösele, Phys. Lett. A, 60, No. 6: 423 (1977).
  29. S. M. Hu, J. Appl. Phys., 57, No. 10: 4527 (1985).
  30. F. Cristiano, J. Grisolia, B. Colombeau et al., J. Appl. Phys., 87, No. 12: 8420 (2000). Crossref
  31. K. Sueoka, N. Ikeda, T. Yamamoto, and S. Kobayashi, J. Appl. Phys., 74, No. 9: 5437 (1993).
  32. G. Kissinger, T. Grabolla, G. Morgenstern et al., J. Electrochem. Soc., 146, No. 5: 1971 (1999).
  33. D. K. Schroder and J. A. Babcock, J. Appl. Phys., 64, No. 1: 1 (2003).
  34. T. Y. Tan and W. K. Tice, Phil. Mag., 34, No. 4: 615 (1976).
  35. S. Senkader, P. R. Wilshaw, and R. J. Falster, J. Appl. Phys., 89, No. 9: 4803 (2001).
  36. M. Damman, H. Baltes, N. Strecker, and U. Thiemann, J. Appl. Phys., 76, No. 8: 4547 (1994).
  37. N. Adachi, T. Hisatomi, M. Sano, and H. Tsuyu, J. Electrochem. Soc., 147, No. 1: 350 (2000).
  38. S. Sama, M. Forrini, F. Fogale, and M. Servidori, J. Electrochem. Soc., 148, No. 9: 6517 (2001).
  39. H. L. Tsai, J. Appl. Phys., 58, No. 10: 3775 (1985).
  40. C. Y. Kung, E. C. Tsuy, and H. M. Lee, J. Electrochem. Soc., 146, No. 12: 4634 (1999).
  41. I. V. Antonova, V. P. Popov, A. E. Plotnikov, and A. Misiuk, J. Electrochem. Soc., 146, No. 4: 1575 (1999).
  42. K. Yang, J. Carle, and R. Kleinhenz, J. Appl. Phys., 62, No. 12: 4890 (1987).
  43. K. Wada, W. Inoue, and K. Kohra, J. Cryst. Growth, 49: 749 (1980).
  44. N. Inoue, K. Watanabe, K. Wada, and J. Osakam, J. Cryst. Growth, 84: 21 (1987).
  45. W. A. Tiller and S. Oh, J. Appl. Phys., 64, No. 1: 375 (1984).
  46. J. Vanhellemont and C. Claeys, J. Appl. Phys., 62, No. 9: 3960 (1987); idem, J. Appl. Phys., 71, No. 2: 1073 (1992).
  47. J. Vanhellemont, J. Appl. Phys., 78, No. 6: 4297 (1995).
  48. J. Vanhellemont, Appl. Phys. Lett., 68, No. 24: 3413 (1996).
  49. K. Sueoka, N. Ikeda, and T. Yamamoto, Appl. Phys. Lett., 65, No. 13: 1686 (1994).
  50. S. Senkader, G. Hobler, and C. Schmeiser, Appl. Phys. Lett., 69, No. 15: 2202 (1996). Crossref
  51. V. V. Voronkov and R. Falster, J. Appl. Phys., 89, No. 11: 5965 (2001). Crossref
  52. V. V. Voronkov and R. Falster, J. Appl. Phys., 91, No. 9: 5802 (2002). Crossref
  53. I. M. Lifshits, V. V. Slezov, ZhETF, 35, No. 2(8): 479 (1958).
  54. S. Wagner, Z. Elektrochemie, 65, No. 7–8: 581 (1961).
  55. F. C. Goodrich, Proc. R. Soc. A. London, 277, No. 1369: 155 (1964).
  56. F. C. Goodrich, Proc. R. Soc. A. London, 277, No. 1369: 167 (1964).
  57. M. Koiwa, Phil. Mag., 30, No. 4: 877 (1974).
  58. M. Koiwa, Phil. Mag., 30, No. 5: 895 (1974).
  59. 3367/UFNr.0151.198701c.0067
  60. K. V. Chuistov, Metallofizika, 15, No. 4: 10 (1993).
  61. F. S. Ham, J. Phys. Chem. Solids, 6, No. 4: 335 (1958).
  62. F. S. Ham, J. Appl. Phys., 30, No. 10: 1518 (1969).
  63. S. M. Hu, Appl. Phys. Lett., 48, No. 2: 115 (1986).
  64. K. F. Kelton, R. Falster, D. Gambaro, M. Olmo et al., J. Appl. Phys., 85, No. 12: 8097 (1999).
  65. P. F. Wei, K. F. Kelton, and R. Falster, J. Appl. Phys., 88, No. 9: 5062 (2000).
  66. L. D. Landau, E. M. Lifshits, Statisticheskaya fizika. Ch. 1 (t. V) (Moskva: Nauka: 1976).
  67. N. G. Van Kampen, Stokhasticheskie protsessy v fizike i khimii (Moskva: Vysshaya shkola: 1990).
  68. M. Schrems, T. Brabec, M. Budil et al., Mater. Sci. Eng. B, 4: 393 (1989).
  69. J. Esfandyari, C. Schmeiser, S. Senkader et al., J. Electrochem. Soc., 143, No. 3: 995 (1996).
  70. S. Isomae, J. Appl. Phys., 70, No. 8: 4217 (1991).
  71. S. V. Bulyarskiy, V. V. Svetukhin, O. V. Prikhod'ko, FTP, 33, vyp. 11: 1281 (1999).
  72. V. V. Svetukhin, A. G. Grishin, O. V. Prikhod'ko, FTP, 37, vyp. 7: 871 (2003).
  73. V. Ya. Lyubov, Kineticheskaya teoriya fazovykh prevrashcheniy (Moskva: Metalurgiya: 1969).
  74. S. T. Dunham, Appl. Phys. Lett., 63, No. 4: 464 (1993). Crossref
  75. B. Burton and M. V. Speight, Philos. Mag. A, 53, No. 3: 385 (1985).
  76. C. Bonafos, D. Mathiot, and A. J. Claverie, J. Appl. Phys., 83, No. 6: 3008 (1998).
  77. E. Lampin and V. Senez, Nucl. Instrum. Meth. Phys. Res. B, 147, No. 1–4: 13 (1999).
  78. S. Senkader, J. Esfandyari, and G. Hobler, J. Appl. Phys., 78, No. 11: 6469 (1995).
  79. B. G. Ko and K. D. Kwack, J. Appl. Phys., 85, No. 4: 2100 (1999).
  80. T. Mori, Ph. D. Thesis (Cambridge: Massachusetts Institute of Technology: 2000).
  81. B. E. Deal and A. S. Grove, J. Appl. Phys., 36, No. 12: 3770 (1965). Crossref