Grain-Boundary Diffusion and Segregation in the Sintered Nanocrystalline Materials with Hierarchical Structure

S. V. Divinski$^{1}$, S. M. Zakharov$^{2}$, O. A. Shmatko$^{2}$

$^1$Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster, Germany
$^2$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 08.11.2005. Download: PDF

Regularities of the diffusion of component atoms and atoms of highly segregated admixture in nanocrystalline material with a hierarchical structure are considered. Such a structure is characteristic for materials, fabricated from the milled powders of metal oxides by fritting, as a result of which the nanosized grains are grouped into the agglomerates of micrometre size. In such a type of the nanomaterials, there are two different-scale types of internal surfaces with different diffusion characteristics, namely, boundaries between nanograins and between their agglomerates, which are the elements of hierarchical material structure. The salient features of grain-boundary diffusion in such hierarchical structure are analysed. The kinetic regimes of diffusion are described, and presented equations allow determining the parameters of diffusion transfer over both types of separation surfaces on the basis of experimental data. The segregation behaviour of strongly-segregated admixture in the nanocrystalline $\gamma$-Fe–Ni alloy is studied. As shown, the rate of diffusion mass transfer along nanocrystalline boundaries in the material obtained by the sintering is practically similar to such one in a coarse-grained polycrystal of the same composition. Boundaries between agglomerates are nonequilibrium separation surfaces characterized by diffusion coefficients, which are high by orders of magnitudes the same for nanocrystalline boundaries.

Keywords: sintering, nanocrystalline materials, hierarchical structure, segregation, grain-boundary diffusion.

PACS: 8.35.Dv, 68.35.Fx, 68.43.Jk, 81.07.Wx, 81.20.Ev, 81.20.Wk, 81.65.Ps

DOI: https://doi.org/10.15407/ufm.07.01.001

Citation: S. V. Divinski, S. M. Zakharov, and O. A. Shmatko, Grain-Boundary Diffusion and Segregation in the Sintered Nanocrystalline Materials with Hierarchical Structure, Usp. Fiz. Met., 7, No. 1: 1—39 (2006) (in Russian), doi: 10.15407/ufm.07.01.001


References (60)  
  1. L. N. Larikov, Metallofizika, 14, No. 7: 3 (1992).
  2. N. Gleiter, Zs. Metallkde, 86, No. 2: 78 (1995).
  3. Ya. E. Geguzin, Yu. S. Kaganovskiy, L. N. Paritskaya, FMM, 54, No. 1: 137 (1982).
  4. L. N. Paritskaya, Poroshkovaya metallurgiya, No. 6: 28 (1984).
  5. J. Horváth, R. Birringer, and H.Gleiter, Solid State Communs, 62, No. 5: 319 (1987). Crossref
  6. H. J. Höfler, R. S. Averback, H. Hahn, and H. Gleiter, J. Appl. Phys., 74, No. 6: 3832 (1993). Crossref
  7. T. Surholt and Chr. Herzig, Acta mater., 45, No. 9: 3817 (1997).
  8. S. Divinski, M. Lohmann, and Chr. Herzig, Acta mater., 49, No. 2: 249 (2001).
  9. S. Divinski, M. Lohmann, and Chr. Herzig, Acta mater., 52, No. 12: 3973 (2004).
  10. L. N. Paritskaya, Poroshkovaya metallurgiya, No. 11: 44 (1990).
  11. H. Gleiter, Physica status solidi, V172, No. 1: 41 (1992).
  12. S. M. Klotsman, FMM, 75, No. 4: 5 (1993).
  13. L. N. Larikov, Metallofiz. noveishie tekhnol., 17, No. 1: 3 (1995).
  14. J. C. Fisher, J. Appl. Phys., 22, No. 1: 74 (1951).
  15. P. Benoist and G. Martin, Thin Solid Films, 25, No. 1: 181(1975).
  16. D. Turnbull and R. E. Hoffman, Acta met., 2, No. 3: 419 (1954).
  17. R. E. Hoffman, Acta met., 4, No. 1: 97 (1956).
  18. L. G. Harrison, Trans. Faraday Soc., A57, No. 8: 1191 (1961).
  19. B. S. Bokshteyn, I. A. Magidson, I. A. Svetlov, FMM, 6, No. 6: 1040 (1958).
  20. H. C. Levine and C. J. McCallum, J. Appl. Phys., 31, No. 1: 595 (1960).
  21. T. Suzuoka, Trans. Jap. Inst. Metals, 2, No. 1: 25 (1961).
  22. E. W. Hart, Acta met., 5, No. 10: 597 (1957).
  23. R. T. P. Whipple, Phil. Mag., 45, No. 371: 1225 (1954).
  24. Yu. M. Mishin, Poverkhnost', No. 6: 22 (1983).
  25. Yu. M. Mishin, N. M. Razumovskiy, Poverkhnost', No. 7: 5 (1983).
  26. Zernogranichnaya diffuziya i svoystva nanostrukturnykh materialov (Red. Yu. R. Kolobov i R. Z. Valiev) (Novosibirsk: Nauka: 2001).
  27. S. Herth, T. Michel, H. Tanimoto, M. Eggersmann, R. Dittmar, H.-E. Schaefer, W. Frank, and R.Würschum, Defects and Diffusion Forum, 194–199: 1199 (2001).
  28. S. Schumacher, R. Birringer, R. Strauss, and H. Gleiter, Acta met., 37, No. 9: 2485 (1989).
  29. T. Mütschele and R. Kirchheim, Scr. Met., 21, No. 2: 135 (1987). Crossref
  30. R. Kirchheim, T. Mütschele, W. Kieninger, H. Gleiter, R. Birringer, and T. D. Koblé, Mater. Sci. and Eng., 99: 457 (1988).
  31. H. J. Höfler, H. Hahn, and R. S. Averback, Defect and Diffusion Forum, 75: 195 (1991).
  32. Yu. R. Kolobov, G. P. Grabovetskaya, M. B. Ivanov, A. P. Zhilyaev, and R. Z. Valiev, Scr. Mater., 44, No. 6: 873 (2001).
  33. S. V. Divinski and L. N. Larikov, Defects and Diffusion Forum, 143–147: 1469 (1997).
  34. S. V. Divinski and L. N. Larikov, Met. Phys. Adv. Tech., 15, No. 6: 631 (1995).
  35. I. Kaur, Y. Mishin, and W. Gust, Fundamentals of Grain and Interphase Boundary Diffusion (Chichester: John Wiley: 1995).
  36. H. J. Höfler, R. S. Averback, and H. Gleiter, Phil. Mag. Letts., 68, No. 2: 99 (1993).
  37. H. J. Höfler (Ph. D. Thesis) (Saarbrücken: Uniwersität des Saarlandes: 1991).
  38. H. E. Schaefer, R. Würschum, R. Birringer et al., Physical Research (Ed. K. Henning) (Berlin: Akademie-Verlag: 1988)
  39. J. Horváth, Defects and Diffusion Forum, 66–69, Pt I: 207 (1989).
  40. R. Birringer, H. Gleiter, H.-R. Klein, and P Marquardt, Phys. Lett., A102, No. 8: 365 (1984). Crossref
  41. P. Knorr, J. G. Nam, and J. S. Lee, Metall. Mater. Trans., A31, No. 2: 503 (2000).
  42. S. V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee, and Chr. Herzig, Z. Metallkd., 93, No. 4: 256 (2002).
  43. S. V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee, and Chr. Herzig, Interface Science, 11, No. 1: 67 (2003).
  44. A. Atkinson and R. I. Taylor, Phil. Mag., A43, No. 4: 979 (1981). Crossref
  45. J. Sommer and Chr. Herzig, J. Appl. Phys., 72, No. 7: 2758 (1992). Crossref
  46. P. Gas, D. L. Beke, and J. Bernardini, Phil. Mag. Lett., 65, No. 3: 133 (1992). Crossref
  47. Y. Mishin, Chr. Herzig, J. Bernardini, and W. Gust, Int. Mater. Reviews, 42, No. 4: 155 (1997).
  48. Chr. Herzig and S. V. Divinski, Materials Transactions, 44: 14 (2003).
  49. S. V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee, and Chr. Herzig, Acta Mater., 52, No. 3: 631 (2004).
  50. I. L. Balandin, B. S. Bokstein, V. K. Egorov, and V. Kurkin, Nanostr. Mater., 8, No. 1: 37 (1997).
  51. S. V. Divinski, F. Hisker, Y.-S. Kang, J.-S. Lee, and Chr. Herzig, Z. Metallkd., 93, No. 4: 265 (2002).
  52. T. Suzuoka, J. Phys. Soc. Jap., 19, No. 6: 839 (1964).
  53. S. V. Divinski, Defect Diffusion Forum, 156: 35 (1998).
  54. I. V. Belova and G. E. Murch, J. Phys. Chem. Solids, 64, No. 5: 873 (2003). Crossref
  55. S. V. Divinski, Y.-S. Kang, J.-S. Lee, and Chr. Herzig, Z. Metallkd., 94, No. 9: 949 (2003).
  56. Y.-S. Kang, J.-S. Lee, S. V. Divinski, and Chr. Herzig, Z. Metallkd., 95, No. 2: 76 (2004).
  57. M. Egersmann, S. Herth, O. Gutfleisch, and R. Würschum, Interface Sci., 9: 337 (2001).
  58. R. Würschum, S. Herth, and U. Brossmann, Advanced Engineering Materials, 5, No. 5: 365 (2003).
  59. R. Würschum, P. Faber, R. Dittmar, P. Scharwaechter, W. Frank, and H.-E. Schaefer, Phys. Rev. Lett., 79, No. 24: 4918 (1997). Crossref
  60. Y. Minamoto, S. Saji, K. Hirao, K. Ogawa, H. Araki, Y. Miyamoto, and T. Yamate, Mater. Trans. Jap. Inst. Metals (JIM), 37: 130 (1996).
Cited By (1)
  1. L. V. Dekhtyaruk, I. Yu. Protsenko and A. M. Chornous, Usp. Fiz. Met. 8, 21 (2007).