Properties of Nanoscale Particles on the Basis of Metals Localized Into Biological Tissues

A. P. Shpak$^{1}$, A. B. Brik$^{2}$, V. L. Karbovskiy$^{1}$, L. G. Rosenfeld$^{3}$

$^1$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$M. P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation NAS of Ukraine, 34 Academician Palladin Ave., 03680 Kyiv-142, Ukraine
$^3$Research Centre of Radiation Medicine AMS of Ukraine, 53 Melnikov Str., 03050 Kyiv, Ukraine

Received: 15.10.2003. Download: PDF

The nanoscale solid-state particles localized into high-mineralised biological tissues (tooth enamel, bone) and into weakly-mineralised tissues (organic tissue of mollusc shells, tissue of brain) are considered. The properties of the nanoscale solid-state particles formed on the basis of metallic ions are studied. The data about properties of the nanoscale particles localized into above-mentioned biological tissues are obtained mainly by electron paramagnetic resonance (EPR). For high-mineralised tissues, the problems bound with hierarchy of an internal structure, interaction mechanisms of an organic and mineral substance, an anisotropy of their structure, and impurity crystalline phases are considered. For weakly mineralised tissues, the anomalous resonance signals (caused by the particles with magnetic ordering), which have unique dynamical characteristics, are described. At high level of microwave power, the parabolic zones caused by the coherent phenomena are appeared on the outline of the signals. As concluded, within the brain tissue the physiological (normal) mineralisation and pathological one take place. As suggested, physiological mineral particles play important role in operation of brain and pathological particles and they are the causes of brain diseases. The possible applications of the described results are discussed for solution of fundamental and applied problems bound with nanoscale particles intruded into the biological tissues. The mineral component of high-mineralised tissues and mineral inclusions of weakly-mineralised tissues have the structure of solid-state particles. This fact opens the possibilities for describing the processes within the biological tissues by strong physical approaches. Besides, the information about the properties of nanoscale solid-state particles within the biological tissues opens possibilities for creation of the technical systems and equipments, which would use the principles of the biological tissue functioning.

Keywords: nanoscale particles, bones, tooth enamel, brain tissue, electron paramagnetic resonance, hydroxylapatite, calcite, ferric oxides.

PACS: 61.46.+w, 81.07.Pr, 82.35.Np, 83.80.Lz, 87.64.Hd, 87.68.+z

DOI: https://doi.org/10.15407/ufm.04.04.303

Citation: A. P. Shpak, A. B. Brik, V. L. Karbovskiy, and L. G. Rosenfeld, Properties of Nanoscale Particles on the Basis of Metals Localized Into Biological Tissues, Usp. Fiz. Met., 4, No. 4: 303—336 (2003), doi: 10.15407/ufm.04.04.303


References (39)  
  1. A. P. Shpak, A. B. Brik, and V. L. Karbovskij, Tezisy Dokladov Mezhdunarodnoj Konferentsii 'Noveishie Tekhnologii v Poroshkovoj Metallurgii i Keramike' (Kyyiv: 2003), p. 286 (in Russian).
  2. A. A. Korago, Vvedenie v Biomineralogiyu (Spb.: Nedra: 1992) (in Russian).
  3. F. C. M. Driessens and R. M. H. Verbeeck, Biominerals (Boca Raton: CRC Press: 1990).
  4. H. A. Lowenstam and S. Weiner, On Biomineralization (New York: Oxford Univ. Press: 1989).
  5. A. P. Shpak, V. L. Karbovskij, and V. V. Trachevskij, Apatity (Kyyiv: Akademperiodyka: 2002) (in Russian).
  6. T. Kanazawa, Neorganicheskie Fosfatnyye Soyedineniya (Kyyiv: Naukova Dumka: 1998) (in Russian).
  7. N. P. Jushkin, V. I. Pavlishin, and A. M. Askhabov, Mineralogicheskij Zhurnal, 25, No. 4: 7 (2003) (in Russian).
  8. L. G. Rosenfeld, A. B. Brik, G. H. Kenner, O. N. Atamanenko et al., Ortope-diya, Travmatologiya i Protezirovanie, No. 1: 9 (2002) (in Russian).
  9. L. G. Rozenfel'd, O. B. Brik, and O. N. Atamanenko, Zhurnal AMN Ukrainy, 5, No. 2: 220 (1999) (in Russian).
  10. A. B. Brik, Mineralogical Journal, 24, No. 5/6: 29 (2002).
  11. A. B. Brik, Mineralogical Journal, 25, No. 2/3: 11 (2003).
  12. A. B. Brik and V. B. Brik, Mineralogical Journal, 20, No. 5: 46 (1998).
  13. E. V. Borovskij and V. K. Leont'ev, Biologiya Polosti Rta (Moscow: Medicina: 1991) (in Russian).
  14. M. J. Glimcher, Clinical Ortopaedics and Related Research, No. 61: 16 (1968).
  15. D. V. Provenza and W. Ed. Seibel, Oral Histology (Philadelphia: Lea and Febiger: 1986).
  16. A. B. Brik, E. H. Haskell, V. B. Brik, O. N. Atamanenko, and O. I. Scherbina, Appl. Radiat. Isot., 52: 1077 (2000). Crossref
  17. A. Brik, G. Kenner, V. Brik, E. Rice et al., Mineralogical Journal, 23, No. 1: 23 (2001).
  18. G. P. Stupakov and A. I. Volozhin, Kostnaya Sistema i Nevesomost' (Moscow: Nauka: 1989), vol. 63 (in Russian).
  19. A. M. Belous and E. Ya. Pankov, Mekhanizmy Regeneratsii Kostnoj Tkani: Sbornik Statej (Moscow: Medicina: 1972) (in Russian).
  20. W. F. Neuman and M. W. Neuman, The Chemical Dynamics of Bone Mineral (Chicago: The University of Chicago Press: 1958).
  21. R. O. Becker and F. M. Brown, Nature, 206, No. 4991: 1325 (1965). Crossref
  22. C. A. L. Bassett, Calcif. Tiss. Res., 1: 252 (1968). Crossref
  23. W. S. Williams and L. Breger, J. Biomechanics, 8: 407 (1975). Crossref
  24. V. I. Loshchilov, M. V. Volkov, and S. I. Shchukin, Dokl. AN SSSR. Ser. Biofizika, 274, No. 5: 1221 (1984) (in Russian).
  25. E. T. Kulin, Bioehlektretnyj Ehffekt (Minsk: Nauka i Tekhnika: 1980) (in Russian).
  26. A. B. Brik, E. H. Haskel, O. I. Scherbina et al., Mineralogical Journal, 20, No. 4: 26 (1998).
  27. F. Callens, P. Moens, and R. Verbeeck, Calcified Tissue International (1995), p. 543 .
  28. A. B. Brik, O. I. Scherbina, E. H. Haskell et al., Mineralogical Journal, 19, No. 4, 3 (1997).
  29. S. S. Ishchenko, I. P. Vorona, S. M. Okulov, and N. P. Baran, Applied Radiation and Isotopes, 56: 815 (2002). Crossref
  30. I. P. Vorona, M. P. Baran, and S. S. Ishchenko, Ukr. Fiz. Zhurnal, 47, No. 7: 659 (2002) (in Russian).
  31. A. Brik, V. Baraboy, O. Atamanenko et al., Applied Radiation and Isotopes, 52, No. 5: 1305 (2000). Crossref
  32. A. B. Brik, O. N. Atamanenko, I. G. Litovka, and O. I. Scherbina, Abstracts of 22nd Annual International Gravitational Physiology Meeting (Budapest, 2001), p. 61.
  33. L. G. Gelinskaja and M. Ya. Shcherbakova, Fizika Apatita (Novosibirsk: Nauka: 1975), p. 7 (in Russian).
  34. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford: Clarendon Press: 1970).
  35. Ch. P. Pool, Electron Spin Resonance in Comprehensive Treatise on Experimental Techniques (New York–London–Sidney: Interscience Publishers—a Division of John Wiley and Sons: 1967).
  36. Z. Srebro, W. Froncize, T. Sarna, and S. Lukiewicz, Proc. of the First European Biophysics Congress (1971), vol. 2, p. 575.
  37. P. Milvy, S. Kakari, J. B. Campbell, and H. B. Demopoulos, Annals of New York Academy of Science, 222: 1102 (1976). Crossref
  38. Ferromagnitnyj Rezonans (Ed. S. V. Vonsovskij) (Moscow: GIFML: 1961) (in Russian).
  39. F. E. Bloom, A. Lazerson, and L. Hofstadter, Brain, Mind, and Behavior (New York: W. H. Freeman and Company: 1985).