Interdiffusion in Ternary Systems with Two-Phase Zones—Approaches and Models

Yu. O. Lyashenko

Bohdan Khmelnytsky National University of Cherkasy, 81 Shevchenko Blvd., 18031 Cherkasy, Ukraine

Received: 28.01.2002. Download: PDF

Salient features of interdiffusion in the ternary metallic systems are analysed. Investigation of interdiffusion in ternary and other multicomponent alloys is difficult in both theoretical and experimental aspects because it can lead to the two-phase zone formation in the result of the diffusion interaction in the systems with two-phase fields on the isothermal phase diagram. A modelling of the interdiffusion in the ternary systems with two-phase regions makes possible to take into account the two-phase zone growth, to determine the diffusion path and to analyse their stability under the different approaches. Such a modelling requires a consideration of different thermodynamic and diffusion approaches. Addition of one or more components to the binary system makes all diffusion problems much more complicated and introduces new problems. Among them the most interesting seem to be: 1) creation of self-consistent model of the phase-diagrams’ construction and diffusion interaction with possibility of the two-phase zone formation; 2) choice of the diffusion path within concentration triangle; 3) determination of the two-phase zone formation criteria; 4) investigation of the morphology being dependent on the initial condition and diffusion parameters.

Keywords: interdiffusion, two-phase region, two-phase zone, ternary systems, phase diagram.

PACS: 05.70.Ln, 66.30.Ny, 81.30.Bx, 81.30.Mh, 82.60.Lf, 82.60.Nh

DOI: https://doi.org/10.15407/ufm.04.02.081

Citation: Yu. O. Lyashenko, Interdiffusion in Ternary Systems with Two-Phase Zones—Approaches and Models, Usp. Fiz. Met., 4, No. 2: 81—122 (2003) (in Russian), doi: 10.15407/ufm.04.02.081


References (61)  
  1. C. C. Cheng and J. D. Verhoeven, J. Less-Common Metals, 139: 15 (1988). Crossref
  2. J. A. van Beek, P. J. T. L. Oberndorff, A. A. Kodentsov, and F. J. J. van Loo, J. Alloys Comp., 297: 137 (2000).
  3. J. p. Kirkaldy and D. J. Young, Diffusion in the Condensed State (London: The Institute of Metals: 1987).
  4. p. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics (Amsterdam: 1962).
  5. I. P. Borovskii, K. P. Gurov, I. D. Marchukova, Yu. E. Ugaste, Protsessy vzaimnoi diffuzii v splavakh (Moskva: Nauka: 1973).
  6. J. P. Kirkaldy and L. C. Brown, Can. Met. Quart., 2, No. 1: 89 (1963). Crossref
  7. B. A. Meshchaninov, V sb.: Diffuzionnye protsessy v metallakh (Tula: TPI: 1982).
  8. J. P. Kirkaldy, Tranp. ASM, 51: 218 (1966).
  9. V. T. Borisov, V. M. Golikov, G. V. Shcherbedinskii, Zashchitnye pokrytiya v metallakh (Kiev: 1968), No. 2, c. 33.
  10. K. P. Gurov, B. A. Kartashkin, A. N. Chadov, Diffuzionnye protsessy v metallakh (Tula: TPI: 1980), p. 3.
  11. G. W. Roper and D. P. Whittle, Met. Sci., 15: 148 (1981). Crossref
  12. W. D. Hopfe and J. E. Morral, Acta metall. mater., 42, No. 11: 3887 (1994). Crossref
  13. H. Chen and J. E. Morral, Acta mater., 47, No. 4: 1175 (1999). Crossref
  14. A. A. Kodentzov, p. F. Dunaev, and E. M. Slusarenko, J. Less-Common Metals, 135: 15 (1987). Crossref
  15. J. A. Nesbitt and R. W. Heckel, Metall. Tranp. A, 18A: 1987 (1987).
  16. M. A. Dayananda, Solid State Phenomena, 72: 123 (2000). Crossref
  17. F. J. I. van Loo, Prog. Solid St. Chem., 20: 47 (1990). Crossref
  18. C. Wagner, Z. Anorg. Allgem. Chem., 236: 320 (1938).
  19. K. Hauffe, Solid State and Surface Reaction (Moscow: 1963).
  20. R. A. Rapp, A. Ezis, and G. J. Yurek, Metall. Tranp. A, 4: 1283 (1973). Crossref
  21. G. J. Yurek, R. A. Rapp, and J. P. Hirt, Metall. Tranp. A, 4: 1293 (1973). Crossref
  22. G. V. Shcherbedinskii, M. G. Isakov, G. P. Abramov, Diffuzionnye protsessy v metallakh (Tula: TPI: 1977).
  23. P. R. Shatynski, J. P. Hirt, and R. A. Rapp, Metall. Tranp. A, 10A: 591 (1979). Crossref
  24. C. Tangchitvittaya, J. P. Hirt, and R. A. Rapp, Metall. Tranp. A, 13A: 585 (1982). Crossref
  25. M. G. Isakov, Diffuzionnye protsessy v metallakh (Tula: TPI: 1978), p. 31.
  26. G. V. Shcherbedinskii, G. P. Abramov, Diffuzionnye protsessy v metallakh (Tula: TPI: 1978), p. 36.
  27. M. G. Isakov, V. K. Tolpygo, Diffuzionnye protsessy v metallakh (Tula: TPI: 1987), p. 31.
  28. P. O. Mchedlov-Petrosyan, p. L. Sodin, Zhurnal tekhn. fiziki, 58: 652 (1988).
  29. P. O. Mchedlov-Petrossyan, Metallofiz. noveishie tekhnol., 24, No. 1: 25 (2002).
  30. E. A. Nekrasov, Fenomenologicheskaya teoriya vzaimnoi diffuzii v neodnofaznoi oblasti mnogokomponentnykh metallicheskikh sistem (Tomsk: 1988) (Dep. v VINITI, N5368-B88).
  31. P. W. Sinclair, G. R. Purdy, and J. E. Morral, Metall. Tranp. A, 31A: 1187 (2000). Crossref
  32. W. W. Mullins and R. F. Sekerka, J. Appl. Phyp., 34: 323 (1963). Crossref
  33. W. W. Mullins and R. F. Sekerka, J. Appl. Phyp., 35: 444 (1964). Crossref
  34. L. Q. Chen, Acta mater., 42: 3503 (1994). Crossref
  35. K. Wu, J. E. Morral, and Y. Wang, Acta mater., 49: 3401 (2001). Crossref
  36. M. S. Thompson and J. E. Morral, Acta metall. mater., 34: 2201 (1986). Crossref
  37. J. B. Clark and F. N. Rhines, Tranp. ASM, 51: 199 (1959).
  38. K. Osinski, A. W. Vriend, G. F. Bastin, and F. J. J. van Loo, Z. Metallk., 73: 258 (1982).
  39. F. J. J. van Loo, A. W. Vriend, and K. Osinski, In: Fundamentals and Applications of Ternary Diffusion (Ed. G. R. Purdy) (Oxford: Pergamon Press: 1990).
  40. M. R. Rijnders and F. J. J. van Loo, Scripta Metallurgica et Materialia, 32: No. 12: 1931 (1995). Crossref
  41. M. R. Rijnders, J. A. van Beek, A. A. Kodentsov, and F. J. J. van Loo, Z. Metallk., 87: 732 (1996).
  42. A. A. Kodentsov, M. J. H. van Dal, C. Cserhati, A. M. Gusak, and F.J.J. van Loo, Defect and Diffusion Forum, 194–199: 1491 (2001).
  43. A. A. Kodentsov, M. R. Rijnders, and F. J. J. van Loo, Acta mater., 46: 6521 (1998). Crossref
  44. C. R. Kao and Y. A. Chang, Acta mater., 43: 3463 (1993). Crossref
  45. R. E. Liesegang, Naturw. Wschr., 11: 353 (1896).
  46. W. J. Boettinger, p. R. Coriell, C. E. Campbell, and G. B. McFadden, Acta mater., 48: 481 (2000). Crossref
  47. A. M. Gusak, ZhFKh., 64, No. 2: 510 (1990).
  48. A. M. Gusak, Yu. A. Lyashenko, Problema dvukhfaznykh zon pri opisanii vzaimnoi diffuzii (Kiev: 1988) (Dep. v VINITI, N992-B89).
  49. A. M. Gusak, Yu. A. Lyashenko, IFZh, No. 5: 675 (1990).
  50. A. M. Gusak, Yu. A. Lyashenko, Metallofizika, 13, No. 4: 48 (1991).
  51. A. M. Gusak, Yu. A. Lyashenko, p. V. Kornienko, and A. p. Shirinyan, Defect and Diffusion Forum, 143–147: 683 (1997).
  52. Yu. A. Lyashenko, T. P. Mukovoz, Metallofizika, 16, No. 6, 23 (1994).
  53. Yu. A. Lyashenko and p. V. Kornienko, Solid State Phenomena, 72: 135 (2000).
  54. Yu. A. Lyashenko, Visnyk Cherkas'kogo universitetu, No. 37–38: 69 (2002).
  55. A. M. Gusak, P. N. Zakharov, ZhFKh, 53, No. 6: 1573 (1979).
  56. M. A. Krishtal, P. N. Zakharov, A. L. Mokrov, FTT, 13, No. 5: 1332 (1971).
  57. P. N. Zakharov, Diffuzionnye protsessy v metallakh (Tula: 1982), p. 19.
  58. P. N. Zakharov, A. P. Mokrov, FMM, 46, No. 4 (1978).
  59. P. J. Desre and A. M. Gusak, Phil. mag. A, 81, No. 10: 2503 (2001). Crossref
  60. A. M. Gusak and P. J. Desre, Defect and Diffusion Forum, 194–199: 201 (2001).
  61. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (New York: Academic Press: 1970).