Multiband Quantum Materials

V. V. Bezguba$^{1,2}$ and O. A. Kordyuk$^{1,2}$

$^1$Kyiv Academic University, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine
$^2$G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received 25.10.2023; final version — 17.11.2023 Download PDF logo PDF

Abstract
Quantum materials are defined by the emergence of new properties resulting from collective quantum effects and by holding promise for their quantum applications. Novel superconductors, from high-Tc cuprates and iron-based superconductors to twisted monolayers, exhibit a higher level of emergent complexity, with a multiband electronic structure playing a pivotal role in their comprehension and potential applications. Here, we provide a brief overview of key multiband effects in these superconductors and topological semimetals, offering guidelines for the theory-assisted development of new quantum materials and devices.

Keywords: superconductors, topological materials, electronic phase diagram, electronic band structure, quantum technology.

DOI: https://doi.org/10.15407/ufm.24.04.641

Citation: V. V. Bezguba and O. A. Kordyuk, Multiband Quantum Materials, Progress in Physics of Metals, 24, No. 4: 641–653 (2023)


References  
  1. The rise of quantum materials, Nat. Phys., 12: 105 (2016); https://doi.org/10.1038/nphys3668
  2. R. Cava, N. de Leon, and W. Xie, Chem. Rev., 121: 2777 (2021); https://doi.org/10.1021/acs.chemrev.0c01322
  3. J.P. Dowling and G.J. Milburn, Phil. Trans. R. Soc. A, 361: 1655 (2003); https://doi.org/10.1098/rsta.2003.1227
  4. N. Plakida, High-Temperature Cuprate Superconductors (Berlin–Heidelberg: Springer: 2010); https://doi.org/10.1007/978-3-642-12633-8
  5. A.A. Kordyuk, Low Temp. Phys., 38: 888 (2012); https://doi.org/10.1063/1.4752092
  6. A.A. Kordyuk, Low Temp. Phys., 44: 477 (2018); https://doi.org/10.1063/1.5037550
  7. A.A. Kalenyuk, E.A. Borodianskyi, A.A. Kordyuk, and V.M. Krasnov, Phys. Rev. B, 103: 214507 (2021); https://doi.org/10.1103/PhysRevB.103.214507
  8. Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven & John M. Martinis, Nature, 574: 505 (2019); https://doi.org/10.1038/s41586-019-1666-5
  9. A.F. Kockum and F. Nori, Fundamentals and Frontiers of the Josephson Effect (Ed. F. Tafuri) (Cham: Springer: 2019), p. 703; https://doi.org/10.1007/978-3-030-20726-7_17
  10. J. Clarke and F. Wilhelm, Nature, 453: 1031 (2008); https://doi.org/10.1038/nature07128
  11. I. Siddiqi, Nat. Rev. Mater., 6: 875 (2021); https://doi.org/10.1038/s41578-021-00370-4
  12. Fermi Surface Database (Tat-Sang Choy, CC-BY: 2000); https://solidstate.quantumtinkerer.tudelft.nl/fermi_surfaces
  13. A.M. Gabovich, A.I. Voitenko, and M. Ausloos, Phys. Rep., 367: 583 (2002); https://doi.org/10.1016/S0370-1573(02)00029-7
  14. A.A. Kordyuk, S.V. Borisenko, A.N. Yaresko, S.-L. Drechsler, H. Rosner, T.K. Kim, A. Koitzsch, K.A. Nenkov, M. Knupfer, J. Fink, R. Follath, H. Berger, B. Keimer, S. Ono, and Y. Ando, Phys. Rev. B, 70: 214525 (2004); http://dx.doi.org/10.1103/PhysRevB.70.214525
  15. B.Q. Lv, T. Qian, and H. Ding, Rev. Mod. Phys., 93: 025002 (2021); https://doi.org/10.1103/RevModPhys.93.025002
  16. Ya.M. Blanter, M.I. Kaganov, A.V. Pantsulaya, and A.A. Varlamov, Phys. Rep., 245: 159 (1994); https://doi.org/10.1016/0370-1573(94)90103-1
  17. S.V. Borisenko, A.A. Kordyuk, A.N. Yaresko, V.B. Zabolotnyy, D.S. Inosov, R. Schuster, B. Büchner, R. Weber, R. Follath, L. Patthey, and H. Berger, Phys. Rev. Lett., 100: 196402 (2008); https://doi.org/10.1103/PhysRevLett.100.196402
  18. S. Hellmann, T. Rohwer, M. Kallane, K. Hanff, C. Sohrt, A. Stange, A. Carr, M.M. Murnane, H.C. Kapteyn, L. Kipp, M. Bauer, and K. Rossnagel, Nat. Commun., 3: 1069 (2012); https://doi.org/10.1038/ncomms2078
  19. B. Sipos, A. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutiš, Nat. Mater., 7: 960 (2008); https://doi.org/10.1038/nmat2318
  20. R. Ang, Y. Tanaka, E. Ieki, K. Nakayama, T. Sato, L.J. Li, W.J. Lu, Y.P. Sun, and T. Takahashi, Phys. Rev. Lett., 109: 176403 (2012); https://doi.org/10.1103/PhysRevLett.109.176403
  21. Ch. Chen, B. Singh, H. Lin, and V.M. Pereira, Phys. Rev. Lett., 121: 226602 (2017); https://doi.org/10.1103/PhysRevLett.121.226602
  22. Y. Liu, D. F. Shao, L.J. Li, W.J. Lu, X. D. Zhu, P. Tong, R.C. Xiao, L.S. Ling, C.Y. Xi, L. Pi, H.F. Tian, H.X. Yang, J.Q. Li, W.H. Song, X.B. Zhu, and Y. P. Sun, Phys. Rev. B, 94: 045131 (2016); https://doi.org/10.1103/PhysRevB.94.045131
  23. M.R. Norman, D. Pines, and C. Kallin, Adv. Phys. 54:8, 715 (2005); https://doi.org/10.1080/00018730500459906
  24. E.Y. Andrei and A.H. MacDonald, Nat. Mater., 19: 1265–1275 (2020); https://doi.org/10.1038/s41563-020-00840-0
  25. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature, 556: 43 (2018); https://doi.org/10.1038/nature26160
  26. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, Nat. Rev. Mater., 2: 17033 (2017); https://doi.org/10.1038/natrevmats.2017.33
  27. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, and Y.H. Lee, Mater. Today, 20: 116 (2017); https://doi.org/10.1016/j.mattod.2016.10.002
  28. Yiqing Zhou, D. N. Sheng, and Eun-Ah Kim, Phys. Rev. Lett., 128: 157602 (2022); https://doi.org/10.1103/PhysRevLett.128.157602
  29. A.P. Drozdov, P.P. Kong, V.S. Minkov, S.P. Besedin, M.A. Kuzovnikov, S. Mozaffari, L. Balicas, F.F. Balakirev, D.E. Graf, V.B. Prakapenka, E. Greenberg, D.A. Knyazev, M. Tkacz, and M.I. Eremets, Nature, 569: 528 (2019). https://doi.org/10.1038/s41586-019-1201-8
  30. A. Schilling, M. Cantoni, J. D. Guo, and H.R. Ott, Nature, 363: 56 (1993); https://doi.org/10.1038/363056a0
  31. A. Yamamoto, N. Takeshita, C. Terakura, and Y. Tokura, Nat. Commun., 6: 8990 (2015); https://doi.org/10.1038/ncomms9990
  32. M. Eschrig, Adv. Phys., 55: 47 (2006); https://doi.org/10.1080/00018730600645636
  33. T. Dahm, V. Hinkov, S.V. Borisenko, A.A. Kordyuk, V.B. Zabolotnyy, J. Fink, B. Buchner, D.J. Scalapino, W. Hanke, and B. Keimer, Nat. Phys., 5: 217 (2009); https://doi.org/10.1038/nphys1180
  34. H.-Y. Kee, S.A. Kivelson, and G. Aeppli, Phys. Rev. Lett., 88: 257002 (2002); https://doi.org/10.1103/PhysRevLett.88.257002
  35. D.C. Johnston, Adv. Phys., 59: 803 (2010); https://doi.org/10.1080/00018732.2010.513480
  36. A.A. Kordyuk, Low Temp. Phys., 41: 319 (2015); http://dx.doi.org/10.1063/1.4919371
  37. A. Bianconi, Nat. Phys., 9: 536 (2013); https://doi.org/10.1038/nphys2738
  38. M. Hashimoto, R.-H. He, K. Tanaka, J.-P. Testaud, W. Meevasana, R.G. Moore, D. Lu, H. Yao, Y. Yoshida, H. Eisaki, T.P. Devereaux, Z. Hussain, and Z.-X. Shen, Nat. Phys., 6: 414 (2010); https://doi.org/10.1038/nphys1632
  39. S. Chakravarty, Phys. Rev. Lett., 74: 1885 (1995); https://doi.org/10.1103/PhysRevLett.74.1885
  40. S. Borisenko, A. Fedorov, A. Kuibarov, M. Bianchi, V. Bezguba, P. Majchrzak, P. Hofmann, P. Baumgärtel, V. Voroshnin, Y. Kushnirenko, J. Sánchez-Barriga, A. Varykhalov, R. Ovsyannikov, I. Morozov, S. Aswartham, O. Feia, L. Harnagea, S. Wurmehl, A. Kordyuk, A. Yaresko, H. Berger, and B. Büchner, Nat. Commun., 13: 4132 (2022); https://doi.org/10.1038/s41467-022-31841-z
  41. A.A. Kalenyuk, A. Pagliero, E.A. Borodianskyi, A.A. Kordyuk, and V.M. Krasnov, Phys. Rev. Lett., 120: 067001 (2018); https://doi.org/10.1103/PhysRevLett.120.067001
  42. V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, and L.P. Kouwenhoven, Science, 336: 1003 (2012); https://doi.org/10.1126/science.1222360
  43. H. Gao, J.W.F. Venderbos, Y. Kim, and A.M. Rappe, Annu. Rev. Mater. Res., 49: 153 (2019); https://doi.org/10.1146/annurev-matsci-070218-010049
  44. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, and M.Z. Hasan, Science, 349: 613 (2015); https://doi.org/10.1126/science.aaa9297
  45. Y. Sun, S.-C. Wu, and B. Yan, Phys. Rev. B, 92: 115428 (2015); https://doi.org/10.1103/PhysRevB.92.115428
  46. C.-C. Lee, S.-Y. Xu, S.-M. Huang, D.S. Sanchez, I. Belopolski, G. Chang, G. Bian, N. Alidoust, H. Zheng, M. Neupane, B. Wang, A. Bansil, M.Z. Hasan, and H. Lin, Phys. Rev. B, 92: 235104 (2015); https://doi.org/10.1103/PhysRevB.92.235104
  47. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R.J. Cava, Phys. Rev. Lett., 113: 027603 (2014); https://doi.org/10.1103/PhysRevLett.113.027603
  48. S. Thirupathaiah, I. Morozov, Y. Kushnirenko, A.V. Fedorov, E. Haubold, T.K. Kim, G. Shipunov, A. Maksutova, O. Kataeva, S. Aswartham, B. Büchner, and S.V. Borisenko, Phys. Rev. B, 98: 085145 (2018); https://doi.org/10.1103/PhysRevB.98.085145
  49. A. Kuibarov, A. Fedorov, V. Bezguba, H. Berger, A. Yaresko, V. Voroshnin, A. Kordyuk, P. Baumgärtel, B. Büchner, and S. Borisenko, Phys. Rev. B, 105: 235112 (2022); https://doi.org/10.1103/PhysRevB.105.235112
  50. Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.-K. Mo, Z.X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y.L. Chen, Science, 343: 864 (2014); https://doi.org/10.1126/science.1245085
  51. G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang, C. Xi, J. Yang, H. Du, K. Yang, Y. Zhang, and M. Tian, Phys. Rev. B, 93: 115414 (2016); https://doi.org/10.1103/PhysRevB.93.115414
  52. A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B.A. Bernevig, Nature, 527: 495 (2015); https://doi.org/10.1038/nature15768
  53. Y. Wu, D. Mou, N.H. Jo, K. Sun, L. Huang, S.L. Bud’ko, P.C. Canfield, and A. Kaminski, Phys. Rev. B, 94: 121113 (2016); https://doi.org/10.1103/PhysRevB.94.121113
  54. S. Borisenko, D. Evtushinsky, Q. Gibson, A. Yaresko, K. Koepernik, T. Kim, M. Ali, J. van den Brink, M. Hoesch, A. Fedorov, E. Haubold, Y. Kushnirenko, I. Soldatov, R. Schäfer, and R.J. Cava, Nat. Commun., 10: 3424 (2019); https://doi.org/10.1038/s41467-019-11393-5
  55. M. Yan, H. Huang, K. Zhang, E. Wang, W. Yao, K. Deng, G. Wan, H. Zhang, M. Arita, H. Yang, Z. Sun, H. Yao, Y. Wu, S. Fan, W. Duan, and S. Zhou, Nat. Commun., 8: 257 (2017); https://doi.org/10.1038/s41467-017-00280-6
  56. F. Fei, X. Bo, P. Wang, J. Ying, J. Li, K. Chen, Q. Dai, B. Chen, Z. Sun, M. Zhang, F. Qu, Y. Zhang, Q. Wang, X. Wang, L. Cao, H. Bu, F. Song, X. Wan, and B. Wang, Adv. Mater., 30: 1801556 (2018); https://doi.org/10.1002/adma.201801556
  57. S. Thirupathaiah, Y. Kushnirenko, E. Haubold, A.V. Fedorov, E.D. Rienks, T.K. Kim, A.N. Yaresko, C.G. Blum, S. Aswartham, B. Büchner, and S.V. Borisenko, Phys. Rev. B, 97: 035133 (2018); https://doi.org/10.1103/PhysRevB.97.035133
  58. S.V. Borisenko, D.V. Evtushinsky, Z.-H. Liu, I. Morozov, R. Kappenberger, S. Wurmehl, B. Büchner, A.N. Yaresko, T.K. Kim, M. Hoesch, T. Wolf, and N.D. Zhigadlo, Nat. Phys., 12: 311 (2015); https://doi.org/10.1038/nphys3594
  59. Z. Wang, P. Zhang, G. Xu, L.K. Zeng, H. Miao, X. Xu, T. Qian, H. Weng, P. Richard, A.V. Fedorov, H. Ding, X. Dai, and Z. Fang, Phys. Rev. B, 92: 115119 (2015); https://doi.org/10.1103/PhysRevB.92.115119
  60. S. Borisenko, V. Bezguba, A. Fedorov, Y. Kushnirenko, V. Voroshnin, M. Sturza, S. Aswartham, and A. Yaresko, npj Quantum Mater., 5: 67 (2020); https://doi.org/10.1038/s41535-020-00268-4