Anomalies in Deformation Behaviour of TiAl Intermetallic

B. A. Greenberg$^{1}$, M. A. Ivanov$^{2}$

$^1$Institute of Metal Physics of UB RAS, 18 S. Kovalevskoy, 620990 Yekaterinburg, Russia
$^2$G.V. Kurdyumov Institute for Metal Physics, NAS of Ukraine, 36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine

Received: 03.02.2000. Download: PDF

An explanation was proposed for a nonmonotonic temperature dependence of the yield stress $\sigma_{y}(T)$ in TiAl having two extrema where $\sigma_{y}(T)$ changes its temperature behaviour. The comparison of $\sigma_{y}(T)$ curves for TiAl and typical curves for other materials (b.c.c. metals, semiconductors, Ni$_3$Al-type intermetallics) allowed reconstructing the shape of the potential relief for dislocations in TiAl. The shape of the relief reflects existence of two types of dislocation traps (shallow and deep ones) and two types of potential barriers: low and high barriers for the capture of dislocations in shallow and deep traps respectively. The deformation behaviour of TiAl was described over the whole temperature interval allowing for the capture of dislocations in traps and their release therefrom. Expressions determining extremums of $\sigma_{y}(T)$ were derived. Possible dependences of the work hardening rate $\theta(T)$ in the region of the anomalous trend $\sigma_{y}(T)$ were analysed. Conditions of the anomalous behaviour of $\theta(T)$ were ascertained. It was proposed that the shape of the potential relief of a dislocation changed in the effective range of a microcrack. The capture of dislocations in deep traps, which is stimulated by concentration of stresses near a microcrack, and the inhibited release of dislocations from the traps up to relatively high temperatures are viewed as a possible cause of TiAl brittleness. A model of the deformation behaviour of intermetallics after prestraining was proposed. This model enables one to describe two alternatives: observation or absence of the stress macrojump after prestraining.

Keywords: TiAl, mechanical properties, yield stress, work hardening rate, flow stress anomaly, brittleness, microstructure, dislocation, Peierls relief, thermally activated blocking.

PACS: 61.72.Bb, 61.72.Ff, 61.72.Lk, 62.20.Fe, 81.40.Lm

DOI: https://doi.org/10.15407/ufm.01.01.009

Citation: B. A. Greenberg and M. A. Ivanov, Anomalies in Deformation Behaviour of TiAl Intermetallic, Usp. Fiz. Met., 1, No. 1: 9—48 (2000), doi: 10.15407/ufm.01.01.009


References (56)  
  1. D. P. Pope and S. S. Ezz, Int. Metall. Rev., 29: 136 (1984). Crossref
  2. T. Suzuki, Y. Mishima, and S. Miura, ISIJ International, 29: 1 (1989). Crossref
  3. H. A. Lipsitt, D. Schechtman, and R. E. Schafric, Metall. Trans. A, 6: 1991 (1975). Crossref
  4. D. M. Dimiduk, Gamma Titanium Aluminides (Eds. Y.-W. Kim et al.) (Warren-dale, PA, USA: TMS: 1995), p. 3.
  5. Y. Umakoshi, H. J. Yasuda, and T. Nakano, Intermetallics, 4 Supplement: p. S65 (1996). Crossref
  6. D. Banerjee, A. K. Gogia, T. K. Nandi, and V. A. Joshi, Acta Met., 36: 871 (1988). Crossref
  7. D. Banerjee, Phil. Mag. A, 72: 1559 (1995). Crossref
  8. P. K. Sagar, D. Banerjee, K. Muraleedharan, and Y. U. R. K. Prasad, Met. Trans. A, 27: 2593 (1996). Crossref
  9. T. Kawabata, T. Kanai, and O. Izumi, Acta Met., 33: 1355 (1985). Crossref
  10. T. Kawabata, T. Abumiya, T. Kanai, and O. Izumi, Acta Met. Mater., 38: 1381 (1990). Crossref
  11. H. Inui, M. Matsumuro, D.-H. Wu, and M. Yamaguchi, Phil. Mag. A, 75: 395 (1997). Crossref
  12. B. A. Greenberg and M. A. Ivanov, Mat. Sci. Eng. A, 153: 356 (1992). Crossref
  13. M. A. Ivanov, B. A. Greenberg, and T. O. Barabash, Phys. Met. Metallogr., 86: 240 (1998).
  14. M. A. Ivanov, B. A. Greenberg, and N. A. Kruglikov, Gamma Titanium Alu-minides (Eds. Y.-W. Kim et al.) (Warrendale, PA, USA: TMS: 1999), p. 256.
  15. M. A. Ivanov, B. A. Greenberg, and N. A. Kruglikov, Phys. Met. Metallogr., 89: in press (2000).
  16. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physics of Refractory-Metals' Strength (Kiev: Naukova Dumka: 1975) (in Russian).
  17. V. Vitek and M. Yamaguchi, Interatomic Potentials and Crystalline Defects (Ed. J. K. Lee) (Warrendale, PA, USA: TMS-AIME Publ: 1981), p. 223.
  18. H. Alexander, Dislocations in Solids (Ed. F. R. N. Nabarro) (Amsterdam: Elsevier Sci. Publ: 1986), Vol. 7, p. 113.
  19. P. Veyssiere, ISIJ International, 31: 1028 (1991). Crossref
  20. B. A. Greenberg, V. I. Anisimov, Yu. N. Gornostirev, and G. G. Taluts, Scripta metall., 22: 859 (1988). Crossref
  21. S. Rao, C. Woodward, J. Simmons, and D. M. Dimiduk, High Temperature Or-dered Intermetallic Alloys VI: MRS Symp. Proc. (1995), Vol. 364, p. 129.
  22. G. Hug, A. Loiseau, and A. Lasalmonie, Phil. Mag. A, 54: 47 (1986). Crossref
  23. D. M. Wee, D. P. Pope, and V. Vitek, Acta metall., 32: 829 (1984). Crossref
  24. B. A Greenberg and M. A. Ivanov, Gamma Titanium Aluminides (Eds. Y.-W. Kim et al.) (Warrendale, PA, USA: TMS: 1995), p. 299.
  25. B. A Greenberg and M. A. Ivanov, Met. Phys. Adv. Tech., 16: 1159 (1997).
  26. B. A Greenberg and M. A. Ivanov, Mat. Sci. Eng. A, 239: 813 (1997). Crossref
  27. B. A Greenberg and M. A. Ivanov, Phys. Met. Metallogr., 78: 247 (1994).
  28. G. Hug, A. Loiseau, and P. Veyssiere, Phil. Mag. A, 57: 499 (1988). Crossref
  29. G. Hug, A. Loiseau, and P. Veyssiere, Revue Phys. Appl., 23: 673 (1988). Crossref
  30. S. A. Court, V. K. Vasudevan, and H. L. Fraser, Phil. Mag. A, 61: 14 (1990).
  31. B. A. Greenberg, O. V. Antonova, V. N. Indenbaum, L. E. Karkina, A. B. Not-kin, M. V. Ponomarev, and L. V. Smirnov, Acta Metall. Mater., 39: 233; ibid., 243 (1991).
  32. B. A. Greenberg, O. V. Antonova, L. E. Karkina, A. B. Notkin, and M. V. Po-noma¬rev, Acta Metall. Mater., 40: 815; ibid., 823 (1992).
  33. M. A. Morris, Phil. Mag. A, 68: 237; ibid., 259 (1993).
  34. M. A. Morris, Phil. Mag. A, 69: 129 (1994). Crossref
  35. B. Viguier, K. J. Hemker, J. Bonneville, F. Louchet, and J. L. Martin, Phil. Mag. A, 71: 1295 (1995). Crossref
  36. S. Sriram, D. M. Dimiduk, P. M. Hazzledine, and V. K. Vasudevan, Phil. Mag. A, 76: 965 (1997). Crossref
  37. B. A. Greenberg, O. V. Antonova, and A. Yu. Volkov, Intermetallics, 7: 1219 (1999). Crossref
  38. B. A. Greenberg, G. Hug, O. V. Antonova, T. S. Boyarshinova, Z. M. Pesina, I. N. Sachanskaya, and A. Yu. Volkov, Intermetallics, 5: 297 (1997). Crossref
  39. V. K. Vasudevan, S. A. Court, P. Kurath, and H. L. Fraser, Scripta Met., 23: 467 (1989). Crossref
  40. S.-C. Huang and E. L. Hall, Metall. Trans. A, 22: 427 (1991). Crossref
  41. R.M. Thomson, Phys. Metallurgy (Eds. R.W. Cahn and P. Haasen) (Elsevier Sci. Publ. BV: 1983), p. 1487.
  42. J. Di Persio and B. Escaig, Dislocations 1984 (Eds. P. Veyssiere et al.) (Paris, France: CNRS: 1984), p. 267.
  43. M. Dimiduk and T.A. Parthasarathy, Phil. Mag. Lett., 71: 21 (1995). Crossref
  44. X. Shi, G. Saada, and P. Veyssiere, Phil. Mag. A, 73: 1419 (1996). Crossref
  45. N. D. Bakhteyeva, B. A. Greenberg, A. V. Nemchenko, and Yu. N. Akshentsev, Phys. Met. Metallogr., 85: 481 (1998).
  46. S. J. Basinski and Z. S. Basinski, Dislocations in Solids: IV Dislocations in Metal-lurgy (Ed. F. R. N. Nabarro) (Amsterdam, North-Holland: 1979), Vol. 4, p. 261.
  47. M. A. Stucke, D. M. Dimiduk, and P. M. Hazzledine, High Temperature Or-dered Intermetallic Alloys V: MRS Symp. Proc. (1993), Vol. 228, p. 471.
  48. R. Mahapatra, Y. T. Chou, and D. P. Pope, Mat. Sci. Eng. A, 239: 456 (1997).
  49. S. Ezz and P. B. Hirsch, Phil. Mag. A, 73: 1969 (1996). Crossref
  50. N. D. Bakhteyeva, B. A. Greenberg, A. V. Nemchenko, Yu. N. Akshentsev, M. A. Ivanov, and Eu. N. Khlystov, Izvestiya Akad. Sci., 63: 42 (1999).
  51. B. A. Greenberg, M. A. Ivanov, T. O. Barabash, and A. G. Blokhin, Phys. Met. Metallogr., 81: 374; ibid., 381 (1996).
  52. B. A. Greenberg and M. A. Ivanov, Met. Phys. Adv. Tech., 17: 973 (1999).
  53. B. A. Greenberg and M. A. Ivanov, Phys. Met. Metallogr., 79: 1373 (1995).
  54. A. E. Staton-Bevan and R. D. Rawlings, Phys. status solidi (a), 29: 613 (1975). Crossref
  55. B. A. Greenberg and M. A. Ivanov, Metallofiz. Noveishie Tekhnol., 21, No. 7: 55 (1999).
  56. B. A. Greenberg and M. A. Ivanov, Metallofiz. Noveishie Tekhnol., 21, No. 8: 3 (1999).
Cited By (1)
  1. B. A. Greenberg, M. O. Ivanov, O. V. Antonova, A. M. Patselov et al., Usp. Fiz. Met. 14, 107 (2013).