Prospects of Application and Global Significance of Graphene

A. I. Denissova$^1$, A. V. Volokitin$^1$, and I. E. Volokitina$^2$

$^1$Karaganda Industrial University, Republic Ave., 30, 101400 Temirtau, Kazakhstan
$^2$Rudny Industrial Institute, 50 Let Oktyabrya Str., 38, 111500 Rudny, Kazakhstan

Received 28.03.2022; final version — 05.05.2022 Download PDF logo PDF

The review article is an excursus into the world publications describing the properties of graphene, methods of synthesis of it and variety of its application fields. The paper describes in detail the structure of graphene as well as the methods for its fabrication: micromechanical cleavage, chemical stratification, epitaxial growth, and chemical gas-phase deposition, including their advantages and disadvantages. In addition, the review contains information on the electronic, mechanical, optical, and chemical properties of graphene, which lend its uniqueness. Due to its unique properties, graphene and its modified quasi-two-dimensional structures are the objects of increased scientific interest in various fields of science, such as energy, electronics, optoelectronics, medicine, bioengineering, aerospace, aviation, ecology, materials engineering, etc. In order to expand the journal readership among the physicists, chemists, and materials scientists, who are not deep specialists in graphene science, the style of the present review is somewhere close to popular science one.

Keywords: allotropic forms of carbon, graphene, graphene films, nanomaterials, micromechanical cleavage, chemical stratification, epitaxial growth, chemical gas-phase deposition, bioengineering, optoelectronics.


Citation: A. I. Denissova, A. V. Volokitin, and I. E. Volokitina, Prospects of Application and Global Significance of Graphene, Prog. Phys. Met., 23, No. 2: ***–*** (2022)

  1. A.K. Geim and K.S. Novoselov, The rise of graphene, Nature Mater., 6: 183 (2007);
  2. K. Movlaee, M. Reza Ganjali, P. Norouzi, and G. Neri, Iron-based nanomaterials/graphene composites for advanced electrochemical sensors, Nanomater., 7, No. 12: 406 (2017);
  3. A.K. Geim and I.V. Grigorieva, Van der Waals heterostructures, Nature, 499: 419 (2013);
  4. J. Leclercq and P. Sveshtarov, The transfer of graphene: a review, Bulgarian J. Phys., 43: 121 (2016);
  5. Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes and Nanodiamonds (Ed. K.D. Sattler) (Boca Raton: CRC Press: 2016), vol. 1;
  6. R. Rudrapati, Graphene: fabrication methods, properties, and applications in modern industries, Graphene Production and Application (Eds. S. Ameen, M. Shaheer Akhtar, and H.-S. Shin) (IntechOpen: 2020), p. 1;
  7. K.E. Kitko and Q. Zhang, Graphene-based nanomaterials: from production to integration with modern tools in neuroscience, Front. Syst. Neurosci., 13: 1 (2019);
  9. H. Siddiqui, K. Pickering, and M. Mucalo, A review on the use of hydroxyapatite-carbonaceous structure composites in bone replacement materials for strengthening purposes, Materials, 11, No. 10: 1813 (2018);
  10. P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nature Nanotechnol., 2: 605 (2007);
  11. H. Tetlow, J. Posthuma de Boer, I.J. Ford, D.D. Vvedensky, J.Corauxcd, and L. Kantorovicha, Growth of epitaxial graphene: theory and experiment, Phys. Rep., 542, No. 3: 195 (2014);
  12. F. Banhart, J. Kotakoski, and A.V. Krasheninnikov, Structural defects in graphene, ACS Nano, 5, No. 1: 26 (2010);
  14. N. Mahmood, C. Zhang, H. Yin, and Y. Hou, Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells, J. Mater. Chem. A, 2, No. 1: 15 (2014);
  15. T.M. Radadiya, A properties of graphene, Eur. J. Mater. Sci., 2, No. 1: 6 (2015);
  16. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320: 1308 (2008);
  17. C.N.R. Rao, A.K. Subrahmanyam, and A. Govindaraj, Graphene: the new two-dimensional nanomaterial, Ang. Chem. Int. Ed., 48: 7752 (2009);
  18. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R. Ruoff, and V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, 347, No. 612: 1246501 (2015);
  19. Saurav, Int. J. Eng. Res. Appl., 2, Iss. 5: 1077 (2012);
  20. Y. Xu, L.T. An, X.P. Jia, K. Hao, and N. Maki, Influence of the rated revolution on the basic performance of large-scale wind turbine generators, J. Supercond. Nov. Magn., No. 4 (2022);
  22. E.A. Tsapko and I.Ye. Galstian, Positron spectroscopy study of structural defects and electronic properties of carbon nanotubes, Prog. Phys. Met., 21, No. 2: 153 (2020);
  23. A. Selvakumar, U. Sanjith, T.R. Tamilarasen, R. Muraliraja, W. Sha, and J. Sudagar, A critical review of carbon nanotube-based surface coatings, Prog. Phys. Met., 23, No. 1: 3 (2022);
  24. L. Ji, P. Meduri, V. Agubra, X. Xiao, and M. Alcoutlabi, Graphene-based nanocomposites for energy storage, Adv. Energy Mater., 6, No. 16: 1502159 (2016);
  25. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, No. 5696: 666 (2004);
  26. O.I. Nakonechna, M.M. Dashevskyi, О.І. Boshko, V.V. Zavodyannyi, and N.N. Belyavina, Effect of carbon nanotubes on mechanochemical synthesis of d-metal carbide nanopowders and nanocomposites, Prog. Phys. Met., 20, No. 1: 5 (2019);
  27. M. Hachhach, H. Akram, M. Hanafi, T. Chafik, and O. Achak, Simulation and sensitivity analysis of molybdenum disulfide nanoparticle production using aspen plus, Hindawi, Int. J. Chem. Eng., 2019: 3953862 (2019);;;
  28. Graphene Science Handbook: Applications and Industrialization (Eds. M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, and J.L. Gervasoni) (Boca Raton, CRC Press; 2016);
  29. W. Lu, Y. Luo, G. Chang, and X. Sun, Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection, Biosens. Bioelectron., 26, No. 12: 4791 (2011);;
  30. Jannik Meyer and R.F. Service, Carbon sheets an atom thick give rise to graphene dreams (Illustration), Science, 324, No. 5929: 875 (2009);
  31. Z. Yan, G. Liu, J.M. Khan, and A.A. Balandin, Graphene quilts for thermal management of high-power GaN transistors, Nature Commun., 3: 827 (2012);
  32. Y.A. Jodan, K. Kiaee, and M.S. Manoor, A 3D-printed hybrid nasal cartilage with functional electronic olfaction, Adv. Sci., 7, No. 5: 1901878 (2020);
  33. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Graphene photonics and optoelectronics, Nature Photon., 4: 611 (2010);
  34. Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology, Trends Biotechnol., 29, No. 5: 205 (2011);
  35. R. Sudhakar, Mesoporous materials for high-performance electrochemical supercapacitors, Mesoporous Materials — Properties and Applications, (IntechOpen: 2019);
  36. Y. Makarov, A.A. Lebedev, and V.Yu. Davydov, Graphene-based biosensors, Tech. Phys. Lett., 42: 727;
  37. Z. Geng, B. Hahnlein, R. Granzner, M. Auge, A.A. Lebedev, V.Y. Davydov, M.Kittler, J.Pezoldt, and F.Schwierz, Graphene nanoribbons for electronic devices, Annalen der Physik, 529, No. 11: 1700033 (2017);
  38. G.M. Halmagyi, L. Chen, H.G. MacDouga, K.P. Weber, L.A. McGarvie, and I.S. Curthoys, The video head impulse test, Front. Neurol., 8: 258 (2017);
  40. O.G. Guglya, V.A. Gusev, and O.A. Lyubchenko, From nanomaterials and nanotechnologies to the alternative energy, Prog. Phys. Met., 19, No. 4: 442 (2018);
  41. D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L. Saraf, D. Hu, J. Zhang, G. Graff, J. Liu, M. Pope, and I. Aksay, Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electrochemical energy storage, ACS Nano, 4, No. 3: 1587 (2010);
  42. I.I. Klimovskikh, M. Krivenkov, A. Varykhalov, D. Estyunin, and A.M. Shikin, Reconstructed Fermi surface in graphene on Ir(111) by Gd-Ir surface alloying, Carbon, 147: 182 (2019);
  43. D. Marchenko, D.V. Evtushinsky, E. Golias, A. Varykhalov, Th. Seyller, and O. Rader, Extremely flat band in bilayer graphene, Sci. Adv., 4, No. 11: eaau005 (2018);;
  44. M.C. Lemme, Current status of graphene transistors, Solid State Phenomena, 156–158: 499 (2010);
  45. Q. Li, M. Horn, Y. Wang, J. MacLeod, N. Motta, and J. Liu, A review of supercapacitors based on graphene and redox-active organic materials, Materials, 12: 703 (2019);
  46. J. Sha, Y. Li, R.V. Salvatierra, T. Wang, P. Dong, Y. Ji, S.-K. Lee, Ch. Zhang, J. Zhang, R.H. Smith, P.M. Ajayan, J. Lou, N. Zhao, and J. Tour, Three-Dimensional Printed Graphene Foams, ACS Nano, 11, No. 7: 6860 (2017);
  47. M. Han, B. Ozyilmaz, Y. Zhang, and Ph. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett., 98, No. 20: 206805 (2007);
  48. J. Bai, X. Zhong, S. Jiang, Yu. Huang, and X. Duan, Graphene nanomesh, Nature Nanotechnol., 5: 190 (2010);
  49. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, and A.H. Castro Neto, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett., 99, No. 21: 216802 (2007);
  50. D. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, and K.S. Novoselov, Control of graphene’s properties by reversible hydrogenation: evidence for graphane, Science, 323, No. 5914: 610 (2009);
  51. F. Ouyang, S. Peng, Z. Liu, Z. Liu, and Z. Liu, Bandgap opening in graphene antidot lattices: the missing half, ACS Nano, 5, No. 5: 4023 (2011);
  52. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, and A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene, Nature Mat., 6: 770 (2007);
  53. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, and J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations, Phys. Rev. B, 76, No. 7: 073103 (2007);
  54. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of structural defects in graphene and their effects on its transport properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (New York: Nova Science Publishers: 2014), ch. 7, p. 219;
  55. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and adsorption-dependent electronic states and transport or localization in graphene, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), vol. 210, ch. 3, p. 25;
  56. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-pattern-induced fingerprints in the electron density of states of strained graphene layers: diffraction and simulation methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019);
  57. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Effect of uniaxial stress on the electrochemical properties of graphene with point defects, Appl. Surf. Sci., 442: 185 (2018);
  58. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field, Optical Mater., 96: 109284 (2019);
  59. D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J.Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, Unraveling the electronic properties of graphene with substitutional oxygen, 2D Mater., 8, No. 4: 045035 (2021);
  60. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene, Ann. Phys., 398: 80 (2018);
  61. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene, EPL, 132, No. 4: 48002 (2020);
  62. T.M. Radchenko and V.A. Tatarenko, A statistical-thermodynamic analysis of stably ordered substitutional structures in graphene, Physica E, 42, No. 8: 2047 (2010);
  63. T.M. Radchenko and V.A. Tatarenko, Kinetics of atomic ordering in metal-doped graphene, Solid State Sci., 12, No. 2: 204 (2010);
  64. T.M. Radchenko and V.A. Tatarenko, Statistical thermodynamics and kinetics of long-range order in metal-doped graphene, Solid State Phenom., 150: 43 (2009);
  65. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS Nano, 2, No. 11: 2301 (2008);
  66. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening (correction), ACS Nano, 3, No. 2: 483 (2009);
  67. R.M. Ribeiro, V.M. Pereira, N.M.R. Peres, P.R. Briddon, and A.H. Castro Neto, Strained graphene: tight-binding and density functional calculations, New J. Phys., 11: 115002 (2009);
  68. V.M. Pereira, A.H. Castro Neto, and N.M.R. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B, 80, No. 4: 045401 (2009);
  69. V.M. Pereira and A.H. Castro Neto, Strain engineering of graphene’s electronic structure, Phys. Rev. Lett., 103, No. 4: 046801 (2009);
  70. X. He, L. Gao, N. Tang, J. Duan, F. Mei, Hu Meng, F. Lu, F. Xu, X. Wang, X. Yang, W. Ge, and Bo Shen, Electronic properties of polycrystalline graphene under large local strain, Appl. Phys. Lett., 104: 243108 (2014);
  71. I.Yu. Sagalianov, T.M. Radchenko, Yu.I. Prylutskyy, V.A. Tatarenko, and P. Szroeder, Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene, Eur. Phys. J. B, 90, No. 6: 112 (2017);
  72. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene, Handbook of Graphene: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A. Chaika) (Beverly, MA: Scrivener Publishing LLC: 2019), vol. 1, ch. 14, p. 451;
  73. X. He, L. Gao, N. Tang, J. Duan, F. Xu, X. Wang, X. Yang, W. Ge, and B. Shen, Shear strain induced modulation to the transport properties of graphene, Appl. Phys. Lett., 105: 083108 (2014);
  74. G. Cocco, E. Cadelano, and L. Colombo, Gap opening in graphene by shear strain, Phys. Rev. B, 81: 241412 (2010);
  75. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene, Mater. Today: Proc., 35, Pt. 4: 523 (2021);
  76. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: chemical and strain-induced modifications, Prog. Phys. Met., 23, No. 2: 147 (2022);
  77. S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, and M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application, J. Nanostruct. Chem., 8: 123 (2018);
  78. S. Zeng, D. Baillargeat, H.-P. Ho, and R.-T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43, No. 10: 342 (2014);
  79. R. Kalyan, T.L. Alvin, and J. Huang, Graphene oxide: some new insights into an old material, Carbon Nanotubes and Graphene (Eds. K. Tanaka and S. Iijima) (Elsevier: 2014), ch. 14, p. 341;
  80. J. Sengupta, Carbon nanotube fabrication at industrial scale: opportunities and challenges, Handbook of Nanomaterials for Industrial Applications (Ed. Chaudhery Mustansar Hussain) (Elsevier: 2018), ch. 9, p. 172;
  81. K. Lü, G. Zhao, and X. Wang, A brief review of graphene-based material synthesis and its application in environmental pollution management, Chin. Sci. Bull., 57: 1223 (2012);