Prospects of Application and Global Significance of Graphene

A. I. Denissova$^1$, A. V. Volokitin$^1$, and I. E. Volokitina$^2$

$^1$Karaganda Industrial University, Republic Ave., 30, 101400 Temirtau, Kazakhstan
$^2$Rudny Industrial Institute, 50 Let Oktyabrya Str., 38, 111500 Rudny, Kazakhstan

Received 28.03.2022; final version — 05.05.2022 Download PDF logo PDF

Abstract
The review article is an excursus into the world publications describing the properties of graphene, methods of synthesis of it and variety of its application fields. The paper describes in detail the structure of graphene as well as the methods for its fabrication: micromechanical cleavage, chemical stratification, epitaxial growth, and chemical gas-phase deposition, including their advantages and disadvantages. In addition, the review contains information on the electronic, mechanical, optical, and chemical properties of graphene, which lend its uniqueness. Due to its unique properties, graphene and its modified quasi-two-dimensional structures are the objects of increased scientific interest in various fields of science, such as energy, electronics, optoelectronics, medicine, bioengineering, aerospace, aviation, ecology, materials engineering, etc. In order to expand the journal readership among the physicists, chemists, and materials scientists, who are not deep specialists in graphene science, the style of the present review is somewhere close to popular science one.

Keywords: allotropic forms of carbon, graphene, graphene films, nanomaterials, micromechanical cleavage, chemical stratification, epitaxial growth, chemical gas-phase deposition, bioengineering, optoelectronics.

DOI: https://doi.org/10.15407/ufm.23.02.***

Citation: A. I. Denissova, A. V. Volokitin, and I. E. Volokitina, Prospects of Application and Global Significance of Graphene, Prog. Phys. Met., 23, No. 2: ***–*** (2022)


References  
  1. A.K. Geim and K.S. Novoselov, The rise of graphene, Nature Mater., 6: 183 (2007); https://doi.org/10.1038/nmat1849
  2. K. Movlaee, M. Reza Ganjali, P. Norouzi, and G. Neri, Iron-based nanomaterials/graphene composites for advanced electrochemical sensors, Nanomater., 7, No. 12: 406 (2017); https://doi.org/10.3390/nano7120406
  3. A.K. Geim and I.V. Grigorieva, Van der Waals heterostructures, Nature, 499: 419 (2013); https://doi.org/10.1038/nature12385
  4. J. Leclercq and P. Sveshtarov, The transfer of graphene: a review, Bulgarian J. Phys., 43: 121 (2016); http://www.bjp-bg.com/paper1.php?id=805
  5. Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes and Nanodiamonds (Ed. K.D. Sattler) (Boca Raton: CRC Press: 2016), vol. 1; https://doi.org/10.1201/b19679
  6. R. Rudrapati, Graphene: fabrication methods, properties, and applications in modern industries, Graphene Production and Application (Eds. S. Ameen, M. Shaheer Akhtar, and H.-S. Shin) (IntechOpen: 2020), p. 1; https://doi.org/10.5772/intechopen.92258
  7. K.E. Kitko and Q. Zhang, Graphene-based nanomaterials: from production to integration with modern tools in neuroscience, Front. Syst. Neurosci., 13: 1 (2019); https://doi.org/10.3389/fnsys.2019.00026
  8. https://ppt-online.org/450250
  9. H. Siddiqui, K. Pickering, and M. Mucalo, A review on the use of hydroxyapatite-carbonaceous structure composites in bone replacement materials for strengthening purposes, Materials, 11, No. 10: 1813 (2018); https://doi.org/10.3390/ma11101813
  10. P. Avouris, Z. Chen, and V. Perebeinos, Carbon-based electronics, Nature Nanotechnol., 2: 605 (2007); https://doi.org/10.1038/nnano.2007.300
  11. H. Tetlow, J. Posthuma de Boer, I.J. Ford, D.D. Vvedensky, J.Corauxcd, and L. Kantorovicha, Growth of epitaxial graphene: theory and experiment, Phys. Rep., 542, No. 3: 195 (2014); https://doi.org/10.1016/j.physrep.2014.03.003
  12. F. Banhart, J. Kotakoski, and A.V. Krasheninnikov, Structural defects in graphene, ACS Nano, 5, No. 1: 26 (2010); https://doi.org/10.1021/nn102598m
  13. https://newatlas.com/graphene-kitchen-blender/31835
  14. N. Mahmood, C. Zhang, H. Yin, and Y. Hou, Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells, J. Mater. Chem. A, 2, No. 1: 15 (2014); https://doi.org/10.1039/C3TA13033A
  15. T.M. Radadiya, A properties of graphene, Eur. J. Mater. Sci., 2, No. 1: 6 (2015); https://www.eajournals.org/wp-content/uploads/A-Properties-of-Graphene.pdf
  16. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320: 1308 (2008); https://doi.org/10.1126/science.1156965
  17. C.N.R. Rao, A.K. Subrahmanyam, and A. Govindaraj, Graphene: the new two-dimensional nanomaterial, Ang. Chem. Int. Ed., 48: 7752 (2009); https://doi.org/10.1002/anie.200901678
  18. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R. Ruoff, and V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage, Science, 347, No. 612: 1246501 (2015); https://doi.org/10.1126/science.1246501
  19. Saurav, Int. J. Eng. Res. Appl., 2, Iss. 5: 1077 (2012); https://www.ijera.com/papers/Vol2_issue5/FX2510771082.pdf
  20. Y. Xu, L.T. An, X.P. Jia, K. Hao, and N. Maki, Influence of the rated revolution on the basic performance of large-scale wind turbine generators, J. Supercond. Nov. Magn., No. 4 (2022); https://doi.org/10.1007/s10948-022-06191-y
  21. https://incredibilia.ro/fumul-inghetat-aerogelul-de-grafen
  22. E.A. Tsapko and I.Ye. Galstian, Positron spectroscopy study of structural defects and electronic properties of carbon nanotubes, Prog. Phys. Met., 21, No. 2: 153 (2020); https://doi.org/10.15407/ufm.21.02.153
  23. A. Selvakumar, U. Sanjith, T.R. Tamilarasen, R. Muraliraja, W. Sha, and J. Sudagar, A critical review of carbon nanotube-based surface coatings, Prog. Phys. Met., 23, No. 1: 3 (2022); https://doi.org/10.15407/ufm.23.01.003
  24. L. Ji, P. Meduri, V. Agubra, X. Xiao, and M. Alcoutlabi, Graphene-based nanocomposites for energy storage, Adv. Energy Mater., 6, No. 16: 1502159 (2016); https://doi.org/10.1002/aenm.201502159
  25. K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, No. 5696: 666 (2004); https://doi.org/10.1126/science.1102896
  26. O.I. Nakonechna, M.M. Dashevskyi, О.І. Boshko, V.V. Zavodyannyi, and N.N. Belyavina, Effect of carbon nanotubes on mechanochemical synthesis of d-metal carbide nanopowders and nanocomposites, Prog. Phys. Met., 20, No. 1: 5 (2019); https://doi.org/10.15407/ufm.20.01.005
  27. M. Hachhach, H. Akram, M. Hanafi, T. Chafik, and O. Achak, Simulation and sensitivity analysis of molybdenum disulfide nanoparticle production using aspen plus, Hindawi, Int. J. Chem. Eng., 2019: 3953862 (2019); https://doi.org/10.1155/2019/3953862; https://physics.mit.edu/news/energy-harvesting-design-aims-to-turn-wi-fi-signals-into-usable-power; https://www.newsweek.com/wifi-signals-terahertz-waves-power-charge-phones-laptops-mit-research-1495432
  28. Graphene Science Handbook: Applications and Industrialization (Eds. M. Aliofkhazraei, N. Ali, W.I. Milne, C.S. Ozkan, S. Mitura, and J.L. Gervasoni) (Boca Raton, CRC Press; 2016); https://doi.org/10.1201/b19488
  29. W. Lu, Y. Luo, G. Chang, and X. Sun, Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection, Biosens. Bioelectron., 26, No. 12: 4791 (2011); https://doi.org/10.1016/j.bios.2011.06.008; https://freerepublic.com/focus/f-chat/4040263/posts
  30. Jannik Meyer and R.F. Service, Carbon sheets an atom thick give rise to graphene dreams (Illustration), Science, 324, No. 5929: 875 (2009); https://doi.org/10.1126/science.324_875
  31. Z. Yan, G. Liu, J.M. Khan, and A.A. Balandin, Graphene quilts for thermal management of high-power GaN transistors, Nature Commun., 3: 827 (2012); https://doi.org/10.1038/ncomms1828
  32. Y.A. Jodan, K. Kiaee, and M.S. Manoor, A 3D-printed hybrid nasal cartilage with functional electronic olfaction, Adv. Sci., 7, No. 5: 1901878 (2020); https://doi.org/10.1002/advs.201901878
  33. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, Graphene photonics and optoelectronics, Nature Photon., 4: 611 (2010); https://doi.org/10.1038/nphoton.2010.186
  34. Y. Wang, Z. Li, J. Wang, J. Li, and Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology, Trends Biotechnol., 29, No. 5: 205 (2011); https://doi.org/10.1016/j.tibtech.2011.01.008
  35. R. Sudhakar, Mesoporous materials for high-performance electrochemical supercapacitors, Mesoporous Materials — Properties and Applications, (IntechOpen: 2019); https://doi.org/10.5772/intechopen.85583
  36. Y. Makarov, A.A. Lebedev, and V.Yu. Davydov, Graphene-based biosensors, Tech. Phys. Lett., 42: 727; https://doi.org/10.1134/S1063785016070233
  37. Z. Geng, B. Hahnlein, R. Granzner, M. Auge, A.A. Lebedev, V.Y. Davydov, M.Kittler, J.Pezoldt, and F.Schwierz, Graphene nanoribbons for electronic devices, Annalen der Physik, 529, No. 11: 1700033 (2017); https://doi.org/10.1002/andp.201700033
  38. G.M. Halmagyi, L. Chen, H.G. MacDouga, K.P. Weber, L.A. McGarvie, and I.S. Curthoys, The video head impulse test, Front. Neurol., 8: 258 (2017); https://doi.org/10.3389/fneur.2017.00258
  39. https://www.nanonewsnet.ru/articles/2014/grafen-zhizn-ili-smert
  40. O.G. Guglya, V.A. Gusev, and O.A. Lyubchenko, From nanomaterials and nanotechnologies to the alternative energy, Prog. Phys. Met., 19, No. 4: 442 (2018); https://doi.org/10.15407/ufm.19.04.442
  41. D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L. Saraf, D. Hu, J. Zhang, G. Graff, J. Liu, M. Pope, and I. Aksay, Ternary self-assembly of ordered metal oxide–graphene nanocomposites for electrochemical energy storage, ACS Nano, 4, No. 3: 1587 (2010); https://doi.org/10.1021/nn901819n
  42. I.I. Klimovskikh, M. Krivenkov, A. Varykhalov, D. Estyunin, and A.M. Shikin, Reconstructed Fermi surface in graphene on Ir(111) by Gd-Ir surface alloying, Carbon, 147: 182 (2019); https://doi.org/10.1016/j.carbon.2019.02.037
  43. D. Marchenko, D.V. Evtushinsky, E. Golias, A. Varykhalov, Th. Seyller, and O. Rader, Extremely flat band in bilayer graphene, Sci. Adv., 4, No. 11: eaau005 (2018); https://doi.org/10.1126/sciadv.aau0059; https://www.adlershof.de/en/news/graphene-on-the-way-to-superconductivity-1/
  44. M.C. Lemme, Current status of graphene transistors, Solid State Phenomena, 156–158: 499 (2010); https://doi.org/10.4028/www.scientific.net/SSP.156-158.499
  45. Q. Li, M. Horn, Y. Wang, J. MacLeod, N. Motta, and J. Liu, A review of supercapacitors based on graphene and redox-active organic materials, Materials, 12: 703 (2019); https://doi.org/10.3390/ma12050703
  46. J. Sha, Y. Li, R.V. Salvatierra, T. Wang, P. Dong, Y. Ji, S.-K. Lee, Ch. Zhang, J. Zhang, R.H. Smith, P.M. Ajayan, J. Lou, N. Zhao, and J. Tour, Three-Dimensional Printed Graphene Foams, ACS Nano, 11, No. 7: 6860 (2017); https://doi.org/10.1021/acsnano.7b01987
  47. M. Han, B. Ozyilmaz, Y. Zhang, and Ph. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett., 98, No. 20: 206805 (2007); https://doi.org/10.1103/PhysRevLett.98.206805
  48. J. Bai, X. Zhong, S. Jiang, Yu. Huang, and X. Duan, Graphene nanomesh, Nature Nanotechnol., 5: 190 (2010); https://doi.org/10.1038/nnano.2010.8
  49. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, and A.H. Castro Neto, Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett., 99, No. 21: 216802 (2007); https://doi.org/10.1103/PhysRevLett.99.216802
  50. D. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, and K.S. Novoselov, Control of graphene’s properties by reversible hydrogenation: evidence for graphane, Science, 323, No. 5914: 610 (2009); https://doi.org/10.1126/science.1167130
  51. F. Ouyang, S. Peng, Z. Liu, Z. Liu, and Z. Liu, Bandgap opening in graphene antidot lattices: the missing half, ACS Nano, 5, No. 5: 4023 (2011); https://doi.org/10.1021/nn200580w
  52. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, and A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene, Nature Mat., 6: 770 (2007); https://doi.org/10.1038/nmat2003
  53. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, and J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations, Phys. Rev. B, 76, No. 7: 073103 (2007); https://doi.org/10.1103/PhysRevB.76.073103
  54. T.M. Radchenko, V.A. Tatarenko, I.Yu. Sagalianov, and Yu.I. Prylutskyy, Configurations of structural defects in graphene and their effects on its transport properties, Graphene: Mechanical Properties, Potential Applications and Electrochemical Performance (Ed. B.T. Edwards) (New York: Nova Science Publishers: 2014), ch. 7, p. 219; https://novapublishers.com/shop/graphene-mechanical-properties-potential-applications-and-electrochemical-performance
  55. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, Strain- and adsorption-dependent electronic states and transport or localization in graphene, Springer Proceedings in Physics: Nanooptics, Nanophotonics, Nanostructures, and Their Applications (Eds. O. Fesenko and L. Yatsenko) (Cham, Switzerland: Springer: 2018), vol. 210, ch. 3, p. 25; https://doi.org/10.1007/978-3-319-91083-3_3
  56. T.M. Radchenko, V.A. Tatarenko, V.V. Lizunov, V.B. Molodkin, I.E. Golentus, I.Yu. Sahalianov, and Yu.I. Prylutskyy, Defect-pattern-induced fingerprints in the electron density of states of strained graphene layers: diffraction and simulation methods, Phys. Status Solidi B, 256, No. 5: 1800406 (2019); https://doi.org/10.1002/pssb.201800406
  57. P. Szroeder, I.Yu. Sagalianov, T.M. Radchenko, V.A. Tatarenko, Yu.I. Prylutskyy, and W. Strupiński, Effect of uniaxial stress on the electrochemical properties of graphene with point defects, Appl. Surf. Sci., 442: 185 (2018); https://doi.org/10.1016/j.apsusc.2018.02.150
  58. P. Szroeder, I. Sahalianov, T. Radchenko, V. Tatarenko, and Yu. Prylutskyy, The strain- and impurity-dependent electron states and catalytic activity of graphene in a static magnetic field, Optical Mater., 96: 109284 (2019); https://doi.org/10.1016/j.optmat.2019.109284
  59. D.M.A. Mackenzie, M. Galbiati, X.D. de Cerio, I.Y. Sahalianov, T.M. Radchenko, J.Sun, D. Peña, L. Gammelgaard, B.S. Jessen, J.D. Thomsen, P. Bøggild, A. Garcia-Lekue, L. Camilli, and J.M. Caridad, Unraveling the electronic properties of graphene with substitutional oxygen, 2D Mater., 8, No. 4: 045035 (2021); https://doi.org/10.1088/2053-1583/ac28ab
  60. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and Yu.I. Prylutskyy, Magnetic field-, strain-, and disorder-induced responses in an energy spectrum of graphene, Ann. Phys., 398: 80 (2018); https://doi.org/10.1016/j.aop.2018.09.004
  61. I.Yu. Sahalianov, T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene, EPL, 132, No. 4: 48002 (2020); https://doi.org/10.1209/0295-5075/132/48002
  62. T.M. Radchenko and V.A. Tatarenko, A statistical-thermodynamic analysis of stably ordered substitutional structures in graphene, Physica E, 42, No. 8: 2047 (2010); https://doi.org/10.1016/j.physe.2010.03.024
  63. T.M. Radchenko and V.A. Tatarenko, Kinetics of atomic ordering in metal-doped graphene, Solid State Sci., 12, No. 2: 204 (2010); https://doi.org/10.1016/j.solidstatesciences.2009.05.027
  64. T.M. Radchenko and V.A. Tatarenko, Statistical thermodynamics and kinetics of long-range order in metal-doped graphene, Solid State Phenom., 150: 43 (2009); https://doi.org/10.4028/www.scientific.net/SSP.150.43
  65. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS Nano, 2, No. 11: 2301 (2008); https://doi.org/10.1021/nn800459e
  66. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening (correction), ACS Nano, 3, No. 2: 483 (2009); https://doi.org/10.1021/nn8008323
  67. R.M. Ribeiro, V.M. Pereira, N.M.R. Peres, P.R. Briddon, and A.H. Castro Neto, Strained graphene: tight-binding and density functional calculations, New J. Phys., 11: 115002 (2009); https://doi.org/10.1088/1367-2630/11/11/115002
  68. V.M. Pereira, A.H. Castro Neto, and N.M.R. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B, 80, No. 4: 045401 (2009); https://doi.org/10.1103/PhysRevB.80.045401
  69. V.M. Pereira and A.H. Castro Neto, Strain engineering of graphene’s electronic structure, Phys. Rev. Lett., 103, No. 4: 046801 (2009); https://doi.org/10.1103/PhysRevLett.103.046801
  70. X. He, L. Gao, N. Tang, J. Duan, F. Mei, Hu Meng, F. Lu, F. Xu, X. Wang, X. Yang, W. Ge, and Bo Shen, Electronic properties of polycrystalline graphene under large local strain, Appl. Phys. Lett., 104: 243108 (2014); https://doi.org/10.1063/1.4883866
  71. I.Yu. Sagalianov, T.M. Radchenko, Yu.I. Prylutskyy, V.A. Tatarenko, and P. Szroeder, Mutual influence of uniaxial tensile strain and point defect pattern on electronic states in graphene, Eur. Phys. J. B, 90, No. 6: 112 (2017); https://doi.org/10.1140/epjb/e2017-80091-x
  72. T.M. Radchenko, I.Yu. Sahalianov, V.A. Tatarenko, Yu.I. Prylutskyy, P. Szroeder, M. Kempiński, and W. Kempiński, The impact of uniaxial strain and defect pattern on magnetoelectronic and transport properties of graphene, Handbook of Graphene: Growth, Synthesis, and Functionalization (Eds. E. Celasco and A. Chaika) (Beverly, MA: Scrivener Publishing LLC: 2019), vol. 1, ch. 14, p. 451; https://doi.org/10.1002/9781119468455.ch14
  73. X. He, L. Gao, N. Tang, J. Duan, F. Xu, X. Wang, X. Yang, W. Ge, and B. Shen, Shear strain induced modulation to the transport properties of graphene, Appl. Phys. Lett., 105: 083108 (2014); https://doi.org/10.1063/1.4894082
  74. G. Cocco, E. Cadelano, and L. Colombo, Gap opening in graphene by shear strain, Phys. Rev. B, 81: 241412 (2010); https://doi.org/10.1103/PhysRevB.81.241412
  75. T.M. Radchenko, V.A. Tatarenko, and G. Cuniberti, Effects of external mechanical or magnetic fields and defects on electronic and transport properties of graphene, Mater. Today: Proc., 35, Pt. 4: 523 (2021); https://doi.org/10.1016/j.matpr.2019.10.014
  76. A.G. Solomenko, R.M. Balabai, T.M. Radchenko, and V.A. Tatarenko, Functionalization of quasi-two-dimensional materials: chemical and strain-induced modifications, Prog. Phys. Met., 23, No. 2: 147 (2022); https://doi.org/10.15407/ufm.23.02.147
  77. S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, and M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application, J. Nanostruct. Chem., 8: 123 (2018); https://doi.org/10.1007/s40097-018-0265-6
  78. S. Zeng, D. Baillargeat, H.-P. Ho, and R.-T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43, No. 10: 342 (2014); https://doi.org/10.1039/c3cs60479a
  79. R. Kalyan, T.L. Alvin, and J. Huang, Graphene oxide: some new insights into an old material, Carbon Nanotubes and Graphene (Eds. K. Tanaka and S. Iijima) (Elsevier: 2014), ch. 14, p. 341; https://doi.org/10.1016/B978-0-08-098232-8.00014-0
  80. J. Sengupta, Carbon nanotube fabrication at industrial scale: opportunities and challenges, Handbook of Nanomaterials for Industrial Applications (Ed. Chaudhery Mustansar Hussain) (Elsevier: 2018), ch. 9, p. 172; https://doi.org/10.1016/B978-0-12-813351-4.00010-9
  81. K. Lü, G. Zhao, and X. Wang, A brief review of graphene-based material synthesis and its application in environmental pollution management, Chin. Sci. Bull., 57: 1223 (2012); https://doi.org/10.1007/s11434-012-4986-5
  82. https://znaj.ua/content/u-mariupoli-morsku-vodu-peretvoryat-na-pytnu