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GREEN’S FUNCTION TECHNIQUE
IN THE THEORY OF DISORDERED CRYSTALS:
APPLICATION TO POTASSIUM-DOPED GRAPHENE

The method of describing the energy spectrum, free energy, and electrical conduc-
tivity of disordered crystals based on the use of the Hamiltonian of electrons and
phonons is reviewed, analysed, and developed. The electron states of a system are
described through the tight-binding model. A simple procedure for calculating the
matrix elements of the Hamiltonian within the Wannier’s representation is proposed.
Expressions for the Green’s functions, free energy, and electrical conductivity are
derived using the diagram method. Using this procedure, the vertex parts of the mass
operators of the electron—electron and electron—phonon interactions are renormalized.
A set of exact equations is obtained for the spectrum of elementary excitations in a
crystal. This enables the performance of numerical calculations on the energy spectrum
and the prediction of system properties with predetermined accuracy. Expressions are
obtained for the static waves of concentrations, charge and spin densities, which de-
termine the phase state of a disordered crystal. In contrast to other approaches, which
account for electron correlations only within the limiting cases of infinitely large and
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infinitesimal electron densities, this method describes electron correlations in the gen-
eral case of an arbitrary density. In addition to the theory, the results of a numerical
calculation of the energy spectrum of a graphene layer with adsorbed potassium (K)
atoms are presented. As established, at the K-atoms’ concentration such that the unit
cell includes two carbon (C) atoms and one K atom, the latter being located (adsorbed)
on the graphene layer surface 0.286 nm above the C atom, the energy gap is =0.25 eV.
The location of the Fermi level (g;) in the energy spectrum depends on the potassium-
atoms’ concentration and is in the energy interval -0.36 Ry < ¢, < -0.23 Ry.

Keywords: disordered crystals, electronic structure, conductivity, Green’s functions,
the mass operator, density of states, free energy.

1. Introduction

Advances in the description of the influence of impurities on the proper-
ties of crystals are mainly due to the development of the electron theory.
Traditional ideas about the effect of impurities on the properties of alloys
are based on the pseudopotential construction [1] and perturbation theory.
However, this theory is inapplicable in the case of a large value of the scat-
tering potential, which takes place, for example, in alloys of simple and
transition elements. In addition, due to the non-local nature of the pseu-
dopotential, there is a problem of ‘portability’ of the pseudopotential. It is
impossible to use nuclear potentials determined by the properties of some
systems to describe other systems. The use of the theory of Vanderbilt
ultrasoft potentials [2, 3] and the method of projector-augmented waves
proposed by Bléchl [4, 5] allowed for achieving fundamental progress in
investigating the electronic structure and the properties of the system.
This approach was further developed using the generalized gradient ap-
proximation proposed in Refs. [6—10].

It should be noted that, in articles [11-17], the description of the
crystals’ electronic structure was carried out, including the Coulomb long-
range interaction between electrons of different sites in the crystal lat-
tice, thanks to a method based on the tight-binding model [18, 19] and
the density functional theory. However, such methods are suitable only
for describing the crystals characterized by ideal ordering. In disordered
crystals, effects associated with localized electron states occur. These ef-
fects cannot be described within the model, where the crystal is treated as
an ideal one.

In Ref. [20], a virtual crystal approximation was proposed to study
the properties of alloys by the density functional theory. This approach is
applied in the Vanderbilt ultrasoft pseudopotential scheme to predict the
properties of Pb(Zr, ,Ti,;)O, solutions in their paraelectric and ferroelec-
tric phases.

The use of the multiple-scattering theory allowed for achieving funda-
mental progress in investigating the electronic structure and the proper-
ties of disordered systems. The theory of the electronic structure of an al-
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loy was developed in Refs. [21—-25] based on the self-consistent method of
Korringa—Kohn—Rostoker as the coherent potential approximation. This
theory makes it possible to take into account both the change in the life-
time of elementary excitations (electrons and phonons) and the change in
their energy spectrum along with the impurity concentration.

The theory of the electronic spectrum and electrical conductivity of
disordered crystals was developed in Refs. [26—29] is based on the tight-
binding model, the multiple-scattering theory, and the one-electron ap-
proximation. This theory takes into account both the change in the life-
time of elementary excitations (electrons and phonons) and the change in
their energy spectrum with a change in the impurity concentration and
degree of impurity ordering.

Articles [30—36] present a method of describing the energy spectrum,
free energy, and electrical conductivity of disordered crystals based on
the Hamiltonian of electrons and phonons. In papers [30—36], authors
went beyond the framework of the one-electron approximation. Electron
states of a system are described by the tight-binding model. Calculations
of two-time Green’s functions are based on the temperature Green’s func-
tions. These use a known relation between the spectral representation of
the two-time and temperature Green’s functions. The calculation of the
temperature Green’s functions for a disordered crystal is based on dia-
gram techniques, which is a generalization of the diagram technique for
homogeneous systems [37]. A set of exact equations is obtained for the
spectrum of elementary excitations in a crystal. This makes it possible to
perform numerical calculations of the energy spectrum and to predict the
properties of the system with a predetermined accuracy.

Most theoretical studies of the energy spectrum of graphene are based
on the density functional theory. The most significant achievements relate
to the self-consistent meta-generalized gradient approximation within the
projector-augmented-wave method [10], which is implemented within the
VASP and Quantum ESPRESSO software packages. Numerical calcula-
tions performed by this method show the opening of the gap in the ener-
gy spectrum of graphene due to the presence of impurities. However, to
determine the nature of the effect of impurities on the energy spectrum
and the properties of graphene, it is not enough to limit the numerical
calculations performed by the above methods. It is clear that, to determine
the nature of the gap in the energy spectrum of graphene, a quantitative
investigation must be supported by a simple and adequate model that al-
lows accurate analytical solutions.

In articles [26—29] in the tight-binding one-electron model, which al-
lows accurate analytical solutions, it was first assumed that, when orde-
ring the substitutional impurity atoms, in the energy spectrum of gra-
phene, there is a gap, whose width depends on the order parameter and
impurity potential scattering.
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In this work, we present a new method of describing the electronic
spectrum and electrical conductivity of graphene based on the Hamiltonian
of electrons and phonons [30—36].

2. Hamiltonian of the Electiron—Phonon
System in a Disordered Crystal

The Hamiltonian of the disordered metallic alloy, disordered semiconduc-
tor, or disordered dielectric consists of the sum of the Hamiltonian of
electrons in the nuclei field, the Hamiltonian of electron—electron interac-
tions, and the Hamiltonian of the nuclei. Within the Wannier’s represen-
tation, the system Hamiltonian is as follows [30]:

H=H,+H,_, 1)
where the zero-order Hamiltonian
H,=H” +HY (2)

consists of the Hamiltonian of the electrons in the field of the cores of
atoms within the perfectly ordered crystal

0 _ Q) +
H = E Py iy Qi Qo 3)
niy
b

and the harmonic phonon Hamiltonian for the motion of the cores of at-
oms within the ideal ordered crystal

2 |
©0) _ nio. - (0)
th - Z 2M + 2 Z q)niu,n'i'a’uniaun’i’a" (4)
e S0 S

Symbol n is the number of a unit cell, i is the site number in a primitive
unit cell, and y denotes all other quantum numbers, including the orbital
and spin ones. The symbol A® denotes the ‘hopping integral’ that connects
the respective orbitals. For the phonon Hamiltonian, o is a spatial direc-
tion coordinate (x, y, or 2), P,,, is the ion core momentum, M, is the mass
of the ion core, u,, is the deviation of the ion core from the equilibrium
site position in the lattice, and d)ﬁg()x,n,i,a, is the corresponding spring-con-
stants matrix.

The interaction Hamiltonian in Eq. (1) is the perturbation of the sys-
tem due to all effects we will include; it is composed of 5 terms:

Hint = Hec + Heph + Hee + thc + thph . (5)
The electrons’ Hamiltonian is modified by the term
Hec = 2 wniy,n'i'y'aniya’n'i'y' ’ (6)
niy
n'i'y'

which is the difference between the Hamiltonian of the electrons in the
field of the cores of atoms in a disordered crystal and the Hamiltonian of
the electrons in the field of the cores of atoms in a perfect ordered crystal.
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The electron—phonon-interaction Hamiltonian is given by
_ mn"i"y"
- Z Unlv nly anzyanzy (7)

niy |
iy,
n"i"y
It will be described in more detail below.
The Hamiltonian of the Coulomb interaction between electrons is giv-
en by the term
=—Z viea, a a,a, ,n=(niy). (8)

"1 g,
ng,mny

The modification of the interaction of the phonons with the ion cores
caused by the disordering of the atoms is given by

1
-5 Z AMma n'i'a Pm(xPnza + E z A(Dni(x,n’i’a'uni(xun'i'a” (9)
where
) 1 1 (0)
AMma P2l B —— 8nn 611 8&(1 4 m(x ni'e’ T q)nia ni'a’ q)nux n'i'a’ ? (10)
M, M, ’ ’
and M ,, M, are the masses of the atoms at the site (ni) for ordered alloy

and disordered one, respectively.

We also include the cubic anharmonic-potential terms for the phonons
(under the assumption that they remain small and can be treated as per-
turbing operators):

1
— 0)
thph - 5 z CDnion,n’i’a’,n"i”cx"unio.un’i’a’un”i”a” . (1 1)

The values a,,, a,, are the operators of creation and destruction of
electrons, re- spectively, in the state described by the Wannier’s
function ¢,,(€), where £ = (r, ¢') are the spatial and spin coordinates of the
wave function. In the second quantization representation, the set of func-
tions ¢, () represents a complete basis of orthogonal and normalized wave
functions of one electron.

Wannier’s functions ¢,,(r, ¢'), on which the Hamiltonian of the system
is represented as in Eq. (1), are defined by a formula

¢niy (r’ G') = \Tlnifi(r - rni)Xc(G')’ (12)

where spin part of wave function, y(c’) = J_,, is an eigenfunction z-com-
ponent of the electron spin operator, §__ is a Kronecker’s symbol, y = (6c)
(the state index y is defined by the energy-band number and the projec-
tion of the spin onto the Oz axis). To construct the Wannier’s functions,
we use analytical expressions for the wave functions of an electron in the
field of an atomic nucleus of the A sort localized at the lattice site (ni) of
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an ideally ordered crystal:
\Vniﬁ(r - rni) = Rél( )Ylm(r - rni)’ }Ilm(r - rni) = Ylm(e’ (p)’ (13)

where 0, ¢ are the angular spherical coordinates of the vector r—r,,. Above-
mentioned index & = &lm incorporates the quantum numbers for the ener-
gy value €, the angular-momentum quantum numbers [ and m, r is the
electron position vector, r,, is the position vector for the atomic nuclei at
the site (ni) in equilibrium:

r,=r,+p,r, =) La; (14)

r, is the position vector of the n-th unit cell in the crystal lattice, a, are
the main translation vectors of the crystal lattice, p, is the vector of the
relative position of the site of the sublattice i in the unit cell n. The co-
ordinates {l)} of the radius vector r, of the unit cell n in the lattice are
integers. The number v takes on values v = 1, 2, 3 for three-dimensional
(3D) crystals, v = 1, 2 for two-dimensional (2D) crystals, and v = 1 for
one-dimensional (1D) crystals.

Basis orthogonalization is performed with the LOwdin method [38].
The orthogonalized wave function can be represented as:

~ _ 172
Voo, (11501, 91) = Z S i, Vngiys, (T3 025 @2)

r_rni

Ngisdy
Wois, (75505, 9,) = R, (7, )lemz (05, 9,), (15)
where S,,Zizg,z,ml is the overlap matrix.
The matrix S has an infinite rank. The Fourier component of

ngigds 118
the overlap matrix has a finite rank. In this regard, the Fourier compo-
nent of the overlap matrix is found as follows:

Sj’lﬁl?i262 (k) = z S”l’:lﬁlvnzizﬁz eXp(lk ’ (rn2i2 a r’hﬁ. )) . (16)
The vector k is defined by the expression
k=> kb, (17)

where b, are basis vectors of translations in the reciprocal lattice;
(a,-b,)=2nd , . In the right-hand side of formula (16),

k-(r,, —-r,) =2 kl2n@? - 7)+ > b/ (] —pi)]. (18)

So, the overlap matrix S

14138y 958,

is found from the formula

Sn1i151,n2i262 = J..” \V;ilsl (1,01, ¢, )\Vnzi252 (75, 0,, (Pz)’iz sin0,drd6,do,, (19)

where r,, 0,, and ¢, are expressed through r,, 6,, and ¢, in accordance with
the following formulae:

r,=r-r,,r,=r-r, =TI -

n,

(20)

r ..
ngignyiy °
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1
[CYICTY

_ 1 2 2 2 2 3 3 2\1/2
n,=0(x —x ) +(x" —x )+ —x, L))

Nglamiy

1 . 2 . . 3
x =rsin0, cosp,, x° =r,sinb, sing,, x° =r,cos 6, ,

o _ (2) 1) a o o
x"2i2"1i1 - z (lV - lV )aV + piz - pi’l ’
v

(21)

cos0, = (r,cos0, —x, . )/1, 22)

¢, = arccos((r; sin0, cos ¢, — x, . )/(r,/(1 - cos® 6,)"'*)). 23)

In formula (21), one should set x,z%il =0 for 2D crystals and
x,zlziznli1 = xi%il =0 for 1D crystals.

Summation over n, on the right-hand side of formula (16) is reduced

to a simple summation over integer coordinates liz) , following Eq. (14):
r, = (I;, 1, ;). Since the matrix element S, i, mivs, decreases with the dis-
tance between the sites n,i,, n,i,, in numerical calculations, when summing
over n, in Eq. (16), it is sufficient to restrict ourselves to a few coordina-
tion spheres.

Using Eq. (16), the matrix S;;l/ 2 (k) can be found. So, the matrix

iy
;;.g 522 nis, 1L expression (15) is found from the formula

- 1 _ .
S”11i1/521’"2i252 - ﬁ Z Silgl/i% (k) eXp(—lk ' (rn2i2 - r"1iz ). (24)
k

Upon receipt of expressions (3), (6), and (7), it was taken into account
that the potential-energy operator for the electron in the field of atomic
nuclei can be expressed as

> v"(r-r,), wherer, =r, +u}, +u,,
r is the electron-position radius vector, r, is the radius vector of atomic
nucleus at the equilibrium position in the site (ni) of the crystal lattice, us,
is the vector of nucleus static displacement from the equilibrium position
in the site (ni), u,, is the nucleus-displacement operator at the site (ni).

Expanding v™(r —r/)) into a series in powers of u,, and restricting
ourselves to linear terms, we can obtain expressions (3), (6), (7).

The values h'°)

i Y1sMalaY e

in Eq. (8) are the matrix elements of the kinetic

and potential energy z v"(r —r,,) of electron in the field of atomic nuclei

in ideal ordered crystal:
()

i) Y1 1007

_ -1/2 * o-1/2 nsis
- Z (Sn3i363,n1i151) Sn4i464,n2i282 (Ei3E3Sn3i383,n4i484 + z vn3i363,n4i464 )86162 (25)

13133, Tl #Ngls
(AN
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(y = (66)). The values here are equal as follow:

vr’zlfiiaSl,nzizéz = I” ‘V,:ilal (561, 9, )vnaia\l’nzgsz (3,0,,0, )r12 sin6,dr,d®,do, , (26)

2 me4z2

"ais (1) Zye E — & 1,23 (27)
v (r)y=—--"2—,E. =— £,8,=1,2,3,....
? r, 2n%g2
Here, r,, 0,, and o, are expressed through r,, 6,, and ¢, following formulae
(20)—(23). The expression for r, is obtained from expression (21) for r, be
means of the replacement of x%, . with x%, .: m and e are the mass and
charge of the electron, respectively, Z, are the atomic number of an atom
of the A sort located at the site (ni) of an ideally ordered crystal, and 7
denotes the Planck’s constant.

The matrix element of the electron—nucleus-interaction Hamiltonian

in Eq. (6) is given by

_ i
wniy,n'i’y' - Z wniy,n'i'y" (28)
n"i"
kn i" kn"i” _Aanit san'i" i"
my n'i'y' z n"i" my n'i'y'? my,n'i'y’ - vniy,n'i'y' + Avniy,n'i'y' - vniy,n’i’y" (29)

A

The symbol vzi"yy‘n,i,y, denotes the matrix element of the potential energy

v (r - r,.) of an electron in the field of the nucleus at the site (n"i") of
the crystal:

U'Zlf“iiv”ziﬂz = J]I \T]lelsl (7'1 ’ el P )U)Lnaia (7'3 )\II”21252 (1"2 ’ 62 » P2 )rlz sin eldrldeldq)lsclcz ’

: Z,e
s
v ngig (r3) — _ .

(30)
3

In Eq. (29), cﬁi is a discrete binary random number taking the values

of 1 or 0 depending on whether an atom of the A sort is at the site (ni) or

not, respectively.

The term Av¥"", ., in Eq. (29) describes electron scattering on the

niy,n'i'y’
static displacements of the atoms and is defined by the equation
AV = 2ty i (31)

where u’. is the a-projection of the static displacement of the atomic nu-
cleus of the A sort at the site (n"i") caused by the difference in the nuclei
charges of the disordered crystal. In Eq. (31), the value of v*""%, is the

niy,n'i'"y’
matrix element of the following operator:
d A
—py ——— U ([P —1,]) 5 (32)
d |r o
r-r,.
—_ ni
0, = Lt (33)
|r —T,.
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n"i"o
niy,n'i'y’

The expression for v is obtained from formula (30) by replacing

v (r,) in it with

o L0 2
_M d Anaza(r)__(x _x er .

ngignyiy ) 3
'"3 dr, I

(34)

The expression for the operator of the electron—phonon interaction in
Eq. (7) is found through derivatives of the potential energy of the electron
in the field of atomic nuclei with respect to displacements of the nuclei by
the vectors {u,}.

n"i"o

The expression for v, ,;, is obtained from formulae (30) and (34), in
which Z, should be replaced with Z, .

The matrix of the force constants in the expression (9) arising from
the direct Coulomb interaction of the atomic nuclei of the disordered crys-
tal has the following form:

an Zﬂ i e

5 X
T =P (35)

2 . .
X{g(rnu + pia - rn’cx + pi’(x )(rnq’ + pia' - rn’a’ + pi’a’) - |rn + pi - I'n’ - pi’| 80141’}’ ni# n'l"

nia,n'i'oc’

4me, |r,

where Z , is the serial number of the atom located at the lattice site (ni) of
the disordered crystal, which is given by the expression

= 2%, (36)
A
This matrix ®,,, ... satisfies the following constraint:
Z®nia,n'i'u' =0. (37)

2 )”1 g

Multicentre integrals v, , n =(niy) in Eq. (8) can be represented as

Ufji)sr“lllz:t;/lz;rjizyz = 6164 6263 J-J- | \anz,lél (rl ’ e1 ’ (Pl )anlzaz ( 1 9;’, (pl) X (38)
X\V”s%Ss ( eg » P2 )Wn41464 (rz ’ 9,2 ’ (pg )d3 ,ds "
Here, s
|I" - (z (xrot —x" — xsziznlil )2] , (39)
d’r] = r]sin 0,dr/d0,d¢;, (40)
d3r1" = rl"sj.n eildrl"dei'd(p;' . (41)

When integrating over r/, 0;, ¢; in Eq. (38), rj, 0, ¢} should be ex-
pressed through r, 0, (p; in accordance with Egs. (20)—(23), in which it
with x¢. . When integrating over r, 6], @]

nglanyiy nyigngi;®

is necessary to replace X,

ISSN 1608-1021. Usp. Fiz. Met., 2025, Vol. 26, No. 3 469



S.P. Repetsky, I.G. Vyshyvana, V.V. Lizunov, R.M. Melnyk, M.I. Reznikov et al.

4

in Eq. (38), 1y, 03, ¢, should be expressed through r/, 0], ¢/ in accor-
Ngignyiy

dance with Eqgs. (20)—(23) too, in which it is necessary to replace x
with x|

ngisnyiy *

3. Green’s Functions for Electrons and Phonons

We use a Green’s function-based formalism to perform the calculations.
To calculate the two-time Green’s functions, through which the energy
spectrum and properties of a disordered crystal are defined, the tempera-
ture Green’s functions and the known relation between the spectral rep-
resentations of two-time Green’s functions and temperature Green’s func-
tions are used. The calculation of the temperature Green’s functions for
a disordered crystal is based on the diagram technique developed in this
work, which is a generalization of the diagram technique for homogeneous
systems [37].

Ultimately, we need the real-time retarded (G#5(¢,t')) and advanced
(GA5(t,t')) Green’s functions, which are defined as follows:

G (t,t') = —%e(t — ) [A(t), BX)), G2 (t,t') = %e(t' —t)[A(2), B(t")]) (42)

with the operators expressed in the Heisenberg’s representation as
A(t) — eth/hAe*th/h. (43)

Here and hereinafter, the operator H means the operator H — u,N,, where
L, is the chemical potential of the electrons’ subsystem, N, is the electron

number operator:
Ne = Za’;ivaniv' (44)
In addition, the commutator or the anticommutator are defined via

[A,B] = AB-nBA, (45)

where n = 1 for Bose operators A, B, and n = —1 for Fermi operators. The
symbol 0(¢) in Eq. (42) is the Heaviside’s unit-step function. The angle
brackets (... denote the thermal averaging concerning the density matrix p:

(A) = Tr(pA) and p = exp((Q — H)/0). (46)

Here, Q is the thermodynamic potential of the system given by definitions
exp(—Q2/0) = Tr(exp(-H/®)) and © = k,T with Boltzmann’s constant k£, and
the absolute temperature T.

Our procedure for calculating the real-time Green’s functions follows
the standard one: we first determine the thermal Green’s functions (de-
fined below) and then analytically continue them to real time using the
conventional spectral relations.

The thermal Green’s functions are defined by

G**(1,7) = AT A(1)B(1)), (47)
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where the imaginary-time operator A(r) is derived from the real-time
Heisenberg’s representation and the substitution ¢ = —i#i, i.e.,

A(r) = e Ae ™", (48)
In addition, the time-ordering operator satisfies the definition
T A(t)B(t') = 6(t — ') A(7) B(t") + n8(t' — ©) B(7) A(7) (49)

with n =1 or —1 for Bose or Fermi A and B operators, respectively.
By introducing the operator
o(t) = e™ e with H=H,+ H,,, (50)
we pass on to the interaction representation. By differentiation of this
expression for o(t) with respect to Tt and integrating starting from 0, with
the boundary condition c(0) = 1, we obtain

o(t) = T. exp [—j Hmt(r')dr'j , (51)
0

where H,_ (1) = ¢™ H, e ™. Employing this result yields

int
A7) = ' (V) A(D)o(7) (52)
with A(7) in the Heisenberg’s representation with respect to the noninter-
acting Hamiltonian. Substituting these results into the definition of the
temperature Green’s function creates the alternate interaction-representa-
tion form for the Green’s function given by

G (1, 7) = T A()B(t)o(1/0)), /(5(1/0)), - (53)

where the whole time dependence is with respect to the noninteracting
quasi-particles’ Hamiltonian and the trace over all states is for the nonin-
teracting states:

(0), =Tr(p,0), p, = P Ve (54)

This last result forms the starting point for the perturbative computa-
tion used here.

Expanding the exponent in expression (51) for o(t) in a series of pow-
ers H, (1), substituting the result in Eq. (53) and using Wick’s theorem
for calculating the temperature Green’s functions of disordered crystals,
it is possible to formulate a diagram technique [37]. According to Wick’s
theorem, the average T-product of several operators is represented by the
sum of products of possible average T-products of pairs of operators. The
sign before each term corresponds to the pairing of the even permutation
of Fermi operators. If the Green’s function of the system is expressed as a
series of diagrams, then the denominator in Eq. (53) will cancel out with
the same factor in the numerator. So, the temperature Green’s function
is expressed as a series of connected diagrams. Summing up the indicated
series, using the standard relation between the spectral representations
of the temperature and real-time Green’s functions, and performing an
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analytical continuation on the real axis, we obtain the following equations
for the retarded and advanced Green’s functions (hereinafter, the indices
‘r’ and ‘a’ is suppressed):

G (e) = G (e) + Gy (e)(w + X, (6) + 2, (8))G™ (2),
G (e) = Gy (e) + Gy“ (e)AD + the(s) + thph(s))G““(s) + G(‘;P () AM gf “(g),

G™ (&) = Gy (&) + Gy " (e)AM "G (&) + Gy (e)(AD + 2, (8) + 2., (€) G (¢), 55)
G’ (e) = Gy () + Gy (8)AM 'G"" (e) + Gy (e)(AD + 2, (€) + 2, (€)) G (¢),

G™(e) =G () + G (e)AD + =, () + T ohen (E))G(€) + GLF(e)AM 'G™(¢),

phe
where ¢ =ho; G*'(g), G*g), G*(g), G**(g), G'(g) are the real-frequency
representation of the single-particle Green’s function of the electrons, the
coordinate—coordinate, momentum—momentum, coordinate—momentum,
and momentum—coordinate Green’s functions of the phonons, respective-
ly; Zn(€), Z.(8), Z.(e), Z,,,,(€) are the corresponding self-energies
(mass operators) for the electron—phonon, phonon—electron, electron—elec-
tron, and phonon—phonon interactions, respectively.

The set of Eqs. (55) can be solved numerically with a predetermined

accuracy. When the perturbations are small, given by
(EEAM /B + AD + 5, (€) + 2,0 (6)) o wrer [ P << 1,

nio,n'i'a’

then, the solution of the set of Egs. (55) becomes
G (e) = G (e) + Gy (e)(w + X, (€) + 2., ())G™ (¢) (56)
G (e) = Gy (e) + Gy (e)(Zy, () + AD + X | (e) + 2, (€))G™ (¢) > (57)

Z:M nio n’i’u’(g) = i z (DSS();L nyijo. (L - L ®§10210L ni'a’ (58)
s = The | AT ]\IL1 1640 5

mh

Using the equations of motion for the Green’s functions, one can ob-
tain expressions for the 0*-order Green’s functions [26], namely:

Gy (e) = (e - HP)", (59)
where
1 0
Hé) = hl(liy),n’i’y' ’ (60)
Gi'(e) = (M /n* - ), (61)
CD(O) = H(D(O)niu,n'i'a' ’ (62)
M =|M3,,8,8,.|- (63)

Here, the double vertical bars denote a matrix.
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Fig. 1. Diagram for zeph i nri/y’(r, )=3% — =

[30, 31] PR Y / ~N

1,0,
The real-time and real-frequency A

Green’s functions are related by stand-

!

ard Fourier-transform relations given by i Ml sty MY
15 ;
G*E(t) = — j G*E(0)e ™ do, (64)
> on . >
Gl () = [ G @) dt. (65)

The temperature Green’s functions are periodic (for bosons) or anti-
periodic (for fermions) on the interval -1/0 <t < 1/0, and hence, have a
Fourier-series representation in terms of their Matsubara’s frequencies,
as follows:

G (1) =0) G*¥(w,)e ", (66)
1 1/0

G*(0,) = — j G2 (1)e"dxr, (67)
-1/0

where the Matsubara’s frequencies meet the conditions

n

{2nn(~) for Bose particles, }
= (n=0,%1,%2,..). (68)
(2n +1)n0® for Fermi particles,

The electrons’ Green’s functions are infinite matrices with indices
given by the lattice unit cell n, the basis site i within it, and the other
quantum numbers y. Similarly, the phonons’ Green’s functions are also
infinite matrices with the same dependences on lattice unit cells and basis
sites, plus a dependence on the spatial coordinate directions a.

The mass operator of the Green’s function of electrons for the elec-
tron—phonon interactions X_ (1, 7') is described by the diagram in Fig. 1
(from here, 71 = (nit)). Solid lines in Fig. 1 correspond to the Green’s func-
tion of electrons G,‘f{';tn,i,y,(r, '), and dashed lines correspond to the Green’s
function of phonons G

nio,n'i'o

NplyOly

(7, 7). The vertex part 2% (15, 7,7,) is de-
scribed by the diagrams in Fig. 2. The unshaded triangle in Fig. 2 corre-
sponds to the equation

l"”zi2°‘2 (12’ T, Tl) = l)mziz(x2 8(‘5 — 12 )S(T - T1)° (69)

0 niy,nyiyyy niy,nyiyy;

In Figures 1 and 2, the summation is performed over the interior points
iy, Ad, .., and implies the summation over niy, nia, ..., and integra-
tion over t. The expressions corresponding to each diagram are multiplied
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ﬁz(xz ﬁz(xz
A = + +... Fig. 2. Diagrams for the vertex
ny niy ny niy, o part Lo, (et =T

my Ay, sy iy [30-32]
1,0,
~ ~ + ~ S
Fol nyY, nyyy ny ny
ﬁy ,va,Yr

Fig. 3. Diagram for X, . ..(t,7) =X . ... Here and in in the next figures,

i = (nit) [30, 31]
Fig. 4. Diagram for X, . . (T, )=2X

winy 130, 31]

by (-1)*F, where N is the order of the diagram (namely, the number of

vertices I'; in the diagram), and F is the number of lines for the Green’s

functions of electrons. These functions exit and enter the same vertices.
Thus, the mass operator of the electrons’ Green’s function for the

electron—phonon interactions X (¢) is described by the formula

1 i ' 8,
z"eph niy,n'i'y’ (8) = - 4_7'[1:[0 de'cth [%] X

(70)
(0) nyijoy * uu ERPRAY plo1 e
I niy,ngizys (G"’lllal Nglg0ty ( ) Gnﬂi'll’"z‘zaz ( ))Gn3‘3Y3 nyiyYy ( & )Fn4i4y4,n’i’y' ’
0) myyoy o1 Moy
niy,ngisys = niy,ngisys? (71)

where repeated indices are summed over.
The self-energy of the phonon due to the phonon—electron interactions
is given by the expression

17 . ,.,
the niot,n'i'a’(g) = 2_751;[ de'f(e") x

XF(O). nio. ‘ (Gaa (8+8,) G aa”* (8+8'))G* ?a+ . (8')4‘ (72)

NolyYe,Mh Yy mirY1sn3i3Y3 mirY1sn3i3Y3 TylyY 4 sMolpY2

+Ge L+ ENGY L () -G ()

miyY1,n3izY3 n4iqYqsMolaYs nglyY 4 5MoloY o n3igY3sMylsYy

insofar as phonon—electron interactions are described by the diagram in
Fig. 3. (The designation in Fig. 3 corresponds to designations in Figs. 1, 2.)

From Wick’s theorem, it follows that, for a system of electrons with
pairwise interactions (Eq. (8)), the mass operator of electron—electron in-
teractions is described by the sum of diagrams. Diagrams for the mass
operator X_(t, 1) describing the electron—electron interactions are shown
in Fig. 4.

474 ISSN 1608-1021. Prog. Phys. Met., 2025, Vol. 26, No. 3



Green’s Function Technique in the Theory of Disordered Crystals

o N N v,
NyYe NyY1MgYa Y1 NoYs Y1 MY
Fig. 5. Diagrams for the vertex [1=1[1] + + +...
part [0 (o v O) = TEBi™ Ay my mymy Ay wY fy
[30, 32] n'y'

The vertex parts [ (t,,1,,1,7') are shown on diagrams in Fig. 5.

The unshaded triangle in Fig. 5 corresponds to the equation

[0 matara miny (15,7, T, 7)) = F(,SL,”Z’”I 3(t —1,)0(t — 1,)d(t - T'), (73)

niy,n'i'y’
0) ng,ny _ (5,(2) nyny _ (2) nyny
I_‘n,n' - (vnl,n' vn',n,l )/2' (74)
The mass operator describing electron—electron interactions is
Z:ee n,n'(g) = Z(et:)n,n’('(::) + z:(ei)n,n'(g) ’ (75)
) 1 ° ’ INT T T2 aa”* ' *aa* ;o 1
20, . (6) = ——— [ defE e (G, () - G (2) (76)
’ 27.“ - > 1-12 1572
=@ ,(8)2—1 L 2 Tda Tds f(e,)f(e,) x
ee n,n 2 27'51 J 1700 2 1 2

XFS:),:;% [(GZ::% (-8 —& )G,:lar‘; (&) - G;a:; (e —¢ —¢, )Grllllarl4 (g,)) % 77
X(Ga (8,) = Gy % (8,)) = (Got, (6=, —8,) = G, " (6 =& —£,)) %

ng Ny g, Ny,

(G, (g, )G::,;s (e,) = G, % (£,)G, " (g,

ny,ny ng .13

Formula (75) for the mass operator of the electron—electron interactions
follows from the symmetrisation of the exponent in the right-hand side
of Eq. (51) by the indices of the quantum states of the Hamiltonian of the
electron—electron interactions (8).

The second diagram in Fig. 4 is multiplied by 1/2 (see expression (77)
for the mass operator of the electron—electron interactions).

A similar result for the contribution to the phonon self-energy % ,(¢)
from phonon—phonon couplings is given in Ref. [33]. Summation is im-
plied over repeated indices in these expressions.

In Egs. (69)-(77), T} ., T, are the vertex parts of the mass
operators of electron—phonon, phonon—electron, and electron—electron in-
teractions. They are represented as infinite series in powers of the matrix
elements of the operators describing these interactions. The renormaliza-
tion of the vertex parts in the expressions (69)—(77) for mass operators
can be performed using the diagrams proposed in Ref. [30]. We will get
the following equations:

n'i'y _ 17(0)ni'a’ 1 T
r -T —2—m£d8f(s)x

NgisY3,MylgYy n3igYg,NylyYy
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O (G OG- G (@G (@)% (18)

N5isY5 Mgl Vs~ MelgYe MrirYr nglgYg NrirYq ngigYg ,MsisVs

(0)1""10%00‘10

(0) ngigog uu
x G 01010
NgigYg,NyiqVy ’

ngiryq,NgigYs — MolgYe»M1oi10Y10

1"”5,’76 _ 1"(0) n5sng
ng,n' ny,n'

(P (79)

g >Mo 750y gm0

—zlm_ j def ()" (G, (e)Gr % () — G, % ()G,

In deriving the expressions in Egs. (70), (72), (76), and (77), we em-
ployed the standard techniques for an arbitrary function ¢(z), which is an-
alytic in the region covered by the contour C enclosing all the Matsubara’s
frequencies. Namely, we have

0 ¢(iv,) = % <]S dzcth(2/(20))¢(2) (0, = 2n1O) (80)
o i g,
for the bosonic case, and

0 d(in,) = —%@dzf (2/©)8(2) (o, = (2n +1)7O) (81)

for the fermionic case, where
f(z/@) = (exp(z/0) + 1)71 . (82)

It should be noted that the first term in the electron self-energy due to
electron—electron interactions, X’ (¢) in Eq. (75), describes the Coulomb

ee n,n’

and exchange electron—electron interactions within the Hartree—Fock ap-
proximation. The second term, X, .(¢), which is caused by corrections

ee n,n

beyond Hartree—Fock approximation, describes the effects of electron cor-
relations. As opposed to the procedures used in Refs. [12, 13], the long-
range Coulomb interaction of electrons located at different crystal-lattice
sites is described by taking into account an arbitrary number of energy bands.

4. Number of Electrons and Magnetic Moments of Atoms

The Fermi level p of the system is determined by the equations
(2) = [ (e)g,(e)ds, (83)

f(e) = (exp(e —~w)/© + 1) (84)

where (Z) is the average number of electrons per atom and g (¢) is the elec-
tron density of states, which satisfies the condition

]_ +
g,(e) = ———ImTr(G* (g)). (85)
nviN
Here, (...) denotes configurational averaging over the disorder, N is the
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number of primitive unit cells in the lattice, and v is the number of sites
per primitive unit cell.

The obtained expressions for the Green’s functions (56), (57) are also
valid if, in addition to concentration fluctuations, the crystal contains the
charge and spin density fluctuations. Since we will be using with number
of electrons per atom and magnetic moment further, we now slightly mod-
ify our notation so that the symbol Yy = (6G) = (Elmc) refers to all other
quantum numbers except for spin, and we will introduce the spin quantum
number o explicitly in all following equations.

The electron—electron self-energy in Eq. (56) requires the occupation
number Z." of the different electron states (nidc), where here we are

explicitly including the dependence on o. The explicit values for Z;; " are
calculated from Eq. (83), where the total electron density of states g,(¢) is

replaced by the partial density of states g'"(g) for the energy band & and

o
spin projection o to allow for the magnetic solutions. Then, the occupation
numbers Z," and the partial density of states g, () satisfy the follow-
ing conditions:

zl" = [ 1e)el (e)de, (86)

ni 1 aa*
g;c (8) = _;Im<Gm‘8c5,ni66(8)> (87)

(ni)eh
Note that the disorder averaging is done under the assumption that an
atom of the A sort is located at the site (ni), the number of electrons per
atom is equal to Z,, and the projection of the localized magnetic moment
onto the Oz axis is equal to m,.

The localized magnetic moments inhomogeneously distributed over
the crystal lattice sites and the static magnetization fluctuations are de-
scribed similarly.

The total number of electrons per atom and magnetic moment are
given by the following formulae:

Z, = ;sz : (88)
m, = ; m (89)
Zys =20 + 7", (90)
M, =my —m" (91)

Let us consider the probability of this configuration is P!, and we

have the obvious constraint
Y Pi=1. (92)
»
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5. Density of Electron and Phonon States in a System

In expressions (56) and (57), we represent each mass operator as a sum
of single-site operators and perform a cluster expansion for the Green’s
functions G““'(g), G““(¢), by introducing the Green’s functions of the effec-
tive medium as a zeroth approximation. The indicated expansions are a
generalization of the cluster expansion for the Green’s function G*'(¢) of
the single-particle Hamiltonian [26].

Green’s functions of the effective medium are defined by the follow-
ing expressions:

G (e)=[e—HP -Z () - Z,.(c) —5,(e)] (93)

G“(e) = [MO /0 - 0@ -% | (e)-Z () -0, ()] (94)

Expressions for the operators Zeph(s), the(s), Zee(s) are obtained from
Egs. (69)—(77) for the mass operators X _,(¢), Z,.(€), Z.(¢) by replacing the
Green’s functions G*(¢), G*(¢) with the Green’s functlons of the effec-
tive medium G@'(g), G“(¢), which satisfy the Dyson equation expressed in
terms of the scattering T-matrix [30]:

G(e) = G(e) + G(e)T(e)G(e), (95)

where the scattering T-matrix is represented by a series, in which each
term describes the scattering of clusters with different numbers of sites,
expressed schematically as

T = Ztnlil + Z T(Z) iy s Nyly + ... . (96)
i iy # Nyl
Here, we have the one-site scattering operator
" = (I - (M -G (EM —6t). (97)
and the two-site scattering operator
@ mivnb — (T - tﬂ’iét"zizé)*l b Gt I+ Gt™h )- (98)

The self-energy employed in Eq. (97), 2:15 , satisfies the condition

W+ 2, (€) + 2, (6) — £, (6) —Z () = Y = (99)

mi

for the electrons. For the phonons, we have

Su@+AD+T (€)+ 2, () -2 () -2, () =) =" (100)

mip
The expressions for the matrices (coherent potentials) c (), o, (¢) in
formulae (93) and (94) for the Green’s functions of the effective medium
will be determined from the condition that there are no contributions from
multiple-scattering processes at one site to the configuration-averaged
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Green’s functions: 4
"y =0. (101)
The matrix elements of the Green’s function of the electrons’ subsys-
tem of the effective medium can be calculated using the Fourier trans-
form:

~aa® 1 ~Naat ik-(r,, —1,.
Gt (8) = LG (™, (102)
G (k,e) = (¢ — H(k,¢)) (103)
where
H(k,e) = b)) (k) + 2, o (K e) + 2, (K E) + 0,0 (K,E)|, (104)
i iy, (K> €) = Z O i iy ()€ T, (105)
nmy

ni

o nyiyy, vy (€) Means the matrix element of the coherent potential.
We do a similar procedure for the effective-medium phonon Green’s
function, which satisfies the definitions

Gt ) =~ 2. Gt By p)e v, (106)
G“(k,e) = (M /n® — D(k,e)) " ; (107)
Dk, &) = |0, () + S e (65 8) + Zp o (K, 8) + 0y (5 8)] (108)
O i (K> €) = Z o, niania (€)€XDEK - (x,, —T,), (109)
ot
M. =M3,5,,. (110)

The Fourier transform of the mass operator of electron—phonon inter-
actions has the form:

- 1 12 .
> ... (k,g)=———— | de'cth('/(20 r9aa kg k -k, ) x
eph ly,zy( ) 4751 N_J;) ( /( ))g iy,igYs ( 1) (111)
Oy O ) = G, (B NG, Ok Ky = T (e K ),

The Fourier transform of the phonon—electron-interactions’ mass op-
erator is as follows:

1 1 I 0) ia
e i (K> €) = %ﬁ__‘; dglf(sl)%: Lo, CRLk+k ) x

G (k+k,e+g)-G * (k+k,e+e)]G " (k,e)+ (112)

iY15i373 i1Y15i373 igYq5laYs
+GZ$1JI3Y3 (k + kl &+ 81 )[Gijjviz}’z (kl ? 81) - Gi;}za»iz}’z (kl ? 81 )]}F;3?37i4Y4 (_k - kl ’ k1 )'
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The vertex parts of the mass operators of the electron—phonon and
phonon—electron interactions are determined by the equation

r;(;l ia7p (kl’ k2) = F(LlOY)ljl’:Yz (kl’k ) J. dgf(g) X
T G 4 R R IG, (ks,swf;z PR R .
sza:lsv (ks S)Gt Za»s, (-k, -k, +kj,8)]x
(0) iz0l wu a0
rOw (kg -k, —k, + k)G (K, +k,, 00, (k,,k, +k,).

In expressions (112) and (113),
roe (k,ky) =Y v  exp(k, -(r,, —r,)+ik, (r,, —r,)). (114)

hY1-laY2 M1, NalaYp n
ny,ny

The Fourier transform of the mass operator of the electron—electron
interactions can be represented as

2o iy (K €) = Zi?w (k, g)+zfj’w (k, ), (115)
11
1) _
Zeelyly(k 8) _—TEFX

(116)

UY1-l2Y2

x| da’f(g')ZFg’{;ﬂM( “k -k, k)G (k,e) -G (ky,e),

2 —0

x Y Tk, k| k+kk)[(G"“ (k -k, —k,,e—¢g —g,)x

Y2-u"1 PYERAE
k, .k,
;;lwm (k,e) -G (k-k -kye—g —&)G, (k,e)lx (117)

X( igV6i3Y3 (kz’ 82) G* “ (k2’ 82 )) (Gaa (k - k - kza € — 81 - 82) -

loYei3Y3 iyYs»l5Y5
~ %
lZVazalﬁYﬁ (k k k2 &~ 82 ))(Ga}? A (kl » € ) 16:6 i3Y3 (k2 ’ 82) -
oN * iV g
L1VL1111‘4‘/4 (kl ’ 81 )Gla‘lc:l%h (k2 ’ 82 ))]rl 4V4 LG‘/6 (k + k k’ _k2 ’ kl ).

The vertex part of the mass operator of the electron—electron interac-
tion is determined by the equation

m Ay igygsiy'

15Y5 lﬁYﬁ (kl’ k2’ k3) _ 1—*(0) l575 igV6 (kl’ k2, k3) — ZTE% J. de(S) X

XZ F(O) e (kl’ k2’ k4 )[(G’m i9Yg (k4’ 8)G~;Ya8a’;1o‘/10 (_kl N kz B k4, 8) - (1 18)

[ATRUNE Lat el

—G*“ (k,,e)G™ . (-k, —k, —k,,e)[(*"" (k, +k, +k,,-k,, k).

L7-l9Y9 igYg ko010 i1gY105i"Y
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In expressions (116)—(118),
(O &vasiavs (kl’ kz’ k3) —

i Y18y
~(2) nyiyyy s Mol . . .
= D oy min e exp(ik, - (r,, - T,,) + ik, - (r, - 1,) +ik; - (v, —T,)).

ngisys, niy

(119)

CRIC R

Green’s functions é““*(k,a), é”“(k,s), for the perfect crystal in formulae
for mass operators ieph(k, g), 2 (k,g), iphe (k,¢), iphph(k, €) are obtained
from Egs. (103)—(105), (107)—(119), if the coherent potentials within them
are set equal to o(k, ) = id (where 6 - +0).

The solution of the set of Eqs. (103)—(105), (107)—(119) for the Green’s
functions of the subsystems of electrons and phonons, é““*(k,a), é””(k,s),
can be performed via the iteration method.

The energies of electrons and phonons within the crystal are deter-
mined from the equations for the poles of the Green’s functions of elec-

trons and phonons, G* (k,¢), G*“(k,¢):
det \gaﬁ,aw, ~H, ..k g)“ -0, (120)

det |6 M,5,,,,/h* - ¥, ,,(k,E)| = 0, (121)

L oo

where FIiy,i,Y,(k, €), (i)m‘i,a,(k, €) are given by the formulae (104), (108).
Expressions for coherent potentials in formulae (105), (109) are ob-

tained from condition (101) and have the forms
ou' () = (1= (20 = o2 ()G (&) ) " x
X1 = (0 - ol @G @)'E)

i) = (1 - (Z4F - o™ (e))G™(e)) )™
x((L-(ZHh - o™ ()G () Ty

Thus, for the determination of the Green’s functions of the effective
medium, it is necessary to solve a set of Eqgs. (102)—(119), (122), (123).
Such a solution can be performed numerically by the iteration method.
The calculation algorithm is described below in Sec. 8.

Using Eqgs. (28) and (99), we deduce an expression for the self-energy,
which describes the scattering of electrons:

(122)

o
(123)

anil — wnlil (124)

e niy,n'i'y’ niy,n'i'y's

Using Eqgs. (568) and (100), we derive the initial expression for the self-
energy, which describes the scattering of phonons:

: K 1 1
mi — q)(o) _ (D(O)
th niu,n'i'u'(g) - 82 < nia,nyi; oy {M A Mi1 } nyijoy,n'i'a’* (125)

mh
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In the limit of an infinite crystal, all terms on the left sides of Eqs. (99),
(100), except the first ones, tend to zero as 1/(vN) as the number vN of
crystal sites (atoms) increases unrestrictedly.

Cluster decomposition for the Green’s function of electrons and phon-
ons of a disordered crystal can be obtained from Eqgs. (95)—(101). The den-
sities of electron and phonon states are presented as infinite series. Here,
processes of scattering on clusters with different numbers of atoms are
described by each term. As shown, the contribution of scattering processes
of electrons and phonons on clusters decreases with increasing number of
atoms in the cluster by a small parameter [33]

e =—| Y G E6E) |, (126)

rv (ngip)#(miy), iy 0iy,0iy

where r is the total number of energy bands included in the calculation. As
shown previously [26, 30, 33], this parameter remains small when many
parameters of the system are changed, except possibly for narrow energy
intervals near the band edges.

By neglecting the contribution of processes of electron scattering on
clusters consisting of three or more atoms, which is small by the above
parameter, for the electron density of states, we obtain

1 .
g.) ==Y Pig/"(e), (127)

i,h,y
where the conditional partial density of states is as follows:

) 1 ~ N o~ e~
g" () =-=Im[G+Gt"G+ Y PB/IGT®"™MG], . (128)
T (1)#(ni),\'
T(2) Ani,\'lj — [I _ tkniétl'ljé]—l tkniétl'lj [I + G~tkni] , (129)

where G =G (s).
The phonon density of states can be obtained similarly by averaging
the phonon Green’s function G“(g):

]_ ni
£n0) = 2 Pig" ), (130)
gl (e) = _%Im[é+ét”‘i6~¥ + Y BUGTOMNGY ., (181)
(1j)#(ni),\'

where G =Guu(g).

In Egs. (128) and (131), P,]k,f} is the conditional probability to find an
atom of the A’ sort at the site ({j) with number of electrons per atom equal
to Z,, and a magnetic moment equal to m,,, provided that, at the site (ni),
an atom of the A sort is located with number of electrons per atom equal
to Z, and a magnetic moment equal m,. Here, t* is the value of the ma-

trix element of a single-centre operator for scattering in the case where an
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atom of the A sort is located at the site (ni) and has a number of electrons
per atom equal to Z, and a magnetic moment equal to m,.

When the system is disordered, we need to consider a random arrange-
ment of the atoms on lattice sites. Hence, in Eqgs. (127) and (130), the
probability for an atom of the A sort to be at the site (0i) is given by the
following definition:

P, =(ch) (132)
where Czi is a discrete binary random number taking the values of 1 or
0 depending on whether an atom of the A sort is located at the site (ni)
or not. The conditional probabilities in Egs. (127) and (128), as well as in
(130) and (131) are defined by the following equation:

P = PP = (clch). (133)

lj ni lj ni lj “ni

The notations anl. and Pl]k,{:‘ determine the probabilities of the fluctuations
of concentration, electron density, and spin density.

6. Free Energy

We first focus on the Gibbs free energy (also called the thermodynamic
potential) of the system, which satisfies the definition [33]:

Q=-0InTr(e ). (134)

The Hamiltonian H is defined in Eq. (1). To perform the trace opera-
tion, we need to sum over all the band states, but we also need to consider
the disorder averaging. The latter is commonly handled via a configura-
tional average [33]. Using formulae (50) and (134), we represent the ther-
modynamic potential in the form

Q=00 +00 +qo, (135)

where Q(eo) and Qi,%) are the thermodynamic potentials for the electrons
and the phonons, respectively. The symbol Q' denotes the contribution to
the thermodynamic potential, which is determined by the mutual scatter-
ing of electrons and phonons; it is defined as

Q' = -01n((c(1/0)),) (136)
with o given in Eq. (50).

Next, we use the method of ‘integration over the coupling constant’ to
simplify the results further.

By replacing the interacting Hamiltonian H, , (defined in Eq. (5)) by
H,_.(A\) = AH,,, differentiating the expression for the piece of thermody-
namic potential Q'(A) in Eq. (136) concerning parameter A, and then inte-
grating (with the boundary conditions 2'(0) = 0 and Q'(1) = Q'), we obtain
the following expression [33]:

1/06

1
Q’:@j “;—7“ j dW(T H,, (1, \)o(1/0, 1)), /(5(1/0, L)), (137)
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Using the diagram technique described in Ref. [30], we reduce
Eq. (137) to the form
1

== n\}N Im !%z de[f(e)Tr{(w(r) + 2, (&, 1) 2. (&, MG (g, 1)) +

(138)
1 € i
+§cth (%j Tr((Z, (&, A) + AD(R) + Z ;. (e, 1) + 2, 1. (&, )G (&, A))].
This expression can be immediately evaluated, because we know all the
Green’s functions and the self-energies.

The contribution to the thermodynamic potential from the electrons
(in the atomic-nuclei field) is simple to find too; it is given by

QO = -0 [ degl” () In(l + ). (139)

Similarly, the contribution to the thermodynamic potential from the
phonons is given by

QY = 0 [ degl)(e) In(l - e/°), (140)

The values gio)(s) and g;i)(a) in Egs. (139) and (140) are given by formu-
lae (127) and (130), where % = 0.
Expanding the Green’s function G*'(¢,A) and G*(g, 1) in Eq. (138) into
a power series (see (56), (57)), calculating the energy integral by integra-
tion by parts, performing cyclic permutations of the operators under sign
Tr, and substituting expression (138) for ' into formula (135), we obtain
the expression
Q=0Q,+Q,, (141)

where Q and Q, are given by Egs. (139) and (140), but with géo) and 8'1(,?1)
replaced by g (¢) and g,,(¢) (see Egs. (127) and (130)).

Ultimately, we are interested in determining the Helmholtz free ener-
gy F as a function of the volume (V), the temperature (T'), and the number
of electrons (N,); it can be found directly from the thermodynamic poten-
tial, inasmuch as it satisfies the relation ¥ = Q + w(N_). This free energy
per atom can be presented [33] as

F=0Q +Q, +WZ). (142)

The equilibrium values of the parameters of interatomic correlations,
P! and P}/, in Egs. (127), (128), (130), (131) and of the static dis-

ljni »
placements of the atomic nuclei can be found from the condition for the
minimum free energy F. Fourier components PﬂM *(k) of quantities P;,{}
describe static waves of concentrations, electron density, spin density, and
nuclei displacements, which, for one’s turn, describe the phase state of a
disordered crystal.
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7. Electrical Conductivity

In this section, we discuss how to calculate the electrical conductivity.
We assume that the system will not be driven too far from equilibrium.
Accordingly, we use the Kubo linear-response formalism for the electrical-
conductivity tensor [30], which is given by

1/0 ©

@) = [ [drdte™ (I (0)], (¢ +ihr)) . (143)
00

In this equation, J, is the current operator along the a-th spatial direc-
tion; o is a frequency of the external electric field E(w, 8), and an infi-
nitely small positive quantity 6 is a time increment of its increase during
(adiabatic) switching on (6 - +0). The real part of the conductivity, called
the optical conductivity, can be represented in terms of the imaginary part
of the retarded response function or equivalently as

Reo,,(0) = i(G;]“J“ (©) - G () (144)

in terms of the retarded and advanced response functions.

The current operator is just the number operator for the electrons,
which is multiplied by their velocity and the electric charge, and then
summed over all states. It can be compactly represented as

I, (1) = e[ eV (& t)v, P (& 1), (145)

where WY*(§, t) and W(§, t) are the field operators for the creation and de-
struction of electrons, respectively, v, is the operator of o component of
the band velocity, and e is the electron charge.

The integration over & in Eq. (145) runs over all states. (Especially,
by integration over & we mean integration within the unit volume of the
crystal and summation over the projections of the spin ¢ onto the Oz axis.)

To calculate the two-time Green’s functions, which are used to de-
termine the electrical conductivity of a crystal, the temperature Green’s
function and the known relationship between the spectral representations
of the two-time Green’s function and the temperature Green’s function
are used.

In this case, the temperature Green’s function is
2

J.J, e
G (1, 1) = NV > Vg, Vpngn, O (14T 1T, 1T, 1, T) (146)

1 mngngny

where V| is the volume of the primitive unit cell, and the two-particle tem-
perature Green’s function is given by the following expression:

G"(n, v, n,t, 0T, 0y T) = (Ta, (r')anz (r)a; (r’)a; (1)5(1/©)),(c(1/0)), (147)
(n £ (niy)). Thus, the two-particle temperature Green’s function is
expressed as a series of connected diagrams. It is described by the
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4 3 4 3 4 3 4 3 Fig. 6. Diagrams for the two-particle Green’s
function [30]
B ~ T
6/"%5  diagram in Fig. 6. (The notations on
{ 5 12 1 %1 3 the right side of the equation in Fig. 6

are the same as those in Fig. 4.) The
numbers in Fig. 6 correspond to the number of a point on the diagram.
For example, the number 1 corresponds to (n,i,y,1,).

The temperature two-particle Green’s function, which determines
the electrical conductivity of the crystal, is described only by the first
and third diagrams on the right-hand side of the equation in Fig. 6.
This follows from Eq. (145) for the current-density operator, which is
expressed through the product of the electron creation and destruction
operators. This temperature Green’s function differs from the Green’s
function in quantum field theory [37], which is described by all three
diagrams on the right-hand side of the equation in Fig. 6.

Using the diagram technique for the temperature Green’s function
and neglecting the contributions of scattering processes on clusters of
three or more sites to the electrical-conductivity tensor, we obtain:

e’h
4nV.e
D {0 K(E,v,,8 +&)+ Y PLK(e] +&,v,, e (6)K(E],v,, 8 +&) x

iy A

Reo (o) =

8,8'=+,—

{[ de,(7e, + &) 1(e,) Y (28, ~1)x

xt"(e] +e)+ Y P Y PMK (e +e, Uy e, G(e! + )T (! +g)+
A

lj ni
lj#ni, \'

+K(&},0,,8 +e)0,GE)T™"" ()) + K(& +&,v,e)[t""(e])x  (148)
xK(el,v,,e +e)t' (e +e)+ " () +t"()K(E,v,, & +¢)x
x TEMM (g 4 g) 4 T (e K (g5, 0,88 +e)t™ (e] +e)+ 1" (] +g))+
4 TN 1ikni (Si)Kv(Si, U,» sf + S)T(Z)L”i‘”j(sf +€)+ T(Z)L'lj’k""(sf)Iz(si, v, af + &) x

XTI (e 4 )Ty, + | [ deade,f(e)f(e,)AG Y (6, 855 €)),

—0 —00

where
K(e},v,,8 +€) = G (&) )0,G" (&} +2)> (149)
G (e]) = G™ (g,)» (150)
G (57) = G (&) = G[* (g,) - (151)

The two-particle interaction term AG;I[3 (e;5€,55€) in (148) is
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I lvf’-’hﬂz Uﬁn:;”q ~aa* ~aa® ~aa* ~aa®
AG&[} (81’ 82; 8) = W {(Grnlnﬁ (81) - G!aU'Lln(s (81 ))(Gr Ny (82) - C;:anzn5 (82 )) x

X (G:,in4 (e, — ?,)Gr",fgn3 (g, +€)— G:,Zn4 (e, — ?,)Ga‘f,‘;n3 (g, +€)+ G:,‘:ln6 (e, —€)x

(G (85) — G () Gor (2, — NGEE, (8)) — G2, (5,)) - G2 (&, — &) " 152)
(G (8,) — Got (e,))Gie, (2, — )G, (8,) - Go (&) + (G, (8, — 8) X
G (6, +8) = G2 (6, — )G, (8, + NG, (5,) = G, ()G, (6,)
—G (6)) +(Got (6)) - Gl (£))G (5, + )G, (2,) - Gir, (&) %
x Gt (e, +8) — (G (2)) — Got (£,))Gee (8, +E)Gas, (£,) — GLo', (£,)) %

x G (e + o) T,
Summation over repeated indices in Eq. (152) is implied. The number N in
Eq. (152) is reduced, when summing over the primitive unit-cell number
n,, since the sum over the remaining indices does not depend on the primi-
tive unit-cell number n,.
For the static conductivity tensor (o - 0), we obtain

e2h i af (.8 s’ A r(n8 s
Gy = o jw de, . Z (25, —1); {UBK(SI,UQ,SI)+;PMK(81,UB,81)><

xt" (€K (e, v, , el )t (e)) + Z P’ Z le [K (!, Uy e)v, G(e!)
A lj#ni, 1’
x T (e)) + K (€5, 0, 8] )0, Gle) T (e}) + K (g5, vy, )™ (€)
x K (e, v,, e )t (e) + (" (&) + " () K (!, v, , &) )T (68 +
+ T (e)K (8, v,, 8 )E™ (6]) + £ (6])) + TP () K (€5, v,., €] )
x T(2)hni,k’lj (Si) + T(2)k’lj,kni (Si )K(Si , Ua , Si’ )T(Z)h’lj,Xni (8? )]]}
The electron velocity satisfies the conventional definition
_ 1 0H;" (k)
ho Ok,

Under the deriving expression (153), the last small term resulting
from the two-particle interaction in the expression for electrical conduc-
tivity (148) is neglected.

The method developed in this work was applied in Ref. [31] to study
the effect of an impurity on the energy spectrum and electrical conductiv-
ity of carbon nanotubes.

In conclusion to this section, note that the Kubo formalism, or more
precisely, Kubo—Greenwood (KG) formalism, is a reasonably efficient
but effortful method widely used in the literature for its implementa-

(153)

niy,niy *

v, (k) (154)
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tion in the numerical computations of electron diffusivity and conductiv-
ity. Among a series of numerical methods reported in the literature on
studying the electronic and transport properties of single- and multilayer
graphene films, the time-dependent real-space KG formalism has a linear
dependence of computational capabilities on the size of a system and,
therefore, has an advantage over some other methods in the investigation
of realistically large graphene sheets containing millions of atoms. The
KG-formalism-based computational methodology, applied for numerical
calculation of the electron density of states, electron diffusivity and con-
ductivity, is described in a series of works; see, e.g., review articles [39,
40] and chapters in the monographs [41-43] as well as references therein.
This methodology includes the Chebyshov method for the solution of the
time-dependent Schrddinger equation, calculation of the first diagonal ele-
ment of the Green’s function using the continued-fraction technique and
tridiagonalization procedure for the Hamiltonian matrix, averaging over
realizations of point [44-49] or extended (acting as the line scatterers)
[60-53] or point + line [562, 53] defects, sizes of initial electron wave
packet and computational domain, boundary conditions, etc.

8. Algorithm for Implementation of the Green’s Function Method

As noted above, the phase state of a disordered crystal is generally de-
scribed by static waves of concentrations, charge density, and spin den-
sity. The state of a crystal is determined by the symmetry of the crystal
lattice and the parameters of correlations in the distribution of impuri-
ties, the number of electrons, and localized magnetic moments at the sites
of the crystal lattice, which are found from the free energy minimum
condition and depend on the chemical composition and external param-
eters, temperature, and pressure. Let us assume that we know the crystal
symmetry characteristics, the value of which can be refined using the free
energy minimum condition.

Thus, we set the main translation vectors of the crystal lattice {a } and
the position vectors of sublattice basis sites in the unit cell of the crystal
{p} (see Eq. (14)).

We set the values of concentrations ¢* and parameters of interatomic
correlations in a disordered crystal P, P;/. (see Egs. (127), (128), (130),
(131)), taking into account that

¢t =v'y P, (155)
i=1

where v is the number of atoms per primitive unit cell.

Next, the values of the masses and charges of the nuclei of the crystal
atoms are specified.

The next step in the numerical implementation of the method is the
diagonalization of the basis in accordance with formulae (15)—(24). To do
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this, it is necessary to calculate the Fourier components S, ; . (k) of the
overlap matrix using Eq. (16). Note that the value of S, ,; (k) does not
depend on the unit-cell number n,. The value of n, can be set as equal to
n, = 0; when summing over n,, it can be limited to the sites (n,i,) of the
lattice, which lie in the region of overlap of the wave functions of an
electron in the field of nuclei located at the sites (0i,), (n,i,). According
to Eq. (14), summation over n, means summation over [® = .., —L/2,
-L/2+1,..., L/2-1, where L is an even integer. The number of primitive
unit cells in a crystal is N = L3, L2, L for three-dimensional, two-dimen-
sional and one-dimensional crystals, respectively.

Using the values of the matrix elements S, ; , ; (k), we find the matrix
S, 2 .5, (&) . Then, using formula (24), orthogonal functions (15) are calcu-
lated Further, the Fourier components hl(YOl)y (k) of the hopping integrals
are calculated using formula (25).

The initial values of the vertex parts of the electron—phonon and

electron—electron interactions’ mass operators g)y) ll“yz (k,,k,) and

rffy)ﬁyy oo (k,,k,,k;) are calculated using Egs. (114) and (34) along with
(119), (38), and (76).

The initial values of the Green’s functions of the subsystems of elec-
trons and phonons, é““*(k,s) and é““*(k,a), are calculated using Eqgs. (103)—
(105) and (107)—(110), in which the values of the mass operators of the
electron—phonon, electron—electron, and phonon—electron interactions are
assumed to be equal to zero.

We set the initial value of the Fermi level p equal to the lowest energy
value for the electron state within the nuclei field (see formula (27)).

Let us set the temperature value T.

We create the calculation cycle (i)—(vi) as follows.

(i) The mass operators of the electron—phonon, phonon—electron and
electron—electron interactions are calculated using formulae (111)—(119).

(ii) The Green’s functions for the subsystems of electrons and phon-
ons, G*“(k,e) and G““'(k,¢g), are calculated using formulae (103)—(105) and
(107)—(110).

(iii) The coherent potentials for the subsystems of electrons and phon-
ons, oy(¢) and o}, (¢), are calculated by formulae (122) and (123).

(iv) The electron and phonon densities of states are calculated using
formulae (127)—(131). During the matrix multiplication, summation by
the matrix-elements’ indices is performed following the formula (102):

~aa* 1
G"3i3Y3r"4i4Y4 (8) = F ; i3Y3514Y4 (k 8) eXp(lk (r"3l3 - ”414 )) * (156)

(v) The Fermi level u is calculated via formulae (83)—(85).
(vi) If the specified calculation accuracy is reached, the loop exits.
Next, we calculate the value of free energy F using formula (142).
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The above calculations will be performed for different values of the
parameters of interatomic correlations, Pn”i and Pljk,fik , in Egs. (127), (128),
(130), (131), and for different values of the parameters of static displace-
ments of the atomic nuclei. The values of these parameters for the thermo-
dynamic-equilibrium state are found from the condition for the minimum
of free energy F (142).

Further, using formulae (148), (153), both the high-frequency (opti-
cal) electrical conductivity and the static electrical conductivity are cal-
culated.

Localized magnetic moments and ion charges are calculated using for-
mulae (86), (88)—(91), and (128).

9. Energy Spectrum of Graphene with Adsorbed Potassium Atoms

To calculate the electron energy spectrum of graphene with adsorbed po-
tassium atoms, we chose the wave functions of the 2s- and 2p-states of
noninteracting neutral carbon atoms as the basis. In the calculation of
matrix elements of the Hamiltonian, we take the first three coordination
spheres. The energy spectrum of graphene is calculated for the tempera-
ture T' = 0 K. In calculations, we neglect the renormalization of the verti-
ces of the mass operator of electron—electron interactions. The dependence
of the energy of an electron on the wave vector for graphene is calculated
from the equation for the Green’s function poles for the electrons’ subsys-
tem, defined in Eq. (120).

Figure 7, left, [54] shows the dependence of the electron energy ¢ for
the graphene with adsorbed potassium atoms on the wave vector k. The
vector k is directed from the Brillouin-zone centre (point I') to the Dirac
point (point K).

The structural periodic distance from a potassium atom to a carbon
atom is 0.28 nm. It is seen in Fig. 7 that, at such an ordered arrangement
of potassium atoms, a gap in the energy spectrum of graphene arises. Its
value depends on the concentration of adsorbed potassium atoms, their
location in the primitive unit cell, and the distance to carbon atoms. We
revealed that, at the potassium concentration such that the primitive unit
cell includes two carbon atoms and one potassium atom, if the latter is
placed on the graphene-layer surface above a carbon atom at a distance
of 0.286 nm, the energy gap is =0.25 eV (see Fig. 7, right). The location
of the Fermi level in the energy spectrum depends on the potassium con-
centration, and it is within the energy interval —0.36 Ry < ¢, < -0.23 Ry.

The band-gap value obtained in Ref. [564] well correlates with that cal-
culated in Refs. [55, 56] for the ordered distribution of potassium adatoms
residing on three types of high-symmetry positions (‘hollow’, ‘bridge’, or
‘top’ sites) over the graphene crystal lattice, where the authors of Refs.
[65, 56] also applied the Green’s function technique combined with a series
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Fig. 7. Dependence of the electron energy e on the wave vector k in the 'K direction
for the graphene with adsorbed potassium impurity [54]

of other computational approaches. However, the realistically typically-
experimentally-observed contents of potassium dopant atoms on graphene
are substantially smaller (z0.05-0.1%) [57, 58] than those considered in
Ref. [54], as well as the sputtered nanoparticles in Refs. [59, 60]. In this
context, the smaller potassium concentration has been associated with
a smaller band-gap width, as revealed in Refs. [55, 56]. Nevertheless,
electronic [55] and diffraction characteristics [61] are sensitive even to
a substantially small amount of any disorder (structural imperfections).

10. Summary

The paper reports and analyses a new method of describing the electronic
spectrum, thermodynamic potential, and electrical conductivity of disor-
dered crystals based on the Hamiltonian of electrons and phonons. The
tight-binding model describes electron states of a system. The Hamiltonian
of a system is defined based on the wave functions of electrons in the
atomic-nuclei field. Expressions for the Green’s functions, thermodyna-
mic potential, and electrical conductivity are derived using the diagram
method. Equations are obtained for the vertex parts of the mass operators
of the electron—electron and electron—phonon interactions. A set of exact
equations is obtained for the spectrum of elementary excitations in a crys-
tal. This makes it possible to perform numerical calculations of the energy
spectrum and the properties of a system with a predetermined accuracy.
In contrast to other approaches, which account for electron correlations
only in the limiting cases of the infinitely large and infinitesimal electron
densities, this method describes electron correlations in the general case
of an arbitrary electron density. The cluster expansion is obtained for both
the density of states and the electrical conductivity of disordered systems.
We show that the contribution of the electron-scattering processes on
clusters is decreasing along with increasing the number of sites within the
cluster that depends on a small parameter.
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It is found that a gap appears in the energy spectrum of graphene
with an ordered arrangement of potassium atoms. Its value depends on the
concentration of adsorbed potassium atoms, their location in the primitive
unit cell, and the distance to carbon atoms. It is found that, at such a con-
centration of potassium that the primitive unit cell includes two carbon
atoms and one potassium atom, if the latter is located on the graphene
surface above the carbon atom at a distance of 0.286 nm, the band gap is
~0.25 eV.
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METO/I TPITHOBUX ®YHKIIIN ¥V TEOPII HEBIIOPATKOBAHUX KPVCTAJIIB:
SACTOCYBAHHSA OO JIETOBAHOI'O KAJIIEM I'PA®EHY

PosruaryTo, npoananizoBaHo Ta PO3BUHYTO METOJ, PO3PAXYHKY €HEePreTUYHOTO CIeKTpa,
BizIbHOI eHeprii # eJIeKTPONPOBiAHOCTI HEBIOPAJKOBAHUX KPUCTAJIB, IO OIMHUCYIOTh-
csA raMiJIbTOHiaHOM eJIeKTPOHHOI Ta (hOHOHHOI mizcucreM. EJIEKTPOHHI CTaHU CHUCTEMU
OICAHO B paMKaxX MOJeJIi CUJIBHOTO 3B’A3KY. 3alPOIIOHOBAHO IIPOCTY IMPOIEAYpPYy 00-
YUCJIEHHS MaTPUYHUX eJIEeMEHTiB ramMijJibToHiaHa y mpezacraBieHHi Bamube. Bupasu giasa
rpiHOBUX ()YHKIIili, BiJIbHOI eHeprii i eJleKTPOIIPOBiIHOCTI OfePIKAHO IILIAXOM BUKOPUC-
TaHHA JiarpaMHOI TeXHiKu. 3a JOIMOMOrOI0 Iliel mpolenypu IepeHOPMOBAHO BEPIIWHHI
YAaCTUHU MACOBHUX OII€PATOPiB €JIEKTPOH-EJIEKTPOHHOI i eIeKTPOH-(OHOHHOI B3a€MOIiA.
Omep:kaHO CUCTEMY TOYHUX PiBHAHBb JJIA CIIEKTpPa eJieMeHTapHUX 30y[/KeHb KpHUCTaJa.
ITe yMORIMBUIO BUKOHAHHA YHUCJIOBUX PO3PAXYHKIB €HEPreTUYHOIO CIIEKTPa Ta IPOrHO-
3yBaHHSA BJIACTUBOCTEN CHUCTEMH i3 3ajaHOI0 TOuHicTIO. OmepsKaHO BUpAa3W AJIA CTATUU-
HUX XBUJIb KOHIIEHTPAI[ill KOMIIOHEHTiB, TYCTUH 3apAAYy Ta CIIiHY, AKi BU3HAYAIOTh (a-
30BUII CTaH HEBIOPAAKOBAaHOTO Kpucrasa. Ha BigmiHy Bifg iHIMuMX migxomiB 100 omucy
HEBIIOPAIKOBAHUX KPUCTAJIUYHUX CUCTEM, V AKUX €JEKTPOHHI KOpesasaIii BpaxoByIOThCS
JIAIIe B TPAHUYHUX BUIIAAKAaX HECKiHUEHHO BEJIMKOI Ta HECKiHUeHHO MaJioi eJIeKTPOHHOL
I'YCTHUHU, 3aIPOIIOHOBAHUM METOJ [Ja€ MOJYKJIMBICTH ONMMCATU eJIEeKTPOHHI Kopessdiii B
3araJIbHOMY BUITQJKYy AOBiJIBLHOI esleKTpoHHOI ryctuHH. Kpim Teopii, B cTarTi HaBemzeHO
pesyJIbTAaTH YUCJIOBOTO PO3PAXYHKY €HEePreTHYHOr'O CIeKTpa rpadeHOBOTO IIapy 3 aj-
copboBanumu aromamu Kamito (K). BecranoBieno, 1o 3a KoHmeHTtpaiii aromis K, xomn
eJeMeHTapHa KOMipKa mictuth aBa aromu Kap6ony (C) i ogun atom K, mpuuomy ocraH-
Hill posramioBaHuil (amcopboBaHmMil) Ha MOBepXHi rpadenHoBoro mapy Hax aromom C Ha
Bigmani y 0,286 um, 3a60poHeHa eHepreTuuHa 30Ha cTaHoBUTH =0,25 eB. PosramryBanasa
piBaa Pepwmi (g;) B eHepPreTUUHOMY CIIEKTDi 3aJIeKUTh Bij KoHIeHTpamii aTomis K i 3Ha-
XOOUTHCA B eHepreTuuHoMmy intepBani —0,36 Pix < ¢, < -0,23 Pin.

KarouoBi cioBa: HeBIOPAAKOBAaHI KpHUCTaIM, €JeKTPOHHA CTPYKTypa, €JIeKTPOIPOBif-
HiCcTbh, I'PiHOBI (PYHKIIII, MacoBUi omepaTop, I'yCTUHA CTaHiB, BiIbHA eHepris.
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