
ISSN 1608-1021. Usp. Fiz. Met., 2025, Vol. 26, No. 3	 461

https://doi.org/10.15407/ufm.26.03.461

S.P. REPETSKY 1, 2, *, I.G. VYSHYVANA 3, **,  
V.V. LIZUNOV 1, ***, R.M. MELNYK 2, M.I. REZNIKOV 3,  
T.M. RADCHENKO 1, and V.A. TATARENKO 1

1 G.V. Kurdyumov Institute for Metal Physics of the N.A.S. of Ukraine,  
  36 Academician Vernadsky Blvd., UA-03142 Kyiv, Ukraine 
2 National University of Kyiv-Mohyla Academy,  
  2 H. Skovoroda Str., UA-04070 Kyiv, Ukraine 
3 Taras Shevchenko National University of Kyiv,  
  60 Volodymyrs’ka Str., UA-01033 Kyiv, Ukraine
* srepetsky0208@gmail.com, ** i.vyshyvana@gmail.com,  
*** lizunov.vyacheslav@gmail.com

GREEN’S FUNCTION TECHNIQUE  
IN THE THEORY OF DISORDERED CRYSTALS:  
APPLICATION TO POTASSIUM-DOPED GRAPHENE

The method of describing the energy spectrum, free energy, and electrical conduc­
tivity of disordered crystals based on the use of the Hamiltonian of electrons and 
phonons is reviewed, analysed, and developed. The electron states of a system are 
described through the tight-binding model. A simple procedure for calculating the 
matrix elements of the Hamiltonian within the Wannier’s representation is proposed. 
Expressions for the Green’s functions, free energy, and electrical conductivity are 
derived using the diagram method. Using this procedure, the vertex parts of the mass 
operators of the electron–electron and electron–phonon interactions are renormalized. 
A set of exact equations is obtained for the spectrum of elementary excitations in a 
crystal. This enables the performance of numerical calculations on the energy spectrum 
and the prediction of system properties with predetermined accuracy. Expressions are 
obtained for the static waves of concentrations, charge and spin densities, which de­
termine the phase state of a disordered crystal. In contrast to other approaches, which 
account for electron correlations only within the limiting cases of infinitely large and 
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1. Introduction

Advances in the description of the influence of impurities on the proper­
ties of crystals are mainly due to the development of the electron theory. 
Traditional ideas about the effect of impurities on the properties of alloys 
are based on the pseudopotential construction [1] and perturbation theory. 
However, this theory is inapplicable in the case of a large value of the scat­
tering potential, which takes place, for example, in alloys of simple and 
transition elements. In addition, due to the non-local nature of the pseu­
dopotential, there is a problem of ‘portability’ of the pseudopotential. It is 
impossible to use nuclear potentials determined by the properties of some 
systems to describe other systems. The use of the theory of Vanderbilt 
ultrasoft potentials [2, 3] and the method of projector-augmented waves 
proposed by Blöchl [4, 5] allowed for achieving fundamental progress in 
investigating the electronic structure and the properties of the system. 
This approach was further developed using the generalized gradient ap­
proximation proposed in Refs. [6–10].

It should be noted that, in articles  [11–17], the description of the 
crystals’ electronic structure was carried out, including the Coulomb long-
range interaction between electrons of different sites in the crystal lat­
tice, thanks to a method based on the tight-binding model [18, 19] and 
the density functional theory. However, such methods are suitable only 
for describing the crystals characterized by ideal ordering. In disordered 
crystals, effects associated with localized electron states occur. These ef­
fects cannot be described within the model, where the crystal is treated as 
an ideal one.

In Ref. [20], a virtual crystal approximation was proposed to study 
the properties of alloys by the density functional theory. This approach is 
applied in the Vanderbilt ultrasoft pseudopotential scheme to predict the 
properties of Pb(Zr0.5Ti0.5)O3 solutions in their paraelectric and ferroelec­
tric phases.

The use of the multiple-scattering theory allowed for achieving funda­
mental progress in investigating the electronic structure and the proper­
ties of disordered systems. The theory of the electronic structure of an al­

infinitesimal electron densities, this method describes electron correlations in the gen­
eral case of an arbitrary density. In addition to the theory, the results of a numerical 
calculation of the energy spectrum of a graphene layer with adsorbed potassium (K) 
atoms are presented. As established, at the K-atoms’ concentration such that the unit 
cell includes two carbon (C) atoms and one K atom, the latter being located (adsorbed) 
on the graphene layer surface 0.286 nm above the C atom, the energy gap is @0.25 eV. 
The location of the Fermi level (εF) in the energy spectrum depends on the potassium-
atoms’ concentration and is in the energy interval −0.36 Ry ≤ εF ≤ −0.23 Ry.
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loy was developed in Refs. [21–25] based on the self-consistent method of 
Korringa–Kohn–Rostoker as the coherent potential approximation. This 
theory makes it possible to take into account both the change in the life­
time of elementary excitations (electrons and phonons) and the change in 
their energy spectrum along with the impurity concentration.

The theory of the electronic spectrum and electrical conductivity of 
disordered crystals was developed in Refs. [26–29] is based on the tight-
binding model, the multiple-scattering theory, and the one-electron ap­
proximation. This theory takes into account both the change in the life­
time of elementary excitations (electrons and phonons) and the change in 
their energy spectrum with a change in the impurity concentration and 
degree of impurity ordering.

Articles [30–36] present a method of describing the energy spectrum, 
free energy, and electrical conductivity of disordered crystals based on 
the Hamiltonian of electrons and phonons. In papers [30–36], authors 
went beyond the framework of the one-electron approximation. Electron 
states of a system are described by the tight-binding model. Calculations 
of two-time Green’s functions are based on the temperature Green’s func­
tions. These use a known relation between the spectral representation of 
the two-time and temperature Green’s functions. The calculation of the 
temperature Green’s functions for a disordered crystal is based on dia­
gram techniques, which is a generalization of the diagram technique for 
homogeneous systems [37]. A set of exact equations is obtained for the 
spectrum of elementary excitations in a crystal. This makes it possible to 
perform numerical calculations of the energy spectrum and to predict the 
properties of the system with a predetermined accuracy.

Most theoretical studies of the energy spectrum of graphene are based 
on the density functional theory. The most significant achievements relate 
to the self-consistent meta-generalized gradient approximation within the 
projector-augmented-wave method [10], which is implemented within the 
VASP and Quantum ESPRESSO software packages. Numerical calcula­
tions performed by this method show the opening of the gap in the ener­
gy spectrum of graphene due to the presence of impurities. However, to 
determine the nature of the effect of impurities on the energy spectrum 
and the properties of graphene, it is not enough to limit the numerical 
calculations performed by the above methods. It is clear that, to determine 
the nature of the gap in the energy spectrum of graphene, a quantitative 
investigation must be supported by a simple and adequate model that al­
lows accurate analytical solutions.

In articles [26–29] in the tight-binding one-electron model, which al­
lows accurate analytical solutions, it was first assumed that, when orde­
ring the substitutional impurity atoms, in the energy spectrum of gra­
phene, there is a gap, whose width depends on the order parameter and 
impurity potential scattering.
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In this work, we present a new method of describing the electronic 
spectrum and electrical conductivity of graphene based on the Hamiltonian 
of electrons and phonons [30–36].

2. Hamiltonian of the Electron–Phonon  
System in a Disordered Crystal

The Hamiltonian of the disordered metallic alloy, disordered semiconduc­
tor, or disordered dielectric consists of the sum of the Hamiltonian of 
electrons in the nuclei field, the Hamiltonian of electron–electron interac­
tions, and the Hamiltonian of the nuclei. Within the Wannier’s represen­
tation, the system Hamiltonian is as follows [30]:

	 0 intH H H= + ,	 (1)

where the zero-order Hamiltonian

	 (0) (0)
0 e phH H H= + 	 (2)

consists of the Hamiltonian of the electrons in the field of the cores of 
atoms within the perfectly ordered crystal

	 (0) (0)
e ,ni n i ni n i

ni
n i

H h a a+
′ ′ ′ ′ ′ ′g g g g

g
′ ′ ′g

= ∑ 	 (3)

and the harmonic phonon Hamiltonian for the motion of the cores of at­
oms within the ideal ordered crystal

	
2

(0) (0)
ph ,

1

2 2
ni

ni n i ni n i
ni nii

n i

P
H u u

M
a

′ ′ ′ ′ ′ ′a a a a
a a

′ ′ ′a

= + F∑ ∑ .	 (4)

Symbol n is the number of a unit cell, i is the site number in a primitive 
unit cell, and γ denotes all other quantum numbers, including the orbital 
and spin ones. The symbol h(0) denotes the ‘hopping integral’ that connects 
the respective orbitals. For the phonon Hamiltonian, a is a spatial direc­
tion coordinate (x, y, or z), Pnia is the ion core momentum, Mi is the mass 
of the ion core, unia is the deviation of the ion core from the equilibrium 
site position in the lattice, and (0)

,ni n i′ ′ ′a aF  is the corresponding spring-con­
stants matrix.

The interaction Hamiltonian in Eq. (1) is the perturbation of the sys­
tem due to all effects we will include; it is composed of 5 terms:

	 int ec eph ee phc phphH H H H H H= + + + + .	 (5)

The electrons’ Hamiltonian is modified by the term

	 ec ,ni n i ni n i
ni
n i

H w a a+
′ ′ ′ ′ ′ ′g g g g

g
′ ′ ′g

= ∑ ,	 (6)

which is the difference between the Hamiltonian of the electrons in the 
field of the cores of atoms in a disordered crystal and the Hamiltonian of 
the electrons in the field of the cores of atoms in a perfect ordered crystal.
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The electron–phonon-interaction Hamiltonian is given by

	 eph ,
n i

ni n i n i ni n i
ni
n i
n i

H v u a a′′ ′′ ′′g +
′ ′ ′ ′′ ′′ ′′ ′ ′ ′g g g g g

g
′ ′ ′g
′′ ′′ ′′g

′= ∑ .	 (7)

It will be described in more detail below.
The Hamiltonian of the Coulomb interaction between electrons is giv­

en by the term

	 1 2

3 4 1 2 3 4

1 2

3 4

,
ee ,

, ,
,

1
, ( )

2
n n
n n n n n n

n n
n n

H v a a a a n ni+ += = g∑ .	 (8)

The modification of the interaction of the phonons with the ion cores 
caused by the disordering of the atoms is given by

	 1
phc , ,

1 1

2 2ni n i ni n i ni n i ni n i
ni ni
n i n i

H M P P u u−
′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′a a a a a a a a

a a
′ ′ ′ ′ ′ ′a a

= ∆ + ∆F∑ ∑ ,	 (9)

where

  1
,

1 1
ni n i nn ii

ni i

M
M M

−
′ ′ ′ ′ ′ ′a a aa

 
∆ = − d d d 

 
, 

	
(0)

, , ,ni n i ni n i ni n i′ ′ ′ ′ ′ ′ ′ ′ ′a a a a a a∆F = F − F ,	 (10)

and Mni, Mi are the masses of the atoms at the site (ni) for ordered alloy 
and disordered one, respectively.

We also include the cubic anharmonic-potential terms for the phonons 
(under the assumption that they remain small and can be treated as per­
turbing operators):

	 (0)
phph , ,

1

3 ! ni n i n i ni n i n i
ni
n i
n i

H u u u′ ′ ′ ′′ ′′ ′′ ′ ′ ′ ′′ ′′ ′′a a a a a a
a
′ ′ ′a
′′ ′′ ′′a

= F∑ .	 (11)

The values nia+
g, anig are the operators of creation and destruction of 

electrons, re­ spectively, in the state described by the Wannier’s 
function φnig(x), where x = (r, s′) are the spatial and spin coordinates of the 
wave function. In the second quantization representation, the set of func­
tions φnig(x) represents a complete basis of orthogonal and normalized wave 
functions of one electron.

Wannier’s functions φnig(r, s′), on which the Hamiltonian of the system 
is represented as in Eq. (1), are defined by a formula

	 ( , ) ( ) ( )ni ni nig d s′ ′φ s = ψ − c sr r r ,	 (12)

where spin part of wave function, cs(s′) = dss′, is an eigenfunction z-com­
ponent of the electron spin operator, dss′ is a Kronecker’s symbol, g ≡ (ds) 
(the state index g is defined by the energy-band number and the projec­
tion of the spin onto the Oz axis). To construct the Wannier’s functions, 
we use analytical expressions for the wave functions of an electron in the 
field of an atomic nucleus of the l sort localized at the lattice site (ni) of 
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an ideally ordered crystal:

	 ( ) ( ) ( ), ( ) ( , )ni ni l ni lm ni lm ni lmR Y Y Yd εψ − = − − − = q jr r r r r r r r


,	 (13)

where q, j are the angular spherical coordinates of the vector r - rni. Above-
mentioned index lmd = ε  incorporates the quantum numbers for the ener­
gy value ε , the angular-momentum quantum numbers l and m, r is the 
electron position vector, rin is the position vector for the atomic nuclei at 
the site (ni) in equilibrium:
	 ,ni n i n ln n

n

= + = ∑r r r ar ;	 (14)

rn is the position vector of the n-th unit cell in the crystal lattice, an are 
the main translation vectors of the crystal lattice, ri is the vector of the 
relative position of the site of the sublattice i in the unit cell n. The co­
ordinates {ln} of the radius vector rn of the unit cell n in the lattice are 
integers. The number n takes on values n = 1, 2, 3 for three-dimensional 
(3D) crystals, n = 1, 2 for two-dimensional (2D) crystals, and n = 1 for 
one-dimensional (1D) crystals.

Basis orthogonalization is performed with the Löwdin method [38]. 
The orthogonalized wave function can be represented as:

1 1 1 2 2 2 1 1 1 2 2 2

2 2 2

1/2
1 1 1 , 2 2 2( , , ) ( , , )n i n i n i n i

n i

r S r−
d d d d

d

ψ q j = ψ q j∑ ,

	
2 2 2 2 2 2 22 2 2 2 2 2( , , ) ( ) ( , )n i l l mr R r Yd εψ q j = q j



,	 (15)

where 
2 2 2 1 1 1,n i n iS d d  is the overlap matrix.

The matrix 
2 2 2 1 1 1,n i n iS d d  has an infinite rank. The Fourier component of 

the overlap matrix has a finite rank. In this regard, the Fourier compo­
nent of the overlap matrix is found as follows:

	
1 1 2 2 1 1 1 2 2 2 2 2 1 !

2

, ,( ) exp( ( ))d d d d= ⋅ −∑k k r ri i n i n i n i n i
n

S S i .	 (16)

The vector k is defined by the expression

	 n n
n

= ∑k bk ,	 (17)

where bn are basis vectors of translations in the reciprocal lattice; 
( ) 2′ ′n n nn⋅ = πda b . In the right-hand side of formula (16),

	
2 2 1 ! 2 1

(2) (1)( ) [2 ( ) ( )]a a a
n n n n

n a

⋅ − = π − + r − r∑ ∑k r rn i n i i ik l l b .	 (18)

So, the overlap matrix 
1 1 1 2 2 2,n i n iS d d  is found from the formula

	
1 1 1 2 2 2 1 1 1 2 2 2

* 2
, 1 1 1 2 2 2 1 1 1 1 1( , , ) ( , , ) sinn i n i n i n iS r r r dr d dd d d d= ψ q j ψ q j q q j∫∫∫ ,	 (19)

where r2, q2, and j2 are expressed through r1, q1, and j1 in accordance with 
the following formulae:

	 1 1 2 2 2 2 ! 11 2 1,n i n i n i n i= − = − = −r r r r r r r r ,
	

(20)
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2 2 1 1 2 2 1 1 2 2 1 1

1 1 2 2 2 2 3 3 2 1/2
2 (( ) ( ) ( ) )n i n i n i n i n i n ir x x x x x x= − + − + − ,

1 2 3
1 1 1 1 1 1 1 1sin cos , sin sin , cosx r x r x r= q j = q j = q ,

	
2 2 1 1 2 1

(2) (1)( )n i n i i ix l l aa a a a
n n n

n

= − + r − r∑ ,
	 (21)

	 2 2 1 1

3
2 1 1 2cos ( cos )/n i n ir x rq = q − ,

	 (22)

	 2 2 1 1

1 2 1/2
2 1 1 1 2 2arccos(( sin cos )/( /(1 cos ) ))n i n ir x rj = q j − − q .

	 (23)

In formula (21), one should set 
2 2 1 1

3 0n i n ix =  for 2D crystals and 

2 2 1 1 2 2 1 1

2 3 0n i n i n i n ix x= =  for 1D crystals.
Summation over n2 on the right-hand side of formula (16) is reduced 

to a simple summation over integer coordinates (2)ln , following Eq. (14): 
rn = (l1, l2, l3). Since the matrix element 

1 1 1 2 2 2,n i n iS d d  decreases with the dis­
tance between the sites n1i1, n2i2, in numerical calculations, when summing 
over n2 in Eq. (16), it is sufficient to restrict ourselves to a few coordina­
tion spheres.

Using Eq.  (16), the matrix 
1 1 2 2

1/2
, ( )i iS−

d d k  can be found. So, the matrix 

2 2 2 1 1 1

1/2
,n i n iS−

d d  in expression (15) is found from the formula

	
1 1 1 2 2 2 1 1 2 2 2 2 1 !

1/2 1/2
, ,

1
( ) exp( ( ))− −

d d d d= − ⋅ −∑
k

k k r rn i n i i i n i n iS S i
N

.	 (24)

Upon receipt of expressions (3), (6), and (7), it was taken into account 
that the potential-energy operator for the electron in the field of atomic 
nuclei can be expressed as

s( ),  where′ ′− = + +∑ r r r r u uni
ni ni ni ni ni

ni

v ,

r is the electron-position radius vector, rni is the radius vector of atomic 
nucleus at the equilibrium position in the site (ni) of the crystal lattice, us

ni 
is the vector of nucleus static displacement from the equilibrium position 
in the site (ni), uni is the nucleus-displacement operator at the site (ni).

Expanding ( )ni
niv ′−r r  into a series in powers of unia and restricting 

ourselves to linear terms, we can obtain expressions (3), (6), (7).

The values 
1 1 1 2 2 2

(0)
,n i n ih g g  in Eq. (3) are the matrix elements of the kinetic 

and potential energy ( )ni
ni

ni

v −∑ r r  of electron in the field of atomic nuclei 

in ideal ordered crystal:

	

1 1 1 2 2 2

5 5

3 3 3 1 1 1 4 4 4 2 2 2 3 3 3 3 3 4 4 4 3 3 3 4 4 4 1 2

3 3 3 5 5 3 3

4 4 4

(0)
,

1/2 * 1/2
, , , ,( ) ( )

g g

− −
d d d d ε d d d d s s

d ≠
d

=

= + d∑ ∑

n i n i

n i
n i n i n i n i i n i n i n i n i

n i n i n i
n i

h

S S E S v

	

(25)
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(g ≡ (ds)). The values here are equal as follow:

	 3 3 3 3

1 1 1 2 2 2 1 1 1 2 2 2

* 2
, 1 1 1 2 2 2 1 1 1 1 1( , , ) ( , , ) sinn i n i

n i n i n i n iv r v r r dr d dd d d d= ψ q j ψ q j q q j∫∫∫ ,	 (26)

	 3 33 3

3 3

2 4 2

3 32 2
3 3

( ) , , 1, 2, 3,
2

i in i
i

Z e me Z
v r E

r ε= − = − ε =
ε







.	 (27)

Here, r2, q2, and j2 are expressed through r1, q1, and j1 following formulae 
(20)–(23). The expression for r3 is obtained from expression (21) for r2 be 
means of the replacement of xα

n2i2,n1i1
 with xα

n3i3,n1i1
; m and e are the mass and 

charge of the electron, respectively, Zi are the atomic number of an atom 
of the l sort located at the site (ni) of an ideally ordered crystal, and ħ 
denotes the Planck’s constant.

The matrix element of the electron–nucleus-interaction Hamiltonian 
in Eq. (6) is given by
	 , ,

n i
ni n i ni n i

n i

w w ′′ ′′
′ ′ ′ ′ ′ ′g g g g

′′ ′′

= ∑ ,	 (28)

	 s
, , , , , ,,n i n i n i n i n i i

ni n i n i ni n i ni n i ni n i ni n i ni n iw c w w v v v′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′l l l l l
′ ′ ′ ′′ ′′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′g g g g g g g g g g g g

l

= = + ∆ −∑ .	 (29)

The symbol ,
n i

ni n iv ′′ ′′l
′ ′ ′g g  denotes the matrix element of the potential energy 

( )n ivl
′′ ′′−r r  of an electron in the field of the nucleus at the site (n′′i′′) of 

the crystal:

3 3 3 3

1 1 1 2 2 2 1 1 1 2 2 2 1 2

* 2
, 1 1 1 3 2 2 2 1 1 1 1 1( , , ) ( ) ( , , ) sinn i n i

n i n i n i n iv r v r r r dr d dl l
g g d d s s= ψ q j ψ q j q q j d∫∫∫   ,

	 3 3

2

3
3

( )n i Z e
v r

r
l l= − .	 (30)

In Eq. (29), nicl  is a discrete binary random number taking the values 
of 1 or 0 depending on whether an atom of the l sort is at the site (ni) or 
not, respectively.

The term s
,
n i

ni n iv ′′ ′′l
′ ′ ′g g∆  in Eq.  (29) describes electron scattering on the 

static displacements of the atoms and is defined by the equation

	 s s,
, ,
n i n i

ni n i ni n i n iv v u′′ ′′ ′′ ′′l l a l
′ ′ ′ ′ ′ ′ ′′ ′′g g g g a

a

′∆ = ∑ ,	 (31)

where s,
n iu l
′′ ′′a  is the a-projection of the static displacement of the atomic nu­

cleus of the l sort at the site (n′′i′′) caused by the difference in the nuclei 
charges of the disordered crystal. In Eq. (31), the value of ,

n i
ni n iv ′′ ′′l a

′ ′ ′g g′  is the 
matrix element of the following operator:

	 ( )n i n i
n i

d
e v

d
l

′′ ′′ ′′ ′′a
′′ ′′

− −
−

r r
r r

;	 (32)

	 n i
n i

n i

e ′′ ′′
′′ ′′

′′ ′′

−
=

−
r r

r r
.	 (33)
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The expression for ,
n i

ni n iv ′′ ′′l a
′ ′ ′g g′  is obtained from formula (30) by replacing 

3 3

3( )n iv rl  in it with

	 3 3 1 1 3 3

3 3 1 1

2

3 3
3 3 3

( )
( ) ( )

n i n i n i
n i n i

x x Z ed
v r x x

r dr r

a a
l a a l

−
− = − − .	 (34)

The expression for the operator of the electron–phonon interaction in 
Eq. (7) is found through derivatives of the potential energy of the electron 
in the field of atomic nuclei with respect to displacements of the nuclei by 
the vectors {uni}.

The expression for ,
n i

ni n iv ′′ ′′l a
′ ′ ′g g′  is obtained from formulae (30) and (34), in 

which Zl should be replaced with Zi3
.

The matrix of the force constants in the expression (9) arising from 
the direct Coulomb interaction of the atomic nuclei of the disordered crys­
tal has the following form:

 

′ ′
′ ′ ′a a

′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′a a a a a a a a aa

F = − ×
πε + − −

′ ′× + r − + r + r − + r − + − − d ≠

2

, 5

0

2

4

{3( )( ) }, ,

ni n i
ni n i

n i n i

n i n i n i n i n i n i

Z Z e

r r r r ni n i

r r

r r

r r

r r

	(35)

where Zni is the serial number of the atom located at the lattice site (ni) of 
the disordered crystal, which is given by the expression

	 ni niZ c Zl
l

l

= ∑ .	 (36)

This matrix Fnia,n′i′a′ satisfies the following constraint:

	 , 0ni n i
n i

′ ′ ′a a
′ ′

F =∑ .	 (37)

Multicentre integrals 1 2

3 4

(2) ,
, , ( )n n

n nv n ni= g  in Eq. (8) can be represented as

	
1 1 1 2 2 2

3 3 3 4 4 4 1 4 2 3 1 1 1 2 2 2

3 3 3 4 4 4

(2) , 2 * *
, 1 1 1 1 1 1

3 3
2 2 2 2 2 2 1 1

1
( , , ) ( , , )

( , , ) ( , , ) .

n i n i
n i n i n i n i

n i n i

v e r r

r r d r d r

g g
g g s s s s d d

d d

′ ′ ′ ′′ ′′ ′′= d d ψ q j ψ q j ×
′ ′′−

′′ ′′ ′′ ′ ′ ′ ′ ′′×ψ q j ψ q j

∫∫ r r
 

 

	 (38)

Here,

	
2 2 1 1

1/2
2

( )n i n ix x xa a a

a

 ′ ′′ ′ ′′− = − − 
 
∑r r ,	 (39)

	 3
1 1 1 1 1 1sind r r dr d d′ ′ ′ ′ ′ ′= q q j ,	 (40)

	 3
1 1 1 1 1 1sind r r dr d d′′ ′′ ′′ ′′ ′′ ′′= q q j .	 (41)

When integrating over 1 1 1,  ,  r′ ′ ′q j  in Eq. (38), 
2 2 2,  ,  r′ ′ ′q j  should be ex­

pressed through 1 1 1,  ,  r′ ′ ′q j  in accordance with Eqs. (20)–(23), in which it 

is necessary to replace 
2 2 1 1n i n ixa  with 

4 4 1 1n i n ixa . When integrating over 1 1 1,  ,  r′′ ′′ ′′q j  
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in Eq.  (38), 2 2 2,  ,  r′′ ′′ ′′q j  should be expressed through 1 1 1,  ,  r′′ ′′ ′′q j  in accor­

dance with Eqs. (20)–(23) too, in which it is necessary to replace 
2 2 1 1n i n ixa  

with 
3 3 2 2n i n ixa .

3. Green’s Functions for Electrons and Phonons

We use a Green’s function-based formalism to perform the calculations. 
To calculate the two-time Green’s functions, through which the energy 
spectrum and properties of a disordered crystal are defined, the tempera­
ture Green’s functions and the known relation between the spectral rep­
resentations of two-time Green’s functions and temperature Green’s func­
tions are used. The calculation of the temperature Green’s functions for 
a disordered crystal is based on the diagram technique developed in this 
work, which is a generalization of the diagram technique for homogeneous 
systems [37].

Ultimately, we need the real-time retarded (Gr
AB(t,t′)) and advanced 

(Ga
AB(t,t′)) Green’s functions, which are defined as follows:

r ( , ) ( ) [ ( ), ( )]AB i
G t t t t A t B t′ ′ ′= − q − 〈 〉 



, a ( , ) ( ) [ ( ), ( )]AB i
G t t t t A t B t′ ′ ′= q − 〈 〉 



	(42)

with the operators expressed in the Heisenberg’s representation as

	 / /( ) iHt iHtA t e Ae−=  

 .	 (43)

Here and hereinafter, the operator H means the operator H - meNe, where 
me is the chemical potential of the electrons’ subsystem, Ne is the electron 
number operator:
	 e ni ni

ni

N a a+
n n

n

= ∑ .	 (44)

In addition, the commutator or the anticommutator are defined via

	 [ , ]A B AB BA= − h ,	 (45)

where h = 1 for Bose operators A, B, and h = -1 for Fermi operators. The 
symbol q(t) in Eq.  (42) is the Heaviside’s unit-step function. The angle 
brackets 〈...〉 denote the thermal averaging concerning the density matrix r:
	 Tr( )A A〈 〉 = r  and exp(( )/ )Hr = W − Q .	 (46)

Here, W is the thermodynamic potential of the system given by definitions 
exp(-W/Q) = Tr(exp(-H/Q)) and Q = kBT with Boltzmann’s constant kB and 
the absolute temperature T.

Our procedure for calculating the real-time Green’s functions follows 
the standard one: we first determine the thermal Green’s functions (de­
fined below) and then analytically continue them to real time using the 
conventional spectral relations.

The thermal Green’s functions are defined by

	 ( , ) ( ) ( )ABG T A Bt′ ′t t = −〈 t t 〉  ,	 (47)
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where the imaginary-time operator ( )A t  is derived from the real-time 
Heisenberg’s representation and the substitution t i= − t , i.e.,

	 ( ) H HA e Aet − tt = .	 (48)

In addition, the time-ordering operator satisfies the definition

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T A B A B B At ′ ′ ′ ′ ′t t = q t − t t t + hq t − t t t      	 (49)

with h = 1 or -1 for Bose or Fermi A and B operators, respectively.
By introducing the operator

	 0( ) H He et − ts t =  with H = H0 + Hint,	 (50)

we pass on to the interaction representation. By differentiation of this 
expression for s(t) with respect to t and integrating starting from 0, with 
the boundary condition s(0) = 1, we obtain

	
int

0

( ) exp ( )T H d
t

t

 
′ ′s t = − t t 

 
∫ ,	 (51)

where 0 0

int int( ) H HH e H et − tt = . Employing this result yields

	
1( ) ( ) ( ) ( )A A−t = s t t s t 	 (52)

with A(t) in the Heisenberg’s representation with respect to the noninter­
acting Hamiltonian. Substituting these results into the definition of the 
temperature Green’s function creates the alternate interaction-representa­
tion form for the Green’s function given by

	
0 0( , ) ( ) ( ) (1/ ) / (1/ )ABG T A Bt′ ′t t = −〈 t t s Q 〉 〈s Q 〉 ,	 (53)

where the whole time dependence is with respect to the noninteracting 
quasi-particles’ Hamiltonian and the trace over all states is for the nonin­
teracting states:

	 0 0Tr( )〈 〉 = rO O ,  0 0( )/
0

He W − Qr = .	 (54)

This last result forms the starting point for the perturbative computa­
tion used here.

Expanding the exponent in expression (51) for s(t) in a series of pow­
ers Hint(t), substituting the result in Eq. (53) and using Wick’s theorem 
for calculating the temperature Green’s functions of disordered crystals, 
it is possible to formulate a diagram technique [37]. According to Wick’s 
theorem, the average T-product of several operators is represented by the 
sum of products of possible average T-products of pairs of operators. The 
sign before each term corresponds to the pairing of the even permutation 
of Fermi operators. If the Green’s function of the system is expressed as a 
series of diagrams, then the denominator in Eq. (53) will cancel out with 
the same factor in the numerator. So, the temperature Green’s function 
is expressed as a series of connected diagrams. Summing up the indicated 
series, using the standard relation between the spectral representations 
of the temperature and real-time Green’s functions, and performing an 
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analytical continuation on the real axis, we obtain the following equations 
for the retarded and advanced Green’s functions (hereinafter, the indices 
‘r’ and ‘a’ is suppressed):

0 0 eph ee( ) ( ) ( )( ( ) ( )) ( )aa aa aa aaG G G w G
+ + + +

ε = ε + ε + S ε + S ε ε ,

1
0 0 phe phph 0( ) ( ) ( )( ( ) ( )) ( ) ( ) ( ),−ε = ε + ε ∆F + S ε + S ε ε + ε ∆ εuu uu uu uu uP PuG G G G G M G

1
0 0 0 phe phph( ) ( ) ( ) ( ) ( )( ( ) ( )) ( ),−ε = ε + ε ∆ ε + ε ∆F + S ε + S ε εPP PP PP PP Pu uPG G G M G G G

1
0 0 0 phe phph( ) ( ) ( ) ( ) ( )( ( ) ( )) ( ),−ε = ε + ε ∆ ε + ε ∆F + S ε + S ε εuP uP uP PP uu uPG G G M G G G

1
0 0 phe phph 0( ) ( ) ( )( ( ) ( )) ( ) ( ) ( ),−ε = ε + ε ∆F + S ε + S ε ε + ε ∆ εPu Pu Pu uu PP PuG G G G G M G

where ε = w ; Gaa+(ε), Guu(ε), GPP(ε), GuP(ε), GPu(ε) are the real-frequency 
representation of the single-particle Green’s function of the electrons, the 
coordinate–coordinate, momentum–momentum, coordinate–momentum, 
and momentum–coordinate Green’s functions of the phonons, respective­
ly; eph ( )S ε , phe ( )S ε , ee ( )S ε , phph ( )S ε  are the corresponding self-energies 
(mass operators) for the electron–phonon, phonon–electron, electron–elec­
tron, and phonon–phonon interactions, respectively.

The set of Eqs. (55) can be solved numerically with a predetermined 
accuracy. When the perturbations are small, given by

2 2 (0)
phe phph , ,( / ( ) ( )) 1ni n i ni n iM ′ ′ ′ ′ ′ ′a a a aε ∆ + ∆F + S ε + S ε F << ,

then, the solution of the set of Eqs. (55) becomes

	
0 0 eph ee( ) ( ) ( )( ( ) ( )) ( )aa aa aa aaG G G w G

+ + + +

ε = ε + ε + S ε + S ε ε ,	 (56)

	
0 0 phe phph( ) ( ) ( )( ( ) ( ) ( )) ( )uu uu uu uu

MG G G Gε = ε + ε S ε + ∆F + S ε + S ε ε ,	 (57)

	
1 1 1 1 1 1

1 1 1 1 1 1

2
(0) (0)

, , ,2

1 1
( )M ni n i ni n i n i n i

n i n i iM M′ ′ ′ ′ ′ ′a a a a a a
a

 
S ε = F − F  ε  

∑ .	 (58)

Using the equations of motion for the Green’s functions, one can ob­
tain expressions for the 0th-order Green’s functions [26], namely:

	 (1) 1
0 0( ) ( )aaG H

+ −ε = ε − ,	 (59)

where
	 (1) (0)

0 ,ni n iH h ′ ′ ′g g= ,	 (60)

	 2 (0) 2 (0) 1
0 ( ) ( / )uuG M −ε = ε − F ,	 (61)

	 (0) (0)
,ni n i′ ′ ′a aF = F ,	 (62)

	 (0)
i nn iiM M ′ ′ ′aa= d d d .	 (63)

Here, the double vertical bars denote a matrix.

(55)
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The real-time and real-frequency 
Green’s functions are related by stand­
ard Fourier-transform relations given by

	 r,a r,a

1
( ) ( )

2
AB AB i tG t G e d

∞
− w

−∞

= w w
π ∫ ,	 (64)

	 r,a r,a( ) ( )AB AB i tG G t e dt
∞

w

−∞

w = ∫ .	 (65)

The temperature Green’s functions are periodic (for bosons) or anti­
periodic (for fermions) on the interval -1/Q ≤ t < 1/Q, and hence, have a 
Fourier-series representation in terms of their Matsubara’s frequencies, 
as follows:
	 ( ) ( ) n

n

iAB AB
nG G e− w t

w

t = Q w∑ ,	 (66)

	
1/

1/

1
( ) ( )

2
niAB AB

nG G e d
Q

w t

− Q

w = t t∫ ,	 (67)

where the Matsubara’s frequencies meet the conditions

	
2  for Bose particles,

 ( 0, 1, 2, ).
(2 1)  for Fermi particles,n

n
n

n

πQ 
w = = ± ± … + πQ 

	 (68)

The electrons’ Green’s functions are infinite matrices with indices 
given by the lattice unit cell n, the basis site i within it, and the other 
quantum numbers g. Similarly, the phonons’ Green’s functions are also 
infinite matrices with the same dependences on lattice unit cells and basis 
sites, plus a dependence on the spatial coordinate directions a.

The mass operator of the Green’s function of electrons for the elec­
tron–phonon interactions eph ( , )′S t t  is described by the diagram in Fig. 1 
(from here, ( )n ni= t ). Solid lines in Fig. 1 correspond to the Green’s func­
tion of electrons , ( , )aa

ni n iG
+

′ ′ ′g g ′t t , and dashed lines correspond to the Green’s 

function of phonons , ( , )uu
ni n iG ′ ′ ′a a ′t t . The vertex part 2 2 2

1 1 1, 2 1( , , )n i
ni n i

a
g gG t t t  is de­

scribed by the diagrams in Fig. 2. The unshaded triangle in Fig. 2 corre­
sponds to the equation

	 2 2 2 2 2 2

1 1 1 1 1 10 , 2 1 , 2 1( , , ) ( ) ( )n i n i
ni n i ni n iva a
g g g g′G t t t = d t − t d t − t .	 (69)

In Figures 1 and 2, the summation is performed over the interior points 
ng , na , ..., and implies the summation over nig, nia, ..., and integra­
tion over t. The expressions corresponding to each diagram are multiplied 

Fig. 1. Diagram for 
eph , eph ,( , )ni n i n n′ ′ ′ ′ ′g g g g′S t t = S

 

 
[30, 31]
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by (-1)N + F, where N is the order of the diagram (namely, the number of 
vertices G0 in the diagram), and F is the number of lines for the Green’s 
functions of electrons. These functions exit and enter the same vertices.

Thus, the mass operator of the electrons’ Green’s function for the 
electron–phonon interactions Seph(e) is described by the formula

	
+

∞

′ ′ ′g g
−∞

a a
′ ′ ′g g a a a a g g g g

′ε ′S ε = − ε × π Q 

′ ′ ′×G ε − ε ε − ε G

∫
1 1 1 2 2 2

3 3 3 1 1 1 2 2 2 1 1 1 2 2 2 3 3 3 4 4 4 4 4 4

eph ,

(0) *
, , , , ,

1
( ) cth

4 2

( ( ) ( )) ( ) ,

ni n i

n i n iuu uu aa
ni n i n i n i n i n i n i n i n i n i

d
i

G G G

	 (70)

	 1 1 1 1 1 1

3 3 3 3 3 3

(0)
, ,
n i n i

ni n i ni n iva a
g g g g′G = ,	 (71)

where repeated indices are summed over.
The self-energy of the phonon due to the phonon–electron interactions 

is given by the expression

	
+ + +

+ + +

∞

′ ′ ′a a
−∞

a
g g g g g g g g

g g g g g g

′ ′S ε = ε ε ×
π

′ ′ ′×G ε + ε − ε + ε ε +

′ ′ ′+ ε + ε ε − ε G

∫

2 2 2 1 1 1 1 1 1 3 3 3 1 1 1 3 3 3 4 4 4 2 2 2

1 1 1 3 3 3 4 4 4 2 2 2 4 4 4 2 2 2

phe ,

(0) * *
, , , ,

*
, , ,

1
( ) ( )

2

( ( ) ( )) ( )

( )( ( ) ( ))

ni n i

ni aa aa aa
n i n i n i n i n i n i n i n i

aa aa aa
n i n i n i n i n i n i

d f
i

G G G

G G G ′ ′ ′g
g g3 3 3 4 4 4,

n i
n i n i

	 (72)

insofar as phonon–electron interactions are described by the diagram in 
Fig. 3. (The designation in Fig. 3 corresponds to designations in Figs. 1, 2.)

From Wick’s theorem, it follows that, for a system of electrons with 
pairwise interactions (Eq. (8)), the mass operator of electron–electron in­
teractions is described by the sum of diagrams. Diagrams for the mass 
operator Σee(t, t′) describing the electron–electron interactions are shown 
in Fig. 4.

Fig. 4. Diagram for ee , ee ,( , )ni n i n n′ ′ ′ ′ ′g g g g′S t t = S
 

 [30, 31]

Fig. 3. Diagram for phe , phe ,( , )ni n i n n′ ′ ′ ′ ′a a a a′S t t = S
 

. Here and in in the next figures, 
( )n ni= t  [30, 31]

Fig. 2. Diagrams for the vertex 
part 2 2 2 2 2

1 1 1 1 1, 2 1 ,( , , )n i n
ni n i n n

a a
g g g gG t t t = G 

 

 
[30–32]
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The vertex parts 2 2 2 1 1 1,
, 2 1( , , , )n i n i

ni n i
g g
′ ′ ′g g ′G t t t t  are shown on diagrams in Fig. 5. 

The unshaded triangle in Fig. 5 corresponds to the equation

	 2 2 2 1 1 1 2 1(0) , (0) ,
, 2 1 , 2 1( , , , ) ( ) ( ) ( )n i n i n n

ni n i n n
g g

′ ′ ′ ′g g ′ ′G t t t t = G d t − t d t − t d t − t ,	 (73)

	 2 1 2 2

1 1

(0) , (2) , (2) ,
, , ,( ) 2n n n n n n

n n n n n nv v′ ′ ′G = − .	 (74)

The mass operator describing electron–electron interactions is

	 (1) (2)
ee , ee , ee ,( ) ( ) ( )n n n n n n′ ′ ′S ε = S ε + S ε ,	 (75)

	 2 1

1 2 1 2

,(1) *
ee , , , ,

1
( ) ( ) ( ( ) ( ))

2
n n aa aa

n n n n n n n nd f G G
i

+ +
∞

′ ′
−∞

′ ′ ′ ′S ε = − ε ε G ε − ε
π ∫ ,	 (76)

	
+ + + +

+ + + +

∞ ∞

′
−∞ −∞

 S ε = − ε ε ε ε × π 

×G ε − ε − ε ε − ε − ε − ε ε ×

× ε − ε − ε − ε − ε − ε

∫ ∫
3

2 1 2 5 1 4 2 5 1 4

6 3 6 3 2 5 2 5

2

(2)
ee , 1 2 1 2

(0) , * *
, , 1 2 , 1 , 1 2 , 1

* *
, 2 , 2 , 1 2 ,

1 1
( ) ( ) ( )

2 2

[( ( ) ( ) ( ) ( ))

( ( ) ( )) ( ( ) (

n n

n n aa aa aa aa
n n n n n n n n n n

aa aa aa aa
n n n n n n n n

d d f f
i

G G G G

G G G G
+ + + +

′

− ε − ε ×

× ε ε − ε ε G 5 6

1 4 6 3 1 4 6 3 4

1 2

,* *
, 1 , 2 , 1 , 2 ,

))

( ( ) ( ) ( ) ( ))] .n naa aa aa aa
n n n n n n n n n nG G G G

	 (77)

Formula (75) for the mass operator of the electron–electron interactions 
follows from the symmetrisation of the exponent in the right-hand side 
of Eq. (51) by the indices of the quantum states of the Hamiltonian of the 
electron–electron interactions (8).

The second diagram in Fig. 4 is multiplied by 1/2 (see expression (77) 
for the mass operator of the electron–electron interactions).

A similar result for the contribution to the phonon self-energy Sphph(e) 
from phonon–phonon couplings is given in Ref. [33]. Summation is im­
plied over repeated indices in these expressions.

In Eqs. (69)–(77), 
3 3 3 4 4 4,

n i
n i n i
′ ′ ′a

g gG , 5 6

4

,
,

n n
n n′G  are the vertex parts of the mass 

operators of electron–phonon, phonon–electron, and electron–electron in­
teractions. They are represented as infinite series in powers of the matrix 
elements of the operators describing these interactions. The renormaliza­
tion of the vertex parts in the expressions (69)–(77) for mass operators 
can be performed using the diagrams proposed in Ref. [30]. We will get 
the following equations:

Fig. 5. Diagrams for the vertex 

part
 

2 2 2 1 1 1 2 2 1 1, ,
, 2 1 ,( , , )n i n i n n

ni n i n n
g g g g
′ ′ ′ ′ ′g g g g′G t t t t = G  

   
[30, 32]

+ + + +

∞
′ ′ ′ ′ ′ ′g a

g g g g
−∞

′ ′ ′a
g g g g g g g g g g

a
g g g

G = G − ε ε ×
π

×G ε ε − ε ε ×

×G

∫3 3 3 4 4 4 3 3 3 4 4 4

5 5 5 6 6 6 6 6 6 7 7 7 8 8 8 5 5 5 6 6 6 7 7 7 8 8 8 5 5 5

9 9 9

7 7 7 8 8 8 9 9

(0)
, ,

(0) * *
, , , , ,

(0)
,

1
( )

2

( ( ) ( ) ( ) ( ))

n i n i
n i n i n i n i

n i aa aa aa aa
n i n i n i n i n i n i n i n i n i n i

n i
n i n i n i

d f
i

G G G G

G a
g g gG 10 10 10

9 10 10 10 3 3 3 4 4 4, ,(0) ,n iuu
n i n i n i
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+ + + +

∞
′ ′ ′ ′ ′ ′g a

g g g g
−∞

′ ′ ′a
g g g g g g g g g g

a
g g g

G = G − ε ε ×
π

×G ε ε − ε ε ×

×G

∫3 3 3 4 4 4 3 3 3 4 4 4

5 5 5 6 6 6 6 6 6 7 7 7 8 8 8 5 5 5 6 6 6 7 7 7 8 8 8 5 5 5

9 9 9

7 7 7 8 8 8 9 9

(0)
, ,

(0) * *
, , , , ,

(0)
,

1
( )

2

( ( ) ( ) ( ) ( ))

n i n i
n i n i n i n i

n i aa aa aa aa
n i n i n i n i n i n i n i n i n i n i

n i
n i n i n i

d f
i

G G G G

G a
g g gG 10 10 10

9 10 10 10 3 3 3 4 4 4, ,(0) ,n iuu
n i n i n i

	 (78)

	
+ + + +

′ ′

∞

′
−∞

G = G −

− ε ε G ε ε − ε ε G
π ∫

5 6 5 6

4 4

5 7 9 6

4 8 7 9 8 10 7 9 8 10 10

, (0) ,
, ,

(0) , ,* *
, , , , , ,

1
( ) ( ( ) ( ) ( ) ( )) .

2

n n n n
n n n n

n n n naa aa aa aa
n n n n n n n n n n n nd f G G G G

i
	 (79)

In deriving the expressions in Eqs. (70), (72), (76), and (77), we em­
ployed the standard techniques for an arbitrary function f(z), which is an­
alytic in the region covered by the contour C enclosing all the Matsubara’s 
frequencies. Namely, we have

	 ( )1
( ) cth (2 ) ( ) ( 2 )

4
n

n n
C

i dz z z n
iw

Q φ w = Q φ w = πQ
π∑ ∫ 	 (80)

for the bosonic case, and

	 ( )1
( ) ( ) ( (2 1) )

2
n

n n
C

i dzf z z n
iw

Q φ w = − Q φ w = + πQ
π∑ ∫  	 (81)

for the fermionic case, where

	 ( ) ( ) 1
exp( ) 1f z z

−
Q = Q + .	 (82)

It should be noted that the first term in the electron self-energy due to 
electron–electron interactions, (1)

ee , ( )n n′S ε  in Eq. (75), describes the Coulomb 
and exchange electron–electron interactions within the Hartree–Fock ap­

proximation. The second term, (2)
ee , ( )n n′S ε , which is caused by corrections 

beyond Hartree–Fock approximation, describes the effects of electron cor­
relations. As opposed to the procedures used in Refs. [12, 13], the long-
range Coulomb interaction of electrons located at different crystal-lattice 
sites is described by taking into account an arbitrary number of energy bands.

4. Number of Electrons and Magnetic Moments of Atoms

The Fermi level m of the system is determined by the equations

	 e( ) ( )Z f g d
∞

−∞

〈 〉 = ε ε ε∫ ,	 (83)

	 1( ) (exp( )/ 1)f −ε = ε − m Q + ,	 (84)

where 〈Z〉 is the average number of electrons per atom and ge(e) is the elec­
tron density of states, which satisfies the condition

	 e

1
( ) ImTr ( )aag G

N

+

ε = − 〈 ε 〉
πn

.	 (85)

Here, 〈...〉 denotes configurational averaging over the disorder, N is the 
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number of primitive unit cells in the lattice, and n is the number of sites 
per primitive unit cell.

The obtained expressions for the Green’s functions (56), (57) are also 
valid if, in addition to concentration fluctuations, the crystal contains the 
charge and spin density fluctuations. Since we will be using with number 
of electrons per atom and magnetic moment further, we now slightly mod­
ify our notation so that the symbol ( ) ( )lmg ≡ ds = ε s  refers to all other 
quantum numbers except for spin, and we will introduce the spin quantum 
number s explicitly in all following equations.

The electron–electron self-energy in Eq. (56) requires the occupation 
number niZl

ds  of the different electron states (nids), where here we are 

explicitly including the dependence on s. The explicit values for 
niZl

ds  are 
calculated from Eq. (83), where the total electron density of states ge(e) is 
replaced by the partial density of states ( )nigl

ds ε  for the energy band d and 
spin projection s to allow for the magnetic solutions. Then, the occupation 

numbers 
niZl

ds  and the partial density of states ( )nigl
ds ε  satisfy the follow­

ing conditions:

	 ( ) ( )ni niZ f g d
∞

l l
ds ds

−∞

= ε ε ε∫ ,	 (86)

	 ,
( )

1
( ) Im ( )ni aa

ni ni
ni

g G
+l

ds ds ds
∈l

ε = − 〈 ε 〉
π

.	 (87)

Note that the disorder averaging is done under the assumption that an 
atom of the l sort is located at the site (ni), the number of electrons per 
atom is equal to Zl, and the projection of the localized magnetic moment 
onto the Oz axis is equal to ml.

The localized magnetic moments inhomogeneously distributed over 
the crystal lattice sites and the static magnetization fluctuations are de­
scribed similarly.

The total number of electrons per atom and magnetic moment are 
given by the following formulae:

	 Z Zl ld
d

= ∑ ,	 (88)

	 m ml ld
d

= ∑ ,	 (89)

	 ,
ni niZ Z Zl l

ld ds d −s= + ,	 (90)

	 ,
ni nim m ml l

ld ds d −s= − .	 (91)

Let us consider the probability of this configuration is niPl , and we 
have the obvious constraint

	 1niPl

l

=∑ .	 (92)
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5. Density of Electron and Phonon States in a System

In expressions (56) and (57), we represent each mass operator as a sum 
of single-site operators and perform a cluster expansion for the Green’s 
functions Gaa+(ε), Guu(ε), by introducing the Green’s functions of the effec­
tive medium as a zeroth approximation. The indicated expansions are a 
generalization of the cluster expansion for the Green’s function Gaa+(ε) of 
the single-particle Hamiltonian [26].

Green’s functions of the effective medium are defined by the follow­
ing expressions:

	 (1) 1
0 eph ee e( ) [ ( ) ( ) ( )]aaG H

+ −ε = ε − − S ε − S ε − s ε
  ,	 (93)

	
2 (0) 2 (0) 1

phe phph ph( ) [ / ( ) ( ) ( )]uuG M −ε = ε − F − S ε − S ε − s ε
 

 .	 (94)

Expressions for the operators 
~Σeph(ε), 

~Σphe(ε), 
~Σee(ε) are obtained from 

Eqs. (69)–(77) for the mass operators Σeph(ε), Σphe(ε), Σee(ε) by replacing the 
Green’s functions Gaa+(ε), Guu(ε) with the Green’s functions of the effec­
tive medium  

~
Gaa+(ε), ~Guu(ε), which satisfy the Dyson equation expressed in 

terms of the scattering T-matrix [30]:

	 ( ) ( ) ( ) ( ) ( )G G G T Gε = ε + ε ε ε   ,	 (95)

where the scattering T-matrix is represented by a series, in which each 
term describes the scattering of clusters with different numbers of sites, 
expressed schematically as

	 1 1 1 1 2 2

1 1 1 1 2 2

(2) ,n i n i n i

n i n i n i

T t T
≠

= + +∑ ∑  .	 (96)

Here, we have the one-site scattering operator

	 1 1 1 1 1 1 1 11
e e( ( ) ) ( )n i n i i n i it I G −= − S − s S − s .	 (97)

and the two-site scattering operator

	 1 1 2 2 1 1 2 2 1 1 2 2 1 1(2) , 1( ) ( )n i n i n i n i n i n i n iT I t Gt G t Gt I Gt−= − +    .	 (98)

The self-energy employed in Eq. (97), 1 1
e
n iS , satisfies the condition

	 1 1

1 1

eph ee eph ee e( ) ( ) ( ) ( ) n i

n i

w + S ε + S ε − S ε − S ε = S∑  	 (99)

for the electrons. For the phonons, we have

	 1 1

1 1

phe phph phe phph ph( ) ( ) ( ) ( ) ( ) n i
M

n i

S ε + ∆F + S ε + S ε − S ε − S ε = S∑  .	 (100)

The expressions for the matrices (coherent potentials) se(e), sph(e) in 
formulae (93) and (94) for the Green’s functions of the effective medium 
will be determined from the condition that there are no contributions from 
multiple-scattering processes at one site to the configuration-averaged 
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Green’s functions:
	 1 1 0n it〈 〉 = .	 (101)

The matrix elements of the Green’s function of the electrons’ subsys­
tem of the effective medium can be calculated using the Fourier trans­
form:

	 ( )
, ,

1
( ) ( , ) ni n iiaa aa

ni n i i iG G e
N

+ +
′ ′⋅ −

′ ′ ′ ′ ′g g g gε = ε∑ k r r

k

k  ,	 (102)

	 1( , ) ( ( , ))aaG H
+ −ε = ε − εk k  ,	 (103)

where

	 (0)
, eph , ee , ei ,( , ) ( ) ( , ) ( , ) ( , )i i i i i i i iH h ′ ′ ′ ′ ′ ′ ′ ′g g g g g g g gε = + S ε + S ε + s εk k k k k  ,	 (104)

	
1 1

1 1

( )
ei , e ,( , ) ( ) ni n iini

i i n i n i
n n i

e ′ ′− ⋅ −
′ ′ ′ ′ ′g g g g

′

s ε = s ε∑ k r rk ;	 (105)

1 1e , ( )ni
n i n i′ ′ ′g gs ε  means the matrix element of the coherent potential.
We do a similar procedure for the effective-medium phonon Green’s 

function, which satisfies the definitions

	
( )

, ,

1
( ) ( , ) ni n iiuu uu

ni n i i iG G e
N

′ ′⋅ −
′ ′ ′ ′ ′a a a aε = ε∑ k r r

k

k 

,	 (106)

	 2 (0) 2 1( , ) ( / ( , ))uuG M −ε = ε − F εk k


 ;	 (107)

	 (0)
, phe , phph , ph ,( , ) ( ) ( , ) ( , ) ( , )i i i i i i i i′ ′ ′ ′ ′ ′ ′ ′a a a a a a a aF ε = F + S ε + S ε + s εk k k k k   ,	 (108)

	
1

1 1

ph , ph ,( , ) ( ) exp( ( ))ni
i i n i n i n i ni

n n i

i′ ′ ′ ′ ′ ′ ′a a a a
′

s ε = s ε ⋅ −∑k k r r ,	 (109)

	 (0)
,i i i iiM M′ ′ ′ ′a a aa= d d .	 (110)

The Fourier transform of the mass operator of electron–phonon inter­
actions has the form:

  

( )
+

∞
a

′ ′g g g g
−∞

a
′ ′a a a a g g g g

′ ′S ε = − ε ε Q G − − ×
π

′ ′ ′× ε − ε − ε − ε G − +

∑∫

  

1 1

3 3

1

2 2

1 1 2 2 1 1 2 2 3 3 4 4 4 4

(0)
eph , , 1

*
, , , 1 , 1

1 1
( , ) cth (2 ) ( , )

4

( ( , ) ( , )) ( , ) ( , ).

i
i i i i

iuu uu aa
i i i i i i i i

d
i N

G G G

k

k k k k

k k k k k k k

	(111)

The Fourier transform of the phonon–electron-interactions’ mass op­
erator is as follows:

+ + +

+ +

∞
a

′ ′ ′a a g g
−∞

g g g g g g

g g g g

S ε = ε ε G − + ×
π

× + ε + ε − + ε + ε ε +

+ + ε + ε ε

∑∫

  

 

2 2 1 1

1

1 1 3 3 1 1 3 3 4 4 2 2

1 1 3 3 4 4 2 2

 (0)
phe , 1 1   , 1 1

* *
, 1 1 , 1 1 , 1 1

, 1 1 , 1 1

1 1
( , ) ( ) ( , )

2

{[ ( , ) ( , )] ( , )  

( , )[ ( , )

i
ni n i i i

aa aa aa
i i i i i i

aa aa
i i i i

d f
i N

G G G

G G

k

k k k k

k k k k k

k k k
+ ′ ′a

g g g g− ε G − −


4 4 2 2 3 3 4 4

*
, 1 1 , 1 1( , )]} ( , ).aa i

i i i iG k k k k

(112)
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The vertex parts of the mass operators of the electron–phonon and 
phonon–electron interactions are determined by the equation

	
+ +

+ +

∞
′ ′ ′ ′a a
g g g g

−∞

′ ′a
g g g g g g

g g g g

G = G − ε ε ×
π

× G + − ε − − + ε −

− ε − − + ε

∫

∑  

 

1 1 2 2 1 1 2 2

3 3 4 4 4 4 5 5 6 6 3 3

3

4 4 5 5 6 6 3 3

(0)
, 1 2 , 1 2

 (0)
  , 1 2 3 3 , 3 , 1 2 3

* *
, 3 , 1 2 3

1 1
( , ) ( , ) ( )

2

( , )[ ( , ) ( , )

( , ) ( , )

i i
i i i i

i aa aa
i i i i i i

aa aa
i i i i

d f
i N

G G

G G

k

k k k k

k k k k k k k k

k k k k

a a
g g g g g g

×

×G − − − + + G +
7 7 8 8

5 5 6 6 7 7 8 8 1 1 2 2

(0)
, 3 1 2 3 , 1 2 , 1 1 2

]

( , ) ( ,0) ( , ).i iuu
i i i i i iGk k k k k k k k k

	 (113)

In expressions (112) and (113),

	
1 1 2 2 1 1 1 2 2 2 1 1 2 2

1 2

 (0)
  , 1 2 , 1 2

,

( , ) exp( ( ) ( ))i ni
i i n i n i n i ni n i ni

n n

v i ia a
g g g g′G = ⋅ − + ⋅ −∑k k k r r k r r .	 (114)

The Fourier transform of the mass operator of the electron–electron 
interactions can be represented as

	 (1) (2)
ee , ee , ee ,( , ) ( , ) ( , )i i i i i i′ ′ ′ ′ ′ ′g g g g g gS ε = S ε + S εk k k   ,	 (115)

	

+ +

′ ′g g

∞
g g

′ ′g g g g g g
−∞

S ε = − ×
π

′ ′ ′ ′× ε ε G − − ε − ε∑∫



 2 2 1 1

1 1 2 2 1 1 2 2

1

(1)
ee ,

(0) , *
, 1 1 , 1 , 1

1 1
( , )

2

( ) ( , )( ( , ) ( , )),

i i

i i aa aa
i i i i i i

i N

d f G G
k

k

k k k k k

	(116)

  

+

+ +

∞ ∞

′ ′g g
−∞ −∞

g g
g g g g

g g g g g

 S ε = − ε ε ε ε × π 

× G − − − + − − ε − ε − ε ×

× ε − − − ε − ε − ε

∫ ∫

∑





  

3 3

2 2 1 1 2 2 5 5

1 2

1 1 4 4 2 2 5 5 1 1 4

2

(2)
ee , 1 2 1 2

(0) ,
, 1 2 1 , 1 2 1 2

,

* *
, 1 1 , 1 2 1 2 ,

1
( , ) ( ) ( )

2

( , , )[( ( , )

( , ) ( , )

i i

i i aa
i i i i

aa aa
i i i i i i

d d f f
iN

G

G G G

k k

k

k k k k k k k k

k k k k
+

+ + +

+ + +

+

g

g g g g g g

g g g g g g

g g

ε ×

× ε − ε − − − ε − ε − ε −

− − − ε − ε − ε ε ε −

− ε

  

  

 

4

6 6 3 3 6 6 3 3 2 2 5 5

2 2 5 5 1 1 4 4 6 6 3 3

1 1 4 4 6

1 1

*
, 2 2 , 2 2 , 1 2 1 2

*
, 1 2 1 2 , 1 1 , 2 2

*
, 1 1

( , )]

( ( , ) ( , )) ( ( , )

( , ))( ( , ) ( , )

( , )

aa

aa aa aa
i i i i i i

aa aa aa
i i i i i i

aa
i i i

G G G

G G G

G G

k

k k k k k

k k k k k

k
+ g g

′ ′g g g gε G + − −5 5 6 6

6 3 3 4 4

,*
, 2 2 , 1 2 2 1( , ))] ( , , ).i iaa
i i ik k k k k k

	 (117)

The vertex part of the mass operator of the electron–electron interac­
tion is determined by the equation

 

+ +

+

∞
g g g g

′ ′ ′ ′g g g g
−∞

g g
g g g g g g

g g g

G = G − ε ε ×
π

× G ε − − − ε −

− ε

∫

∑  

 

5 5 6 6 5 5 6 6

4 4 4 4

5 5 7 7

4 4 8 8 7 7 9 9 8 8 10 10

4

7 7 9 9 8 8 10

, (0) ,
, 1 2 3 , 1 2 3

(0) , *
, 1 2 4 , 4 , 1 2 4

*
, 4 ,

1
( , , ) ( , , ) ( )

2

( , , )[( ( , ) ( , )

( , )

i i i i
i i i i

i i aa aa
i i i i i i

aa
i i i i

d f
iN

G G

G G

k

k k k k k k

k k k k k k k

k
+ g g

′ ′g g g− − − ε G + + −9 9 6 6

10 10 10

,
1 2 4 , 1 2 4 4 3( , )] ( , , ).i iaa

i ik k k k k k k k

	(118)
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In expressions (116)–(118),
g g

g g

g g
g g

G =

= ⋅ − + ⋅ − + ⋅ −∑ 

2 2 3 3

1 1

1 1 1 2 2 2

3 3 3 1 1 2 2 3 3

1 2 3

(0) ,
, 1 2 3

(2) ,
, 1 2 3

, ,

( , , )

exp( ( ) ( ) ( )).

i i
i i

n i n i
n i ni n i ni n i ni n i ni

n n n

v i i i

k k k

k r r k r r k r r
	

(119)

Green’s functions  
~
Gaa+(k,ε), ~Guu(k,ε), for the perfect crystal in formulae 

for mass operators eph ( , )S εk , ee ( , )S εk , phe ( , )S εk , phph ( , )S εk  are obtained 
from Eqs. (103)–(105), (107)–(119), if the coherent potentials within them 
are set equal to s(k, e) = id (where d → +0).

The solution of the set of Eqs. (103)–(105), (107)–(119) for the Green’s 
functions of the subsystems of electrons and phonons, 

~
Gaa+(k,ε), ~Guu(k,ε), 

can be performed via the iteration method.
The energies of electrons and phonons within the crystal are deter­

mined from the equations for the poles of the Green’s functions of elec­

trons and phonons, ( , )aaG
+

εk , ( , )uuG εk :

	 ′ ′ ′ ′gg g gεd d − ε =

,det ( , ) 0,ii i iH k 	 (120)

	 2 2
,det / ( , ) 0i ii i iM ′ ′ ′ ′aa a aε d d − F ε =k



,	 (121)

where , ,( , ), ( , )i i i iH ′ ′ ′ ′g g a aε F εk k
  are given by the formulae (104), (108).

Expressions for coherent potentials in formulae (105), (109) are ob­
tained from condition (101) and have the forms

	

+

+

− −

−

s ε = 〈 − S − s ε ε 〉 ×

×〈 − S − s ε ε S 〉





1 1 1 1 1 1

1 1 1 1 1 1

1 1
e e e

1
e e e

( ) (1 ( ( )) ( ))

(1 ( ( )) ( ))

n i n i n i aa

n i n i n iaa

G

G
,	 (122)

	

− −

−

s ε = 〈 − S − s ε ε 〉 ×

×〈 − S − s ε ε S 〉





1 1 1 1 1 1

1 1 1 1 1 1

1 1
ph ph ph

1
ph ph ph

( ) (1 ( ( )) ( ))

(1 ( ( )) ( ))

n i n i n i uu

n i n i n iuu

G

G
.	 (123)

Thus, for the determination of the Green’s functions of the effective 
medium, it is necessary to solve a set of Eqs. (102)–(119), (122), (123). 
Such a solution can be performed numerically by the iteration method. 
The calculation algorithm is described below in Sec. 8.

Using Eqs. (28) and (99), we deduce an expression for the self-energy, 
which describes the scattering of electrons:

	 1 1 1 1
e , ,
n i n i

ni n i ni n iw′ ′ ′ ′ ′ ′g g g gS = .	 (124)

Using Eqs. (58) and (100), we derive the initial expression for the self-
energy, which describes the scattering of phonons:

	 1 1

1 1 1 1 1 1

1 1 1 1

2
(0) (0)

ph , , ,2

1 1
( )n i

ni n i ni n i n i n i
n i iM M′ ′ ′ ′ ′ ′a a a a a a

a

 
S ε = F − F  ε  

∑

.	 (125)
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In the limit of an infinite crystal, all terms on the left sides of Eqs. (99), 
(100), except the first ones, tend to zero as 1/(nN) as the number nN of 
crystal sites (atoms) increases unrestrictedly.

Cluster decomposition for the Green’s function of electrons and phon­
ons of a disordered crystal can be obtained from Eqs. (95)–(101). The den­
sities of electron and phonon states are presented as infinite series. Here, 
processes of scattering on clusters with different numbers of atoms are 
described by each term. As shown, the contribution of scattering processes 
of electrons and phonons on clusters decreases with increasing number of 
atoms in the cluster by a small parameter [33]

	 1 1 2 2

2 2 1 1( ) ( ), 0 ,0

1
( ) ( ) ( ) ( ) ( )n i n i

n i n i i i i

p t G t G
r ≠ g g g

ε = 〈 ε ε ε ε 〉
n ∑   ,	 (126)

where r is the total number of energy bands included in the calculation. As 
shown previously [26, 30, 33], this parameter remains small when many 
parameters of the system are changed, except possibly for narrow energy 
intervals near the band edges.

By neglecting the contribution of processes of electron scattering on 
clusters consisting of three or more atoms, which is small by the above 
parameter, for the electron density of states, we obtain

	 e
, ,

1
( ) ( )ni

ni
i

g P gl l
g

l g

ε = ε
n ∑ ,	 (127)

where the conditional partial density of states is as follows:

	
/ (2) ,

,
( ) ( ),

1
( ) Im[ ]ni ni ni lj

lj ni ni ni
lj ni

g G Gt G P GT G′ ′l l l l l l
g g g

′≠ l

ε = − + +
π ∑     ,	 (128)

	 (2) , 1[ ] [ ]ni lj ni lj ni lj niT I t Gt G t Gt I Gt′ ′ ′l l l l − l l l= − +    ,	 (129)

where  
~
G = ~Gaa+(ε).

The phonon density of states can be obtained similarly by averaging 
the phonon Green’s function Guu(e):

	 ph
, ,

1
( ) ( )ni

ni
i

g P gl l
a

l a

ε = ε
n ∑ ,	 (130)

	
/ (2) ,

,
( ) ( ),

1
( ) Im[ ]ni ni ni lj

lj ni ni ni
lj ni

g G Gt G P GT G′ ′l l l l l l
a a a

′≠ l

ε = − + +
π ∑     ,	 (131)

where  
~
G = ~Guu(ε).

In Eqs. (128) and (131), /
lj niP ′l l  is the conditional probability to find an 

atom of the l′ sort at the site (lj) with number of electrons per atom equal 
to Zλ′ and a magnetic moment equal to mλ′, provided that, at the site (ni), 
an atom of the l sort is located with number of electrons per atom equal 
to Zl and a magnetic moment equal ml. Here, tlni is the value of the ma­
trix element of a single-centre operator for scattering in the case where an 
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atom of the l sort is located at the site (ni) and has a number of electrons 
per atom equal to Zl and a magnetic moment equal to ml.

When the system is disordered, we need to consider a random arrange­
ment of the atoms on lattice sites. Hence, in Eqs.  (127) and (130), the 
probability for an atom of the l sort to be at the site (0i) is given by the 
following definition:
	

ni niP cl l= 〈 〉 ,	 (132)

where nicl
 is a discrete binary random number taking the values of 1 or 

0 depending on whether an atom of the l sort is located at the site (ni) 
or not. The conditional probabilities in Eqs. (127) and (128), as well as in 
(130) and (131) are defined by the following equation:

	 /
lj ni ni lj ni lj niP P P c c′ ′ ′l l l l l l l= = 〈 〉 .	 (133)

The notations niPl  and /
lj niP ′l l  determine the probabilities of the fluctuations 

of concentration, electron density, and spin density.

6. Free Energy

We first focus on the Gibbs free energy (also called the thermodynamic 
potential) of the system, which satisfies the definition [33]:
	 /lnTr( )He− QW = −Q .	 (134)

The Hamiltonian H is defined in Eq. (1). To perform the trace opera­
tion, we need to sum over all the band states, but we also need to consider 
the disorder averaging. The latter is commonly handled via a configura­
tional average [33]. Using formulae (50) and (134), we represent the ther­
modynamic potential in the form

	 (0) (0)
e ph

′W = W + W + W ,	 (135)

where (0)
eW  and (0)

phW  are the thermodynamic potentials for the electrons 
and the phonons, respectively. The symbol W′ denotes the contribution to 
the thermodynamic potential, which is determined by the mutual scatter­
ing of electrons and phonons; it is defined as
	 0ln( (1/ ) )′W = −Q 〈s Q 〉 	 (136)

with s given in Eq. (50).
Next, we use the method of ‘integration over the coupling constant’ to 

simplify the results further.
By replacing the interacting Hamiltonian Hint (defined in Eq. (5)) by 

Hint(l) = lHint, differentiating the expression for the piece of thermody­
namic potential W′(l) in Eq. (136) concerning parameter l, and then inte­
grating (with the boundary conditions W′(0) = 0 and W′(1) = W′), we obtain 
the following expression [33]:

	
1/1

int 0 0

0 0

( , ) (1/ , ) / (1/ , )
d

d TH
Q

t

l′W = Q t〈 t l s Q l 〉 〈s Q l 〉
l∫ ∫ .	 (137)

Green’s Function Technique in the Theory of Disordered Crystals
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Using the diagram technique described in Ref. [30], we reduce 
Eq. (137) to the form

 

+
∞

−∞

l′W = − ε ε 〈 l + S ε l +S ε l ε l 〉 +
πn l

ε + 〈 S ε l + ∆F l + S ε l + S ε l ε l 〉 Q 

∫ ∫
1

eph ee

0

phe phph

1
Im [ ( )Tr ( ( ) ( , ) ( , )) ( , )

1
cth Tr ( ( , ) ( ) ( , ) ( , )) ( , ) ].

2 2

aa

uu
M

d
d f w G

N

G

	(138)

This expression can be immediately evaluated, because we know all the 
Green’s functions and the self-energies.

The contribution to the thermodynamic potential from the electrons 
(in the atomic-nuclei field) is simple to find too; it is given by

	 (0) (0) ( )/
e e ( ) ln(1 )d g e

∞
m−ε Q

−∞

W = −Q ε ε +∫ .	 (139)

Similarly, the contribution to the thermodynamic potential from the 
phonons is given by

	 (0) (0) /
ph ph ( ) ln(1 )d g e

∞
−ε Q

−∞

W = Q ε ε −∫ .	 (140)

The values (0)
e ( )g ε  and (0)

ph ( )g ε  in Eqs. (139) and (140) are given by formu­
lae (127) and (130), where tlni = 0.

Expanding the Green’s function Gaa+(ε,λ) and Guu(e, l) in Eq. (138) into 
a power series (see (56), (57)), calculating the energy integral by integra­
tion by parts, performing cyclic permutations of the operators under sign 
Tr, and substituting expression (138) for W′ into formula (135), we obtain 
the expression
	 e phW = W + W ,	 (141)

where We and Wph are given by Eqs. (139) and (140), but with (0)
eg  and (0)

phg  
replaced by ge(e) and gph(e) (see Eqs. (127) and (130)).

Ultimately, we are interested in determining the Helmholtz free ener­
gy F as a function of the volume (V), the temperature (T), and the number 
of electrons (Ne); it can be found directly from the thermodynamic poten­
tial, inasmuch as it satisfies the relation F = W + m〈Ne〉. This free energy 
per atom can be presented [33] as

	
e phF Z= W + W + m〈 〉 .	 (142)

The equilibrium values of the parameters of interatomic correlations, 

niPl  and /
lj niP ′l l , in Eqs.  (127), (128), (130), (131) and of the static dis­

placements of the atomic nuclei can be found from the condition for the 

minimum free energy F. Fourier components / ( )jiP ′l l k  of quantities /
lj niP ′l l  

describe static waves of concentrations, electron density, spin density, and 
nuclei displacements, which, for one’s turn, describe the phase state of a 
disordered crystal.
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7. Electrical Conductivity

In this section, we discuss how to calculate the electrical conductivity. 
We assume that the system will not be driven too far from equilibrium. 
Accordingly, we use the Kubo linear-response formalism for the electrical-
conductivity tensor [30], which is given by

	
1/

0 0

( ) (0) ( )i t td dte J J t i
Q ∞

w −d
aβ β as w = t 〈 + t 〉∫ ∫  .	 (143)

In this equation, Ja is the current operator along the a-th spatial direc­
tion; w is a frequency of the external electric field E(w, d), and an infi­
nitely small positive quantity d is a time increment of its increase during 
(adiabatic) switching on (d → +0). The real part of the conductivity, called 
the optical conductivity, can be represented in terms of the imaginary part 
of the retarded response function or equivalently as

	 r aRe ( ) ( ( ) ( ))
2

J J J Ji
G Ga β a β

aβs w = w − w
w

	 (144)

in terms of the retarded and advanced response functions.
The current operator is just the number operator for the electrons, 

which is multiplied by their velocity and the electric charge, and then 
summed over all states. It can be compactly represented as

	 ( ) ( , ) ( , )J t e d t v t+
a a= xY x Y x∫ ,	 (145)

where Y+(x, t) and Y(x, t) are the field operators for the creation and de­
struction of electrons, respectively, va is the operator of a component of 
the band velocity, and e is the electron charge.

The integration over x in Eq. (145) runs over all states. (Especially, 
by integration over x we mean integration within the unit volume of the 
crystal and summation over the projections of the spin s onto the Oz axis.)

To calculate the two-time Green’s functions, which are used to de­
termine the electrical conductivity of a crystal, the temperature Green’s 
function and the known relationship between the spectral representations 
of the two-time Green’s function and the temperature Green’s function 
are used.

In this case, the temperature Green’s function is

	
4 2 3 1

1 2 3 4

2

1 2 3 4
1

( , ) ( , , , )J J
n n n n

n n n n

e
G v v G n n n n

NV
a β

a β′ ′′ ′ ′t t = t t t t∑ ,	 (146)

where V1 is the volume of the primitive unit cell, and the two-particle tem­
perature Green’s function is given by the following expression:

  1 2 3 41 2 3 4 0 0( , , , ) ( ) ( ) ( ) ( ) (1/ ) (1/ )n n n nG n n n n Ta a a a+ +
t′′ ′ ′ ′ ′t t t t = 〈 t t t t s Q 〉 〈s Q 〉 	 (147)

(n     (nig)). Thus, the two-particle temperature Green’s function is 
expressed as a series of connected diagrams. It is described by the 



486	 ISSN 1608-1021. Prog. Phys. Met., 2025, Vol. 26, No. 3

S.P. Repetsky, I.G. Vyshyvana, V.V. Lizunov, R.M. Melnyk, M.I. Reznikov et al.

diagram in Fig. 6. (The notations on 
the right side of the equation in Fig. 6 
are the same as those in Fig. 4.) The 

numbers in Fig. 6 correspond to the number of a point on the diagram. 
For example, the number 1 corresponds to (n1i1g1t1).

The temperature two-particle Green’s function, which determines 
the electrical conductivity of the crystal, is described only by the first 
and third diagrams on the right-hand side of the equation in Fig. 6. 
This follows from Eq. (145) for the current-density operator, which is 
expressed through the product of the electron creation and destruction 
operators. This temperature Green’s function differs from the Green’s 
function in quantum field theory [37], which is described by all three 
diagrams on the right-hand side of the equation in Fig. 6.

Using the diagram technique for the temperature Green’s function 
and neglecting the contributions of scattering processes on clusters of 
three or more sites to the electrical-conductivity tensor, we obtain:

∞

′aβ
′=+ −−∞

′ ′ ′l l
β a β a

g l

′ ′ ′ ′l l l l
β a

′l ≠ l
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π ε
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where

	
1 1 1 1( , , ) ( ) ( )s s aa s aa sK v G v G

+ +′ ′ ′
a aε ε + ε = ε ε + ε   ,	 (149)

	
1 r 1( ) ( )aa aaG G

+ ++ε = ε  ,	 (150)

	 *
1 a 1 r 1( ) ( ) ( )aa aa aaG G G

+ + +−ε = ε = ε   .	 (151)

The two-particle interaction term II
1 2( , ; )Gaβ∆ ε ε ε  in (148) is

Fig. 6. Diagrams for the two-particle Green’s 
function [30]

(148)
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Summation over repeated indices in Eq. (152) is implied. The number N in 
Eq. (152) is reduced, when summing over the primitive unit-cell number 
n1, since the sum over the remaining indices does not depend on the primi­
tive unit-cell number n1.

For the static conductivity tensor (w → 0), we obtain

∞
′ ′l

′aβ β a β
′=+ − g l−∞

′ ′ ′ ′ ′l l l l l
a β a

′l ≠ l

′ ′l l
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The electron velocity satisfies the conventional definition
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∂
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k
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.	 (154)

Under the deriving expression (153), the last small term resulting 
from the two-particle interaction in the expression for electrical conduc­
tivity (148) is neglected.

The method developed in this work was applied in Ref. [31] to study 
the effect of an impurity on the energy spectrum and electrical conductiv­
ity of carbon nanotubes.

In conclusion to this section, note that the Kubo formalism, or more 
precisely, Kubo–Greenwood (KG) formalism, is a reasonably efficient 
but effortful method widely used in the literature for its implementa­
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tion in the numerical computations of electron diffusivity and conductiv­
ity. Among a series of numerical methods reported in the literature on 
studying the electronic and transport properties of single- and multilayer 
graphene films, the time-dependent real-space KG formalism has a linear 
dependence of computational capabilities on the size of a system and, 
therefore, has an advantage over some other methods in the investigation 
of realistically large graphene sheets containing millions of atoms. The 
KG-formalism-based computational methodology, applied for numerical 
calculation of the electron density of states, electron diffusivity and con­
ductivity, is described in a series of works; see, e.g., review articles [39, 
40] and chapters in the monographs [41–43] as well as references therein. 
This methodology includes the Chebyshov method for the solution of the 
time-dependent Schrödinger equation, calculation of the first diagonal ele­
ment of the Green’s function using the continued-fraction technique and 
tridiagonalization procedure for the Hamiltonian matrix, averaging over 
realizations of point [44–49] or extended (acting as the line scatterers) 
[50–53] or point  +  line [52, 53] defects, sizes of initial electron wave 
packet and computational domain, boundary conditions, etc.

8. Algorithm for Implementation of the Green’s Function Method 

As noted above, the phase state of a disordered crystal is generally de­
scribed by static waves of concentrations, charge density, and spin den­
sity. The state of a crystal is determined by the symmetry of the crystal 
lattice and the parameters of correlations in the distribution of impuri­
ties, the number of electrons, and localized magnetic moments at the sites 
of the crystal lattice, which are found from the free energy minimum 
condition and depend on the chemical composition and external param­
eters, temperature, and pressure. Let us assume that we know the crystal 
symmetry characteristics, the value of which can be refined using the free 
energy minimum condition.

Thus, we set the main translation vectors of the crystal lattice {an} and 
the position vectors of sublattice basis sites in the unit cell of the crystal 
{ri} (see Eq. (14)).

We set the values of concentrations cl and parameters of interatomic 
correlations in a disordered crystal Pλ

ni, P
λ′
lj
/λ
ni (see Eqs. (127), (128), (130), 

(131)), taking into account that

	
1

1
ni

i

c P
n

l − l

=

= n ∑ ,	 (155)

where n is the number of atoms per primitive unit cell.
Next, the values of the masses and charges of the nuclei of the crystal 

atoms are specified.
The next step in the numerical implementation of the method is the 

diagonalization of the basis in accordance with formulae (15)–(24). To do 
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this, it is necessary to calculate the Fourier components Si1δ1,i2δ2
(k) of the 

overlap matrix using Eq. (16). Note that the value of Si1δ1,i2δ2
(k) does not 

depend on the unit-cell number n1. The value of n1 can be set as equal to 
n1 = 0; when summing over n2, it can be limited to the sites (n2i2) of the 
lattice, which lie in the region of overlap of the wave functions of an 
electron in the field of nuclei located at the sites (0i1), (n2i2). According 
to Eq.  (14), summation over n2 means summation over lν

(2)  =  ..., –L/2, 
–L/2 + 1,..., L/2 − 1, where L is an even integer. The number of primitive 
unit cells in a crystal is N = L3, L2, L for three-dimensional, two-dimen­
sional and one-dimensional crystals, respectively.

Using the values of the matrix elements Si1δ1,i2δ2
(k), we find the matrix 

1 1 2 2

1/2
, ( )i iS−

d d k . Then, using formula (24), orthogonal functions (15) are calcu­
lated. Further, the Fourier components (0)

, ( )i ih ′ ′g g k  of the hopping integrals 
are calculated using formula (25).

The initial values of the vertex parts of the electron–phonon and 
electron–electron interactions’ mass operators 

1 1 2 2

(0)
, 1 2( , )i

i i
′ ′a

g gG k k  and 
5 5 6 6

4 4

(0) ,
, 1 2 3( , , )i i

i i
g g
′ ′g gG k k k  are calculated using Eqs.  (114) and (34) along with 

(119), (38), and (76).
The initial values of the Green’s functions of the subsystems of elec­

trons and phonons,  
~
Gaa+(k,ε) and  

~
Guu+(k,ε), are calculated using Eqs. (103)–

(105) and (107)–(110), in which the values of the mass operators of the 
electron–phonon, electron–electron, and phonon–electron interactions are 
assumed to be equal to zero.

We set the initial value of the Fermi level m equal to the lowest energy 
value for the electron state within the nuclei field (see formula (27)).

Let us set the temperature value T.
We create the calculation cycle (i)–(vi) as follows.
(i) The mass operators of the electron–phonon, phonon–electron and 

electron–electron interactions are calculated using formulae (111)–(119).
(ii) The Green’s functions for the subsystems of electrons and phon­

ons,  
~
Gaa+(k,ε) and  

~
Guu+(k,ε), are calculated using formulae (103)–(105) and 

(107)–(110).
(iii) The coherent potentials for the subsystems of electrons and phon­

ons, σi
e(ε) and σi

ph(ε), are calculated by formulae (122) and (123).
(iv) The electron and phonon densities of states are calculated using 

formulae (127)–(131). During the matrix multiplication, summation by 
the matrix-elements’ indices is performed following the formula (102):

	
3 3 3 4 4 4 3 3 4 4 3 3 4 4, ,

1
( ) ( , ) exp( ( ))aa aa

n i n i i i n i n iG G i
N

+ +

g g g gε = ε ⋅ −∑
k

k k r r  .	 (156)

(v) The Fermi level m is calculated via formulae (83)–(85).
(vi) If the specified calculation accuracy is reached, the loop exits. 

Next, we calculate the value of free energy F using formula (142).
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The above calculations will be performed for different values of the 
parameters of interatomic correlations, niPl  and 

/
lj niP ′l l

, in Eqs. (127), (128), 
(130), (131), and for different values of the parameters of static displace­
ments of the atomic nuclei. The values of these parameters for the thermo­
dynamic-equilibrium state are found from the condition for the minimum 
of free energy F (142).

Further, using formulae (148), (153), both the high-frequency (opti­
cal) electrical conductivity and the static electrical conductivity are cal­
culated.

Localized magnetic moments and ion charges are calculated using for­
mulae (86), (88)–(91), and (128).

9. Energy Spectrum of Graphene with Adsorbed Potassium Atoms

To calculate the electron energy spectrum of graphene with adsorbed po­
tassium atoms, we chose the wave functions of the 2s- and 2p-states of 
noninteracting neutral carbon atoms as the basis. In the calculation of 
matrix elements of the Hamiltonian, we take the first three coordination 
spheres. The energy spectrum of graphene is calculated for the tempera­
ture T = 0 K. In calculations, we neglect the renormalization of the verti­
ces of the mass operator of electron–electron interactions. The dependence 
of the energy of an electron on the wave vector for graphene is calculated 
from the equation for the Green’s function poles for the electrons’ subsys­
tem, defined in Eq. (120).

Figure 7, left, [54] shows the dependence of the electron energy e for 
the graphene with adsorbed potassium atoms on the wave vector k. The 
vector k is directed from the Brillouin-zone centre (point G) to the Dirac 
point (point K).

The structural periodic distance from a potassium atom to a carbon 
atom is 0.28 nm. It is seen in Fig. 7 that, at such an ordered arrangement 
of potassium atoms, a gap in the energy spectrum of graphene arises. Its 
value depends on the concentration of adsorbed potassium atoms, their 
location in the primitive unit cell, and the distance to carbon atoms. We 
revealed that, at the potassium concentration such that the primitive unit 
cell includes two carbon atoms and one potassium atom, if the latter is 
placed on the graphene-layer surface above a carbon atom at a distance 
of 0.286 nm, the energy gap is @0.25 eV (see Fig. 7, right). The location 
of the Fermi level in the energy spectrum depends on the potassium con­
centration, and it is within the energy interval -0.36 Ry ≤ eF ≤ -0.23 Ry.

The band-gap value obtained in Ref. [54] well correlates with that cal­
culated in Refs. [55, 56] for the ordered distribution of potassium adatoms 
residing on three types of high-symmetry positions (‘hollow’, ‘bridge’, or 
‘top’ sites) over the graphene crystal lattice, where the authors of Refs. 
[55, 56] also applied the Green’s function technique combined with a series 
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of other computational approaches. However, the realistically typically-
experimentally-observed contents of potassium dopant atoms on graphene 
are substantially smaller (@0.05–0.1%) [57, 58] than those considered in 
Ref. [54], as well as the sputtered nanoparticles in Refs. [59, 60]. In this 
context, the smaller potassium concentration has been associated with 
a smaller band-gap width, as revealed in Refs.  [55, 56]. Nevertheless, 
electronic [55] and diffraction characteristics [61] are sensitive even to 
a substantially small amount of any disorder (structural imperfections). 

10. Summary

The paper reports and analyses a new method of describing the electronic 
spectrum, thermodynamic potential, and electrical conductivity of disor­
dered crystals based on the Hamiltonian of electrons and phonons. The 
tight-binding model describes electron states of a system. The Hamiltonian 
of a system is defined based on the wave functions of electrons in the 
atomic-nuclei field. Expressions for the Green’s functions, thermodyna­
mic potential, and electrical conductivity are derived using the diagram 
method. Equations are obtained for the vertex parts of the mass operators 
of the electron–electron and electron–phonon interactions. A set of exact 
equations is obtained for the spectrum of elementary excitations in a crys­
tal. This makes it possible to perform numerical calculations of the energy 
spectrum and the properties of a system with a predetermined accuracy. 
In contrast to other approaches, which account for electron correlations 
only in the limiting cases of the infinitely large and infinitesimal electron 
densities, this method describes electron correlations in the general case 
of an arbitrary electron density. The cluster expansion is obtained for both 
the density of states and the electrical conductivity of disordered systems. 
We show that the contribution of the electron-scattering processes on 
clusters is decreasing along with increasing the number of sites within the 
cluster that depends on a small parameter.

Fig. 7. Dependence of the electron energy e on the wave vector k in the ΓK direction 
for the graphene with adsorbed potassium impurity [54]
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It is found that a gap appears in the energy spectrum of graphene 
with an ordered arrangement of potassium atoms. Its value depends on the 
concentration of adsorbed potassium atoms, their location in the primitive 
unit cell, and the distance to carbon atoms. It is found that, at such a con­
centration of potassium that the primitive unit cell includes two carbon 
atoms and one potassium atom, if the latter is located on the graphene 
surface above the carbon atom at a distance of 0.286 nm, the band gap is 
≈0.25 eV.
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МЕТОД ГРІНОВИХ ФУНКЦІЙ У ТЕОРІЇ НЕВПОРЯДКОВАНИХ КРИСТАЛІВ: 
ЗАСТОСУВАННЯ ДО ЛЕГОВАНОГО КАЛІЄМ ГРАФЕНУ

Розглянуто, проаналізовано та розвинуто метод розрахунку енергетичного спектра, 
вільної енергії й електропровідності невпорядкованих кристалів, що описують­
ся гамільтоніаном електронної та фононної підсистем. Електронні стани системи 
описано в рамках моделі сильного зв’язку. Запропоновано просту процедуру об­
числення матричних елементів гамільтоніана у представленні Ванньє. Вирази для 
грінових функцій, вільної енергії й електропровідності одержано шляхом викорис­
тання діаграмної техніки. За допомогою цієї процедури перенормовано вершинні 
частини масових операторів електрон-електронної й електрон-фононної взаємодій. 
Одержано систему точних рівнянь для спектра елементарних збуджень кристала. 
Це уможливило виконання числових розрахунків енергетичного спектра та прогно­
зування властивостей системи із заданою точністю. Одержано вирази для статич­
них хвиль концентрацій компонентів, густин заряду та спіну, які визначають фа­
зовий стан невпорядкованого кристала. На відміну від інших підходів щодо опису 
невпорядкованих кристалічних систем, у яких електронні кореляції враховуються 
лише в граничних випадках нескінченно великої та нескінченно малої електронної 
густини, запропонований метод дає можливість описати електронні кореляції в 
загальному випадку довільної електронної густини. Крім теорії, в статті наведено 
результати числового розрахунку енергетичного спектра графенового шару з ад­
сорбованими атомами Калію (K). Встановлено, що за концентрації атомів K, коли 
елементарна комірка містить два атоми Карбону (C) й один атом K, причому остан­
ній розташований (адсорбований) на поверхні графенового шару над атомом C на 
віддалі у 0,286 нм, заборонена енергетична зона становить @0,25 еВ. Розташування 
рівня Фермі (εF) в енергетичному спектрі залежить від концентрації атомів K і зна­
ходиться в енергетичному інтервалі −0,36 Рід ≤ εF ≤ −0,23 Рід.

Ключові  слова: невпорядковані кристали, електронна структура, електропровід­
ність, грінові функції, масовий оператор, густина станів, вільна енергія.




