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PARAMETERIZATION OF DIFFUSION  
CHARACTERISTICS OF ATOMIC-ORDER  
RELAXATION KINETICS IN Ni–Al ALLOYS

To study diffusion characteristics in substitutional f.c.c.-Ni–Al alloys, we review, 
analyse, and use the kinetic models, in which the relaxation of correlation parameters 
for the atomic distribution causes the time dependence of both the diffuse-scattering 
intensity I and the residual electrical resistivity r. Using the parameterization of the 
available literature data about the measurement of the residual electrical resistivity 
during the isothermal annealing of alloys, the most characteristic relaxation times of r 
after quenching of the alloys and its equilibrium value ρ∞ are estimated. The maximum 
characteristic relaxation time of the atomic order of such alloys is determined, and the 
curves of the time dependence of the normalized change in intensity ΔI are predicted 
based on the hypothesis of the coincidence of the largest characteristic relaxation 
times for I and r. The relaxation process is accompanied by both the increase in the 
number of clusters with the presence of short-range order in their structure and the 
degree of their order that is consistent with both the results of computer modelling of 
local atomic ordering using the Monte Carlo method and the model of inhomogeneous 
short-range order.
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1. Introduction

Short-range order (SRO) in a single-phase solid solution represents con-
centration inhomogeneities, the linear scales of which are comparable to 
the average interatomic distances. Since each temperature corresponds to 
its equilibrium SRO, a rapid hardening from one (disordered) state to an-
other should lead to the relaxation of the initial degree of SRO to its new 
(equilibrium) value. This relaxation kinetic process is carried out due to 
the diffusion of atoms at a distance of the order of average interatomic 
magnitude, since the SRO for distant co-ordination spheres is, as a rule, 
almost zero.

A.G. Khachaturyan [1, 2] proposed a theory for diffusional relaxation 
of SRO in a multicomponent substitutional solid solution. As shown, the 
time dependences of SRO parameters and the intensity of diffuse scatter-
ing (of x-rays or thermal neutrons) associated (caused) with (by) SRO can 
be used to study elementary acts of diffusion, i.e., to determine the prob-
abilities of atomic jumps per unit of time to different lattice sites and to 
obtain ‘macroscopic’ diffusion characteristics, namely, activation energies 
and (self)diffusion coefficients for atoms. The method proposed in Refs. 
[1, 2] is currently the only one possible for studying (using diffraction 
experimental data) the elementary diffusion acts in the case of ‘slow’ dif-
fusion. (Elementary acts in the case of ‘fast’ diffusion, when the duration 
of the settled life of the atom of the diffusing component is less than the 
lifetime of the excited state of the nucleus of this component, can be stud-
ied according to the broadening of Mößbauer lines of resonant absorption 
of γ-ray quanta [3].) Note that, in all traditional methods for studying the 
diffusion, the linear dimensions of concentration inhomogeneities far ex-
ceed the crystal-lattice parameters; the diffusion parameters obtained 
with the application of these methods are, actually, the coefficients of the 
continuum equations of macroscopic diffusion and do not contain direct 
information about the elementary acts and mechanisms of atomic diffusion.

For a binary alloy with small deviations of non-equilibrium structural 
characteristics from their equilibrium values, the time dependence of the 
intensity of elastic diffuse scattering of rays for the point k of the recipro-
cal space, which is caused by the diffusional relaxation of SRO and, first 
of all, the migration of atoms of the slowest component (e.g., the first 
one), is evaluated as [1, 2]

[ ] − lD ≡ − ∞ @ − ∞ 12 ( )( , ) ( , ) ( , ) ( ,0) ( , ) tI t I t I I I e kk k k k k ;

here, I(k,∞) is a diffuse scattering intensity of the ‘equilibrium’ solid so-
lution, which corresponds to the annealing time t → ∞; I(k,0) is the inten-
sity that corresponds to the initial instant of annealing time t = 0 (the 
state of only just hardened alloy); 2l1(k) is the reciprocal value of relax-
ation time of the intensity corresponding to the given wave vector k. The 
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latter equation is valid [4, 5] only when
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where 2l2(k) is the reciprocal relaxation time of intensity attributed to the 
diffusion of atoms of a faster component (e.g., the second one), Q1 and Q2 
are the activation energies of atomic diffusion of the first and second 
components, respectively, and t0 is a characteristic time of the observed 
intensity change. According to the kinetic formula for ΔI(k,t), the time 
evolution of the diffuse-scattering intensity I(k,t) is described by one re-
laxation time and is carried out due to the diffusion of atoms of the ‘slow’ 
component (atoms of the ‘faster’ component adiabatically adjust to the 
movement of the slow component). In addition, we assume that the relax-
ation of the intensity I(k,t) for each point of the reciprocal space occurs 
independently of the others with its own relaxation time.

The l1(k) and l2(k) values can be written [4, 5] as

[ ]0
1 1 1( ) ( ) 1 ( )l = l + jk k k  and [ ]0

2 2 2( ) ( ) 1 ( )l = l + jk k k ,

where 0
1 ( )l k  and 0

2( )l k  relate to the reciprocal times of the diffusion re-
laxation of atoms of the first and second components in the perfect solid 
solution. The j1(k) and j2(k) functions describe the influence of the imper-
fection of solid solution on the atomic diffusion (in the perfect solution, 
j1(k) = j2(k) ≡ 0). The 0 ( )a−l k  value is defined by the Fourier transform of 
the probabilities of elementary jumps of a-type atoms from all (‘zero’) 
sites of the surroundings into the certain r site per unit of time in the 
perfect solution, ( )a−l k  is an analogous value for the imperfect solution, 
and the Fourier original ( )a−L r  is the probability of an elementary jump 
of a-atom per unit of time to the r site from any neighbouring ‘zero’  
site, which occurs in the ‘potential’ field generated by the concentration 
inhomogeneity of a-type atoms in the ‘zero’ site (a = 1, 2). According to 
Ref. [2], the continuous analogue of the above expressions for ( )al k  (l1(k) 
and l2(k)) is the Darken equation [6]:
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with Da, 
0Da , and ga being the coefficients of diffusion, self-diffusion, and 

the activity coefficient of the a-component, respectively. At a continuum 
approximation of small = p| | 2k ak   [4, 5],
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at least, for a cubic solution.
Thus, the main relations of Khachaturian’s theory [1, 2] make it pos-

sible to use the data of the method of diffuse scattering of x-rays by single 
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crystals of disordered solutions for the direct determination of the char-
acteristics of the elementary diffusion acts: the Fourier components of the 
probabilities of atomic jumps, ( )a−l k , and the values of the probabilities 
in the real space, ( )a−L r . Using equations of the latter type, it is possible 
to determine the coefficients and activation energies of (self)diffusion. 
Knowing the ( )a−L r , we can establish the diffusion mechanism of the 
elementary acts of diffusion: ring, vacancy, or interstitial.

Within the framework of such an approach, the structure formation 
of the Ni-based alloys (e.g., Ni–Mo, Ni–Fe, etc.) was studied in the series 
of works (see, e.g., Refs. [7–50]). In this work, we initially review and 
analyse the literature data on such diffusion processes in f.c.c.-Ni–Al al-
loy, and then, parameterise its diffusion characteristics during the atom-
ic-order relaxation taking into account its specific features.

2. Scheme to Estimate the Probabilities of Atomic Jumps 

As mentioned in the Introduction, data on the kinetics of diffuse scatter-
ing associated with the SRO make it possible to determine the character-
istics of elementary acts of diffusion, namely, the probabilities of jumps 
of atoms of different types to different lattice sites. Each temperature and 
concentration of the alloy correspond to its equilibrium degree (parame-
ter) of SRO. A rapid quenching from a high-temperature disordered state 
to another, low-temperature state should lead to relaxation of the initial 
degree of SRO to its new equilibrium value. Since this relaxation is re-
alised due to the (interstitial) migration of atoms at the intersite distanc-
es, studying this process opens up possibilities for examining the elemen-
tary acts of diffusion.

As mentioned above, from the values of ( )al k , we can calculate the 
Fourier originals { ( )}a−L R , which have a sense of the probabilities of a-
atoms’ jumps per unit of time on the site R from all surrounding sites 
{ }′R  in the field of ‘interaction potential’ ( )a ′y R . Assume that ‘poten-
tial’ ( )a ′y R  is generated, if the microscopic concentration inhomogeneity 
occurs, e.g., through the localization of a-atom at the ‘zero’ (‘central’) 
site. So, ( )a ′y R  represents the effect of the ‘potential’ field due to con-
centration inhomogeneities (of the SRO-type) in an imperfect alloy. The 
alloy is perfect, if there is no such effect. ( )aL R  for each R (including a 
‘zero’ site) in the crystal lattice is proportional to all { ( )}a ′y R  values. Us-
ing the inverse Fourier transform in the R-space, we can express ( )aL R  
as [4, 5]

0(1 )
( ) ( ) ( )

B

c c

k Ta a a
′

− ′ ′L @ L − y∑
R

R R R R ,

where 0 ( )a ′−L −R R  represents a probability of a jump of a-type atom (per 
unit of time) from any R′ site into the R site in a perfect solid solution, 
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for which { ( )}a ′y R  ‘potentials’ are 
equal to y0, c is a relative atomic 
fraction of a-atoms. The values of 
La(R) depend on the mutual location 
of the lattice sites for this syngony, that is, on the set of possible differ-
ences { }′−R R  for each R. In the case of the classical vacancy mechanism 
of diffusion, commonly, the atomic jumps only at the distance between the 
nearest sites are taken into account (Fig. 1) [51]. When it is necessary to 
check the possibility of another diffusion mechanism, we should consider 
several sets of values: 0

I{ ( )}a ′L −R R , 0
II{ ( )}a ′L −R R , etc. Indices I, II, etc. 

refer to jumps to the R site from the nearest neighbouring sites I{ }′R , next 
neighbouring sites II{ }′R , etc.

Let us assume that ya(R′) is a non-zero function within the first six 
co-ordination shells around the ‘zero’ site only, while the atomic-jump 
probability has non-zero values for two co-ordination shells only [52],

         
0 0

0( ) 0a aL = L ≠0 ,
  

0 0
I I( ) 0Ra aL = L ≠ ,

 
0

II II( ) 0Ra aL = L ≠ ,

0( ) 0a ay = y ≠0 ,
 I I( ) 0Ra ay = y ≠ ,

 II II( ) 0Ra ay = y ≠ ,
 III III( ) 0Ra ay = y ≠

     

      IV IV( ) 0Ra ay = y ≠ ,
  V V( ) 0Ra ay = y ≠ ,

  VI VI( ) 0Ra ay = y ≠ ,
     

where RI, RII, … are the radii of the first, second, … co-ordination shells, 
whereas other probabilities 0

IIIaL , 0
IVaL , … and values of yaVII, yaVIII, … are 

equal to zero. For certainty, let us assume that a-atom is localized at the 
‘0’-site (with R = 0). Then, we have [52]: 
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Fig. 1. Atomic jumps into the given site 
(striped circle) from the nearest sites (grey 
circles) in f.c.c. lattice [51]
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Here, (lmn) for La(Rn(lmn)) are the co-ordinates of sites in a cubic lattice 
with translation vectors [100], [010], and [001] along the Ox, Oy, and Oz 
axis directions, respectively (we mean the co-ordinates (lmn) in the units 
of a0/2, where a0 is an f.c.c.-lattice parameter). The 0

0a−L  is a probability 
(per unit of time) for a-atom to remain in the fixed site; ya0 is a value of 
the ‘potential’ function at the ‘zero’ site. The value of La(Rn(lmn)) can be 
calculated from the inverse Fourier transform of the la(k) values, which 
can be estimated, based on the kinetic model using the available experi-
mental data for Ni–Al. The Fourier original of the atomic-jump probabil-
ity to the site R of the f.c.c. lattice is as follows:

1 2 3

1 2 3 1 2 3( ) ( ) ( ) cos(2 ) cos(2 ) cos(2 )
k k k

K lmn k k k k l k m k na aL = l p p p∑R ,

where K is a ‘geometric’ coefficient dependent on R(lmn). Macroscopic 
diffusion characteristics, i.e., diffusion and self-diffusion coefficients of 
‘slow’ a-ions can be calculated from the probabilities of atomic jumps. Us-
ing the long-wavelength limit transition from a discrete migration process 
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to a continuous transfer along with the assumption of equally probable 
atomic jumps to sites within the same co-ordination shell (relative to the 
‘zero’ site), we can write for diffusion mobilities in perfect *( )Da  and im-
perfect (Da) cubic solutions [53]:

0 2
n n n

n I

1
( )

6
D R R Z

∞
∗
a a

=

≈ − L∑ , ( ) 2
n n n

n I

1

6
D R R Z

∞

a a
=

≈ − L∑
(Zn is a co-ordination number of the n-the co-ordination shell of the Rn 
radius). The latter expressions establish a relationship between the lNi(k) 
and 0

Ni( )l k  values and the diffusion and self-diffusion coefficients. In-
deed, the values of lNi(k) for imperfect solid solution relate to the proba-
bilities of intersite jumps Ni( )−L r :

( )n

n

Ni Ni n
n I

( ) ( ) 1 ie
∞

− ⋅

=

l = −L −∑∑ k r

r

k r ,

where |rn| = rn (> 0) is the radius of the n-th co-ordination shell. To obtain 
the latter expression, the Ni-atoms’-number constancy condition 

Ni( ) 0l = ≡k 0  [4] is used. Expansion of nie− ⋅k r  into a series and restric-
tions in the case of small k by the first three terms give:

∞

=

l @ − L∑
2

2
Ni Ni n n n

n I

( ) ( )
6

k
r Zk r .

Comparing the latter equation with above-mentioned continuum approxi-
mation, we have an expression for diffusivity DNi:

2
Ni Ni n n n

n

1
( )

6
D r r Z@ − L∑ .

For a perfect solid solution (in the commonly used approximation of 
Ni-atoms’ jumps on the nearest distance rI only), the formulas for 0

Ni( )l k  
and self-diffusion coefficient NiD∗  are, respectively,

( )I

I

0 0
Ni Ni I( ) ( ) 1 ir e− ⋅l = −L −∑ k r

r

k , 0 2
Ni Ni I I I

1
( )

6
D L r r Z∗ = − .

3. Kinetic Parameters of Atomic Migration  
and Scattering Relaxation of Different-Types’ Waves

The Ni–Al binary alloy, at least, in a narrow concentration range close to 
the Ni3Al composition, can be ordered as the L12-type [54] based on the 
f.c.c. lattice up to the melting temperature (@1636–1658  K) [55]. The 
study of the kinetics of the ordering of such a (non-)stoichiometric crys-
talline compound is of interest for solving the problem of the stability of 
its structure under conditions of high-temperature heating, since the L12-
Ni3Al-type phases are the base of modern heat-resistant materials, and the 
coatings based on them have a high catalytic activity.

Both direct and indirect methods can be used to study the kinetics of 
SRO relaxation in substitutional alloys [4, 53]. Direct (diffraction) meth-
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ods include the use of data on the time dependence of diffuse scattering of 
radiations. An example of an indirect method is the use of data on the 
time evolution of physical properties due to the SRO; the measurement of 
residual electrical resistivity is the most often used in this aspect. 

Let us introduce the two-particle correlation function Pab(r,t) as the 
probability that a- and b-atoms (a, b = Ni, Al) are located simultaneously 
(in the instant of time t) on the distant r from each other (with r acting 
as a difference of appropriate radius-vectors of the Bravais lattice). Then, 
for a binary Ni–Al substitutional alloy, one can show [5] that the time 
dependence of its Fourier components behaves in a relaxed manner. 

In all realistic cases of binary substitutional solutions, the inequality 
a1

a2

( )
1
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2
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1
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B

B

E k T

E k T

e

e
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−

l
∝

l
k

k


turns out to be valid as a result of any noticeable difference in the thermal 
activation energies Ea1 and Ea2 of relaxation processes according to the 
first and second ‘scenarios’, respectively; this inequality is fulfilled, if the 
diffusion coefficients of both components differ significantly. Taking into 
account this circumstance and substituting, we can get as follow:

12 ( )( , )

( ,0)
tI t

e
I

− lD
@

D
kk

k

that corresponds to the so-called 1st-order kinetic model, when 1 2( ) ( )l lk k

1 2( ) ( )l lk k , or

1 22 ( ) ( )
1 2
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t tI t

A e A e
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− l −lD
≈ +

D
k kk

k

for a more realistic 2nd-order kinetics model, when non-equality 

1 2( ) ( )l < lk k  is more ‘soft’, with A1 and A2 being the ‘weights’ of the first 
and second ‘scenarios’, respectively. Then, for the intensity-relaxation 
times, the following approximate expressions are valid: 11 [2 ( )]t @ l k  
within the 1st-order kinetics model and 1 11 [2 ( )]t ≈ l k , 2 21 ( )t ≈ l k  for 
the 2nd-order kinetics model. Thus, in the first (second) kinetics model, the 
time evolution of the intensity of the diffuse scattering of radiations (and 
of SRO) is characterized by one (two) relaxation time(s).

To study the SRO kinetics relaxation by the resistometric method (i.e., 
based on the time dependence of the specific residual electrical resistance 
during isothermal annealing of a solid solution), we assume that the rates 
of change of the SRO degree and, accordingly, the electrical resistivity are 
proportional to the appropriate ‘thermodynamic forces’ as functions F of 
the deviation from equilibrium. Then, the ‘general’ equation of the kinet-
ics of the process can be written as, for instance,

( ) 
1( , )

{ }; ( , ) ( )a
i a a

t T
F t T T

t
−

∞

∂r
≈ − t r − r

∂
,
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where r(t,Ta) and r∞(Ta) are instant and equilibrium (t → ∞) values of the 
specific residual electrical resistance at the annealing temperature Ta, 
1/ it  is a reciprocal time of relaxation of the residual electrical resistivity 
by the i-th relaxation ‘scenario’.

In stationary external conditions, that is, with a constant concentra-
tion of defects (vacancies), several models of the kinetics of specific re-
sidual electrical resistance can be used.

The simplest is the 1st-order kinetic model: 

( ) ( )1 1; ( , ) ( ) ( , ) ( )a a a aF t T T t T T− −
∞ ∞t r − r @ t r − r ,

where the SRO relaxation kinetics is characterized by the exponential be-
haviour of the normalized change in the specific residual electrical resis-
tance [5, 53]:

( )

0

( , )

( )
at Ta

a

t T
e

T
− tDr

@
Dr

,

with the single relaxation time t(Ta), which is determined, particularly, by 
the concentration cv and the frequency of jumps (mobility) nv of vacancies 
with efficiency factor c ( 1

v vc−t ≈ c n ), where ( , ) ( , ) ( )a a at T t T T∞Dr = r − r , 

0 0( ) ( ) ( )a a aT T T∞Dr = r − r , and r0(Ta) being an initial (t = 0) specific resid-
ual electrical resistance at the temperature Ta.

In the 2nd-order kinetics model (with the ‘weight’ of the first relaxa
tion ‘scenario’ A),

1 2( ) ( )
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( , )
(1 )
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a at T t Ta

a

t T
Ae A e

T
− t − tDr

≈ + −
Dr

,

the SRO relaxation at the annealing temperature Ta occurs by means of 
the two relaxation ‘scenarios’ simultaneously with the relaxation times 
t1(Ta) and t2(Ta).

Thus, the experimental measurement of the specific residual electrical 
resistance makes it possible to estimate its relaxation times, and, on the 
contrary, from the relaxation times known from independent (e.g., diffrac-
tion) experiments, it is possible to determine the normalized change of the 
specific residual electrical resistance 0( , ) ( )a at T TDr Dr  within the frame-
work of one of the two models of its relaxation kinetics.

Note that both models within the diffraction and resistometric meth-
ods do not fully describe the kinetics of SRO relaxation. For a more ac-
curate description of it, one should use the 3rd-order kinetics model, which 
assumes the presence in the expressions for DIdiff(k,t)/DIdiff(k,0) or 

0( , ) ( )a at T TDr Dr  exactly three exponential terms, and therefore, three 
relaxation times.

Using the measurement of the specific electrical resistance r [56, 57] 
of cast polycrystalline samples in the temperature range from 1273 K to the 
melting temperature (i.e., 1643 K for the Ni3Al composition) with quench-
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ing from temperatures Tq ≥ 1723 K, the fitting parameters and relaxation 
times of the residual electrical resistivity were estimated (Fig. 2).

In the assumption of the coincidence of the largest characteristic rela
xation times for diffuse scattering of radiations and residual electrical 
resistivity, the largest characteristic relaxation times for diffuse scatter-
ing are estimated. This allowed plotting graphs of the time dependence of 
the normalized change in the intensity of diffuse scattering of radiations 
corresponding to that star of wave vector k*, which dominates the pattern-
ing of the SRO structure at different annealing temperatures for f.c.c.-
Ni–24.7 at.% Al, within the framework of the 1st- and 2nd-order kinetics 
models (Fig. 3).

Fig. 3. Time dependences (left) of the normalized change of intensity of diffuse scat-
tering of radiations (at k = k*) in Ni–24.7 at.% Al within the 1st-order model for an-
nealing temperatures Ta: 1 — 1273 K, 2 — 1323 K, 3 — 1373 K, 4 — 1423 K, 5 — 
1473 K, 6 — 1523 K, 7 — 1568 K, 8 — 1603 K, 9 — 1613 K, 10 — 1624 K (after 
quenching from Tq ³ 1723 K); (right) tangent of angle (a) of a slope of the curve in the 
left figure to the abscissa axis [5]

Fig. 2. Annealing-temperature (Ta) dependences of specific residual electrical resist-
ance r¥ in the thermodynamic equilibrium (left) and parameter of the residual resistiv-
ity relaxation t (and T) due to the short-range (or respectively, long-range) ordering 
(right) within the 1st-order kinetics model for f.c.c.-Ni–24.7 at.% Al after quenching 
from Tq ³ 1723 K (1 — for t, 2 — for T) [5]
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Neglecting jumps of substitution-
al atoms outside the first co-ordina-
tion sphere, it is possible to estimate 
the ordering activation energy Ea o 
(which characterizes the elementary act of rearrangement of atomic con-
figurations into an energetically favourable ordered configuration) for the 
Ni3Al alloy, considering that it is determined mainly by the value of the 
migration-activation energy for atoms, Ea1: 

1 1
0 a1exp{ ( )}B aE k T− −t = t − ; t is 

the relaxation time at annealing temperature Ta, t0 is a pre-exponential 
coefficient. Using the mid-square method, we obtain Ea o @ Ea1 @ 0.55 eV, 
t0 @ 3.544 s (Fig. 4).

4. Influence of Atomic-Order Relaxation on the Diffuse-Scattering 
Intensity, Electrical Resistivity, and Microhardness

With the processing of the available experimental data (see Fig.  5 for 
f.c.c.-Ni–9 at.% Al, as well as for f.c.c.-Ni–6.3 at.% Al in Refs. [60, 61]) 
within the framework of 1st-, 2nd-, and 3rd-order kinetics models, a number 
of relaxation parameters were estimated: relaxation times ti (i = 1, 2, 3) of 
the diffuse-scattering intensity of x-rays (Tables 1–3) [60, 61] and the cor-
responding Fourier components of atomic-jump probabilities (per unit of 
time) (Table 4), as well as specific residual electrical resistance (Tables 5 
and 6) and microhardness (m; Tables 7 and 8). 

Fig. 4. Smoothing graph of the dependence 
of the relaxation time t of residual resistiv-
ity in Ni–24.7 at.% Al on the inverse an-
nealing temperature 1/Ta after quenching 
from Tq ³ 1723 K (points are estimated from 
experimental data) [5]

Table 1. Parameters of scattering within the 1st-order relaxation kinetics model 
of diffuse-scattering intensity ISRO(kX,t) for f.c.c.-Ni–6.3 at.% Al [5]

Ta, K
ISRO(t→∞), 

L.un.
ISRO(t=0) − ISRO(t→∞), 

L.un.
τ, h Τ, h ℘2 δ2

573 1.12 ± 0.06 −0.31 ± 0.10 9.01 ± 6.85 18.02 ± 13.7 0.71 0.007
673 2.0 ± 0.117 −0.60 ± 0.18 4.58 ± 3.54 9.16 ± 7.08 0.68 0.034
973 1.97 ± 0.012 −0.36 ± 0.03 2.25 ± 0.43 4.50 ± 0.86 0.97 0.001

Table 2. The same as in the previous table, but within the 2nd-order model [5]

Ta, K ISRO(t→∞), L.un. ISRO(t=0) − ISRO(t→∞), L.un. τ, h Τ, h ℘2 δ2

573 1.12 −0.31 9.005 9.004 0.71 0.014
673 2.00 −0.60 4.583 4.582 0.68 0.057
973 1.97 −0.36 0.085 4.083 0.99 0.001
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So, for the 1st-order kinetics mod-
el, r∞, r0 - r∞, t, etc. are desired param-
eters (Table 5, where T @ 2t is a rough 
estimate of long-range atomic-order 
relaxation by the exchange mecha-
nism). In the case of the 2nd-order 

model, the desired parameters are r∞, r0 − r∞, A, t1, t2, etc. (Table 6). Since 
the number of independent fitting parameters increases as 3n − 1, to en-
sure the reliability of the analysis, the number of exponential terms (n) 
required for fitting the data, as a rule, should not exceed 2 or 3. 

The criteria for the correspondence of such graphs (Figs. 6–14) to the 
experimental points can be determined by the small value of the root-
mean-square deviation d2 and the correlation coefficient ℘ (Tables 1–8). 

Fig. 5. Kinetics dependences of intensity of diffuse scattering of x-rays (for different 
positions of the points—ends of wave vector k) in Ni–9 at.% Al alloy during the anneal-
ing at 373 K after quenching from 1073 K. For comparison in the long-wave range (where 
k @ G), which probably corresponds to the coalescence (of clusters, embryos, grains from 
large distances) at more late stages of annealing, dashed line depicts asymptotic kinetic cur 
ve for the coalescence (according to Lifshitz–Slyozov–Wagner theory): ISRO(k,t) µ t1/3 [68]

Fig. 6. The annealing-temperature (Ta) de-
pendence of the intensity of diffuse scatte
ring ISRO(t ® ¥) in the thermodynamic equi-
librium calculated within the 1st-order kinet-
ics model for Ni–6.3 at.% Al alloy [5]
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Table 3. The same as in the previous table, but for f.c.c.-Ni–9 at.% Al 
within the 3rd-order model (τ3 = 2τ1τ2/2(τ1 + τ2), Tq = 1073 K, Ta = 373 K) [60]

k ISRO(k,∞) A1(k) A2(k) A3(k) τ1(k), h τ2(k), h τ3(k), h

X(0 0 1) 2.55 3.50 2.59 -6.19 0.101 0.680 0.176
W(0 1/2 1) 1.70 -122.9 201.4 -78.67 0.389 0.393 0.391
D3/4(0 0 3/4) 2.55 -3.31 0.50 2.74 0.328 6.194 0.623
D1/5(0 0 1/5) 161.85 -55.00 -206.8 151.5 0.286 1.720 0.491

Table 4. Fourier components (with an opposite sign) of probabilities 
of atomic jumps (per unit of time) l1(k), l2(k), λ3(k) = λ1(k) + λ2(k) 
for f.c.c.-Ni–9 at.% Al (Tq = 1073 K, Ta = 373 K) within the 3rd-order model [60]

k l1(k) × 105, s−1 l2(k) × 105, s−1 l3(k)×105, s-1

X(0 0 1) 137.51 20.44 157.95
W(0 1/2 1) 35.70 35.37 71.07
D3/4(0 0 3/4) 42.32 2.24 44.56
D1/5(0 0 1/5) 48.51 8.08 56.59

Table 5. Fitting parameters of relaxation calculated within the 1st-order 
relaxation kinetics model of residual electrical resistivity for f.c.c.-Ni–6.3 at.% Al [5]

Ta, K r∞/r0 (r0 - r∞)/r0 t, h T, h ℘2 d2

573 1.025 ± 0.001 -0.026 ± 0.002 1.07 ± 0.19 2.13 0.97 3.61 × 10-6

Table 6. The same as in the previous table, but for the 2nd-order model [5, 61]

Ta, K r∞/r0 (r0 - r∞)/r0 t1, h t2, h ℘2 d2

573 1.03 ± 0.001 -0.141 1.067 1.064 0.97 5.1×10-6

673   1.01 ± 0.0001 -0.006 0.904 0.903 0.95 3.2×10-6

Table 7. Relaxation parameters calculated within the 1st-order 
kinetics model for relaxation of microhardness of f.c.c.-Ni–6.3 at.% Al [5, 61]

Ta, K m∞, kg/mm2 m0 - m∞, kg/mm2 t, h T, h ℘2 d2

573 239.15 ± 1.36 -32.17 ± 3.73 0.52 ± 0.13 1.04 ± 0.26 0.90 13.77

Table 8. The same as in the previous table 
but within the 2nd-order relaxation kinetics model [5, 61]

Ta, K m∞, kg/mm2 m0 - m∞, kg/mm2 t1, h t2, h ℘2 d2

573 239.15 -32.17 0.521 0.521 0.90 17.705
673 210.58 -11.37 0.960 0.966 0.94 4.049
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Results in Table  1 and the dependence ( ) ( )
0 a1exp{ ( )}p p

B aE k Tt @ t  
(p = 1, 2, 3) allow estimation of the activation energy of the jump-like 
atomic movement in the low-concentration f.c.c.-Ni–6.3  at.% Al alloy 
(here, t(p) is a relaxation time presenting p-th annealing temperature Ta

(p); 
t0 is a pre-exponential coefficient; Ea1 ≅ Em is an activation energy of ele-
mentary jump of an atom into the vacancy). 

For the 1st-order kinetics model, Ea1 ≅ 0.19 eV/atom, t0 ≅ 689.9 s. For 
comparison, the rough estimation [62, 63] of the activation energy in the 
intermetallic Ni3Al is Ea o ≅ 0.55 eV/atom (for the exchange mechanism  
of atomic diffusion during the atomic long-range order relaxation at 
1273–1626 K).

The influence of SRO on the mechanical properties of the alloy is 

Fig. 8. The relaxation time t of SRO vs. the inverse annealing temperature Ta
-1 

estimated within the 1st-order kinetics model for Ni–6.3 at.% Al [5]

Fig. 7. The annealing-temperature (Ta) dependence of estimated relaxation times 
of short-range (1 — t) and long-range (2 — T) orders in the 1st-order kinetics 
model for Ni–6.3 at.% Al [5]

Fig. 9. The diffuse-scattering intensity ISRO(t ® ¥) in the thermodynamic equilib-
rium vs. the annealing temperature Ta within the 2nd-order kinetics model for 
Ni–6.3 at.% Al [5]

Fig. 10. Relaxation parameters t1 (1) and t2 (2) estimated within the 2nd-order 
model vs. the annealing temperature Ta for Ni–6.3 at.% Al [5]

V.A. Tatarenko, T.M. Radchenko, A.Yu. Naumuk, and B.M. Mordyuk
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Fig. 12. Predicted dependences of pre-exponential coefficients A1(k), A2(k), and A3(k) 
estimated within the 3rd-order atomic-ordering kinetics model on the position of 
the end of wave vector k for f.c.c.-Ni–9 at.% Al (Tq = 1073 K and Ta = 373 K) [5]

Fig. 11. The diffuse-scattering intensity in the thermodynamic equilibrium within 
the 3rd-order model vs. the position of the end of wave vector k for Ni–9 at.% Al [5]

caused by the two main factors. First, the movement of dislocations dur-
ing deformation destroys SRO with additional energy absorption, which 
also determines additional strengthening. Second, changes in the total 
energy of the alloy and its electronic structure due to the appearance of 
SRO are regulated by the elastic or plastic deformations in an alloy with 
SRO in a different way than in the same alloy without SRO. The micro-
hardness of the Ni–6.3 at.% Al alloy changes nonmonotonically during 
annealing at 573 and 673 K, but it increases because of the occurrence of 
local order [58]. 

Due to the complexity of SRO transformations in Ni–Al, the model-
ling of its local atomic configurations is also of interest. Computer model-
ling of the SRO structure in the Ni–9 at.% Al solid solution was per-

Fig. 13. The dependences of Fourier components of probabilities of atomic jumps 
on the position of wave vector k within the 3rd-order kinetics model for f.c.c.-
Ni–9 at.% Al (Tq = 1073 K and Ta = 373 K) [5]

Fig. 14. Predicted dependences of relaxation time parameters t1, t2, and t3 

3 1 2 1 2( 2 /( ))t = t t t + t  on the position of wave vector k within the 3rd-order kinetics 
model for f.c.c.-Ni–9 at.% Al (Tq = 1073 K and Ta = 373 K) [5]
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formed by the Monte Carlo method using the experimentally obtained 
values of the Warren–Cowley SRO parameters αklm. The simulation was 
performed for a three-dimensional array with 2.16×105 sites of the f.c.c. 
lattice with cyclic boundary conditions. For alloy with 9 at.% of Al, 19440 
sites were corresponded to alloying Al atoms. Initially, a random distribu-
tion of atoms was generated (Fig. 15,  left). It can be seen that such a 
distribution lacks any features of local spatial interatomic correlations. 
Then, randomly chosen Ni and Al atoms exchanged their locations, and 
further, the parameter calc exp 2 exp 2( ) ( )klm klm klmklm klm

D = a − a a∑ ∑  was calculated 

after each atomic rearrangement, where exp
klma  and 

calc
klma  are experimental 

and calculated Warren–Cowley SRO parameters, respectively. If the value 
of D decreased, then, the atoms of both types remained in new places, and 
if it did not decrease, then, they returned to their original positions, but 
only D ≤ 10−6 were taken into account.

Figure 15 (right) exhibits the atomic distribution for the SRO state in 
Ni–9 at.% Al quenched from 1073 K and further annealed at 373 K for 
15 min. As seen, after the isothermal annealing for 15 min, there are some 
clusters ordered as the L12-type (Ni3Al), as well as regions with short-
range decomposition. The SRO modelling performed for Ni–9 at.% Al con-
firms the presence in the alloy of several concentration waves [4] with 
different wave vectors ks, which dominate the representation of the SRO 
structure. 

The study of the kinetics of initiation of an equilibrium SRO within 
the f.c.c.-Ni–Al alloy shows that this process possesses a relaxation nature 
and is carried out through the diffusion of Ni ions in a ‘coat’ of Al ions. 
As shown, the rate of this process is different for different points of the 
reciprocal space. The obtained data on the SRO-relaxation rate for various 
points of the reciprocal space are evidence in favour of not only the tradi-
tional vacancy mechanism of diffusion (with atoms’ jumpings into the 
nearest vacancies). The same data can be used to determine the probability 
of jumps of Ni ions in elementary acts of diffusion. Such acts are per-
formed mainly as jumps not only at the nearest distance. However, the 
probability of Ni-ions’ jumpings to the R site from its nearest sites is 

Fig. 15. Monte Carlo 
method modelling of 
short-range ordering in 
Ni–9 at.% Al for random 
distribution of compo-
nents (left) and after 
quenching from 1073 K 
with further annealing at 
373 K for 15 min (right) 
[60, 61]
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greater for those R sites, in which the presence of Ni ions is energetically 
more advantageous. Thus, the probability of intersite ionic jumps depends 
on the distribution of the ‘potential’ field caused by the SRO and, there-
fore, on the alloy imperfection. 

Thus, we studied the time dependence of the diffuse scattering of both 
x-rays and conductivity electrons (electrical resistivity), which is attri
buted to establishing an equilibrium SRO in the relaxation process of iso-
thermal annealing. As found, during long-term annealing of a single-phase 
alloy, the intermediate concentration inhomogeneities (which differ from the 
L12-type SRO state and are formed already at the initial annealing stages) 
appear. Their appearance is accompanied by a drop in the diffuse-scatter-
ing intensity in the superstructure points of the lattice reciprocal space.

5. Conclusions

By parameterizing the literature data on the measurement of residual 
electrical resistivity during isothermal annealing of substitutional f.c.c.-
Ni–Al alloys within the framework of the proposed models of atomic-order 
relaxation kinetics, the most characteristic relaxation times of residual 
electrical resistivity after quenching and its equilibrium values for these 
alloys at different annealing temperatures were estimated.

The maximum characteristic relaxation time of the atomic order of 
such alloys was determined and, based on the hypothesis of the coinci-
dence of the largest characteristic relaxation times (for the same reasons) 
of the intensity of diffuse scattering of radiations and the residual electri-
cal resistivity, curves of the time dependence of the normalized change in 
the intensity of diffuse scattering of rays were predicted, which corre-
spond to the wave-vector star that generates the type of the SRO struc-
ture, at different annealing temperatures.

As found, the temperature dependence of the equilibrium residual 
electrical resistivity of concentrated f.c.c.-Ni–Al alloys has a pronounced 
nonmonotonic character, which is due not only to the scattering of elec-
trons by nonlocalized excitations (e.g., magnons, etc.), but also mainly to 
their scattering by substitutional point defects, which are redistributed, 
observing the SRO, but differently depending on the annealing tempera-
ture: from atomic configurations in the close environment, which on ave
rage resemble substitution by the superstructural L12 type, to configura-
tions of the environment corresponding to the superstructural L10 type, or 
clusters of identical atoms. Such an explanation requires a significant 
modification of the existing models for the electrical conductivity of the 
indicated alloys (in particular, taking into account differences in the scat-
tering of conductivity electrons with different spin projections on certain 
excitations or distortions, the structure of which is sensitive to tempera-
ture changes) [64–67]).
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The nonmonotonic temperature dependence of the estimated relax-
ation time of the residual electrical resistivity for the concentrated f.c.c. 
Ni–Al alloy has a pronounced non-Arrhenius character and is due to a dif-
fusion rearrangement of the SRO not only by jumps of Al and Ni atoms 
into the sites of the first co-ordination sphere around them, but also by 
jumps of these substitutional atoms beyond its boundaries. Such an expla-
nation also requires a significant modification of the already proposed 
models of the transport characteristics of alloys.

The slope of the line of the predicted time dependence of the logarithm 
of the difference between the instant and equilibrium intensities of dif-
fuse scattering of rays (in the vicinity of the wave vector that generates 
the type of SRO structure) relative to the time axis changes nonmono-
tonically with increasing annealing temperature.

Within the framework of the applied 1st- and 2nd-order kinetic mod-
els, the largest characteristic relaxation times of the residual electrical 
resistivity and microhardness after quenching, as well as their equilibri-
um values for low-concentration f.c.c.-Ni–Al alloys at different annealing 
temperatures, were estimated. The maximum characteristic relaxation 
time of the atomic order of such alloys was predicted and the time depen-
dence curves of the normalized change in the intensity of diffuse scatter-
ing of rays, corresponding to the wave-vector star that dominates in the 
reflection of the atomic-order structure, were predicted at different an-
nealing temperatures for these alloys.

The SRO relaxation to the equilibrium state for f.c.c.-Ni–Al solid so-
lution is accompanied by the transformation of its initial type into short-
range ordering as a whole, and the relative number of clusters in the 
formed structure increases with time. This is consistent with the results 
of computer simulations of local atomic ordering by the Monte Carlo meth-
od and the inhomogeneous SRO model.
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ПАРАМЕТЕРИЗАЦІЯ ДИФУЗІЙНИХ ХАРАКТЕРИСТИК  
КІНЕТИКИ РЕЛАКСАЦІЇ АТОМНОГО ПОРЯДКУ У СПЛАВАХ Ni–Al

Для дослідження дифузійних характеристик сплавів заміщення ГЦК-Ni–Al роз-
глянуто, проаналізовано та застосовано кінетичні моделі, в яких релаксація па-
раметрів кореляції у взаємному розташуванні атомів зумовлює часову залежність 
як інтенсивности дифузного розсіяння випромінення I, так і залишкового елект
роопору ρ. За допомогою параметеризації наявних літературних даних стосовно 
вимірювання залишкового електроопору впродовж ізотермічного відпалу сплавів 
оцінено найбільш характерні часи релаксації ρ після загартування сплавів, а та-
кож рівноважні значення ρ∞. Визначено максимальний характерний час релаксації 
атомного порядку таких сплавів, а за гіпотезою про збіг найбільших характерних 
часів релаксації для I та ρ передбачено криві часової залежности нормованої зміни 
інтенсивности ΔI. Релаксаційний процес супроводжується збільшенням як кіль-
кости кластерів з наявністю близького порядку в їхній структурі, так і ступеня 
їхньої впорядкованости, що узгоджується з результатами комп’ютерного моделю-
вання локального атомного порядку за методом Монте-Карло та із моделлю неод
норідного близького порядку.

Ключові слова: твердий розчин Ni–Al, атомні стрибки, дифузія, близький порядок, 
релаксація, дифузне розсіяння, залишковий електроопір.


