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In imitation of f.c.c.-Ni—Fe alloy, the statistical-thermodynamic approach is
applied for quantitative analysis of the thermal and composition—magnetic
moment fluctuations’ influence on the kinematic diffuse-scattering intensity of
radiations (X-rays or thermal neutrons) in magnetic alloys with the atomic
short-range order (SRO). Within the temperature—concentration (T—c) domains
of macroscopically ferromagnetic and paramagnetic states of f.c.c. alloy, the
relation for the diffuse-scattering intensity distribution over the quasi-wave
vectors (including the Bragg’s ‘fundamental’ point), depending on the total
‘mixing’ energies of atoms, are obtained within the scope of (i) the self-
consistent-field (SCF) and mean-SCF (MSCF) approximations as well as (ii) the
simplest approximation by ‘interpolation’. The 2D patterns of (001)*-type dif-
fuse-scattering intensity distribution over a reciprocal space as well as the cor-
responding distributions (local configurations) of Fe and Ni atoms over the
f.c.c.-lattice sites are modelled by a statistical Monte Carlo technique using the
available experimental data on the Warren—Cowley SRO parameters extracted.
Taking into account the magnetic (‘exchange’) interactions of atoms within the
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statistical thermodynamics of alloys with the atomic SRO, it is possible to clari-
fy the significant (T—c)-deviations of the diffuse-scattering intensity from its
values corresponding to classical relation by the Krivoglaz—Clapp—Moss (KCM)
formula with constant interatomic-interaction parameters. The principal possi-
bilities and validity of using the generalized form and main assumptions of the
KCM formula under an analysis of the diffuse-scattering intensity in magnetic
alloys are ascertained. One of the intriguing findings of a given work belongs to
revealing a possibility for simple and quite accurate estimation of the total
‘mixing’ energies, including their magnetic and nonmagnetic contributions, by
means of the experimental SRO intensities for magnetic alloys obtained with X-
ray diffraction techniques only applied for synchrotron radiation instrumenta-
tion instead of conventional neutron scattering techniques, which are common-
ly used as a powerful probe in physics of magnetic materials. Obtained analyti-
cal and computational results on diffuse scattering characterization of (pa-
ra)magnetic f.c.c.-Ni—Fe alloys are in a decent fit with all the reliable X-ray and
thermal neutron diffraction data collected over years.

Ha mpuxiaazni cromy I'I'TK-Ni—Fe 3acTocoBaHO CTaTHUCTUYHO-TEPMOIMHAMIUHMH
migxiz Ko ymcesbHOI aHAJi3W BILIMBY TEPMIUHUX i KOHIIEHTPAIiMHO-MarHETHUX
oK Tyaliit Ha iHTEHCUBHICTD KiHEMAaTUUYHOI'0 JUMY3HOr'0 PO3CIAHHA BUIIPOMi-
HeHHA (PeHTreHOBUX ITPOMEHiB a60 TENJIOBMX HEBTPOHIB) Yy aTOMapHO HEBIOPSI/I-
KoBaHUX (3 0musbKuM nopaakoMm (BII)) marmeTHux cromax. ¥ paMkKax (a) Ha-
onmxenb camoyaromxenoro (CYII) ta cepemuboro camoysrozsxernoro (CCVYII)
moJiiB i (0) HammpocTimiol «iHTepHoNAIiifHOl» ampoxkcuManii ozep:KaHo BUpas
JJIS POBIIOALNTY iHTEHCUBHOCTU IM(hy3HOTO POICIAHHA IO KBASUXBUIBOBUX BEK-
Topax (B TOMy YMCJIi i 1A BperroBoi «(yHIaMEeHTATBHOI» TOYKM) 3aJIEXKHO Bif
TIOBHUX €Hepriil «3mimanua» atomiB I'IIK-cTony y TemIepaTypHO-KOHIIEHTpA-
mittaux (T—c) obsacTAX MOTO0 MaKPOCKOIIIYHO (hepOMarHeTHOro Ta mapamMarHeT-
HOTO CTaHiB. 3 BUKOPHUCTAHHAM cTaTucTu4yHOI MeTogu MonTe-Kapsio Ta mpucry-
MMHUX eKCIIepUMEeHTAJbHUX AaHuX Ipo mapamerpu BII Yoppena—Kasiai smoze-
JIbOBAHO 2D-KapTWHU POBHOALNY iHTEHCMBHOCTU AU(MY3HOTO PO3CIAHHA Y ILIO-
muaax tuny (001)* obepHeHoro MpoCTOPY Ta BiAIOBiAHE po3MillleHHA (JIOKAJIbHL
Kou(iryparrii) aromis Fe #1 Ni mo Bysnax. BpaxyBauas MarHeTHUX («0OMiHHUX » )
B3a€EMOJIiYf aTOMIB y CTaTUCTUUHIN TepMogmHaMiIli cromiB 3 aromHuM BII miposc-
HIOE 3HaUHi T—Cc-BiAXWIM iHTeHCUBHOCTHU An(y3HOr0 PO3CiTHHA BiJl 3HAYEHbD, IIT0
BiIOBiZatoTh KJIssiCHUHOMY BUpasy AJid Hei 3a ¢hopmyioo Kpusorimasza—Kaenma—
Mocca (KKM) 38i craimMmu mapaMeTpaMi MidKaTOMOBUX B3aeMoOfiii. 3’scoBaHO
IIPUHITUIIOBL MOKJIMBOCTI 11 OOI'PYHTOBAHICThL BUKOPUCTAHHS y3araJbHeHoi (op-
MU Ta OCHOBHUX IIpumyieHs Gopmyau KKM ansa anamisu inTeHcuBHOCTU AUQY-
3HOT'0 PO3CiTHHA y MarLeTHux cromax. OgHMM 3 pPes3yJbTaTiB maHol poboTU €
BCTAHOBJIEHHA MOXKJIMBOCTH IIPOCTOTO Ta JOCTATHBO TOYHOT'O OI[iHIOBAHHSA IIOB-
HUX eHepTill «3MilllaHHA» i3 BpaxXyBaHHAM MarHeTHUX i HEMarHeTHUX BHECKiB 3a
excriepuMeHTaabHUMEU BlI-iHTeHCHBHOCTAMM /I MarHeTHUX CTOIIiB, BU3HAYe-
HUMH i3 3aCTOCYBAHHAM Juille PeHTI'eHOBUX AM(PPaAKITiHHNX METOAUK AJIS CUHX-
POTPOHHOI MipAJLHOI amapaTypu 3aMiCTh TPAOUIIIHHUX METOOUK HEBTPOHHOTO
PO3CiAHHA, AKUX 3a3BUYAll BUKOPUCTOBYIOTH AJIA HiATHOCTUKY MaTrHETOBIIOPA-
KoBaHmMX MartepisaniB. IlpeacraBieHi aHaIiTHYHI Ta PO3PaXyHKOBi pesyJsibTaTH
CTOCOBHO Au@ys3HOro poscisuHA y (mapa)marfHeruux cronax I'I[K-Ni—Fe ysro-
IKYIOTBCS 3 HaTIMHUMM TaHUMU MipAHb Audpakilii PeHTr'eHoOBUX HIpOMeHiB i
TEILJIOBUX HEBTPOHIB, IKUX 0yJIO HAKOIIMYEHO BIIPOAOBIK 6araThox POKiB.
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Ha npumepe criaBa I''TK-Ni—Fe npumeHEH CTaTHCTUKO-TEPMOAMHAMUYECKUI
TIOAXOMA K UMCJICHHOMY AaHAJIW3Y BIUSHUA TEPMUUYECKUX M KOHIIEHTPAI[MOHHO-
MarHUTHBIX (OIIOKTyalluii Ha WHTEHCUBHOCTH KHHeMAaTU4ecKoro auddysHoro
paccesHUA U3IydYeHUN (PEHTTE€HOBCKUX JIyUell WM TEIIOBBIX HEUTPOHOB) B
aTOMHO HEYHOPAM0UeHHBIX (¢ OmmkHuM nopankoMm (BII)) MaruuTHBIX cIlIaBax.
B pamrax (a) mpubamskenuit camocoraacoBanuoro (CCII) u cpeguero camocorJia-
copanHoro (CCCII) mouieir u (6) mpocTeiIeil « MTHTEPIIOJAIMOHHON» AIIIPOKCH-
MAalli¥ MOJYUYeHO BhIpasKeHue AJid pacipenesieHusa NHTeHCUBHOCTH JudHys3HOTO
paccessHUA IO KBa3WBOJIHOBHIM BeKTOpaM (B TOM YuCJe U IJisA OPATTOBCKOM
«(yHIaMeHTaJIbHON» TOYKM) B 3aBUCUMOCTY OT IIOJIHBIX SHEPTUM «CMEIIeHU»
atomoB I'llK-cniaBa B TeMnepaTypHO-KOHIEHTPAUUOHHEBIX (T—c) obJacTsax ero
MaKpPOCKOIMNYeCKH (DePPOMArHUTHOTO U MaPaMarHUTHOTO cocTosiHM. C MCIT0JIb-
30BaHMEM CTaTuCTHU4YecKoro meroma MouTe-Kapisio m mOCTYIIHBIX 9KCIIEPUMEH-
TAJIbHBIX OAaHHBIX O mapamerpax BII Yoppena—Kayam cmomenupoBanbl 2D-
KapTUHBI pACIIpelesIeHU s MHTEHCUBHOCTU A(h(Y3HOTO paccesHUA B IIOCKOCTAX
tuna (001)* oOpaTHOrO IPOCTPAHCTBA M COOTBETCTBYIOIIEE IIPOCTPAHCTBEHHOE
pasmetrieHue (JToKaIbHBIE KOoH(purypamnuu) atromoB Fe u Ni #a ysnax. Yuér mar-
HUTHBIX («OOMEHHBIX » ) BBAMMOIEHICTBUI aTOMOB B CTATHUCTUYECKOMN TEePMOIUHA -
MUKe cILIaBoB ¢ aTroMHBIM BII mposcHseT 3HaunTenbHbIE T—C-OTKJIOHEHUA WH-
TeHCUBHOCTHY AM(DY3HOTO paccessHUA OT 3HAUEHU, COOTBETCTBYIOIINX KJIACCU-
YeCKOMY BBIPasKEeHUIO AJs Heé 1mo opmyie Kpusormasza—Kasnma—Mocca (KKM)
C TOCTOSHHBIMM ITapaMeTpaM! ME’KAaTOMHBIX B3auMOAEHCTBUil. BhIsgcHEHBI
IIPUHIUNINATIbHEIE BOBMOYKHOCT ¥ 000CHOBAHHOCTH MCIIOJIH30BAHUA O0OOIIEH-
HOI1 (hOpMBI 1 OCHOBHBIX Hpexmooxkenuir popmyasl KKM mia amaninsa MHTEH-
cuBHOCTU AU(GDY3HOTO paccesiHUA B MATHUTHBIX ciiaBax. OQHUM U3 pesyJibTa-
TOB JAHHOIH PAbGOTHI ABJIAETCA YCTAHOBJEHWE BO3MOKHOCTU IIPOCTOrO M AOCTA-
TOYHO TOYHOT'O OIIEHMBAHUSA IIOJHBIX SHEPTUH «CMEIIeHUsI» IPU YUETe MarHuT-
HBIX ¥ HEMaTHUTHBIX BKJIAJ0B Ha OCHOBE 9KCIePUMEeHTaIbHLIX BII-MHTeHCHUBHO-
CTel AJIs MarHUTHBIX CILIABOB, OIIPEEJIEHHBIX C IIPIMEHEHUEM TOJIbBKO PEHTTe-
HOBCKUX IU(PPAKIIMOHHBIX METOIUK IJIsI CHHXPOTPOHHO M3MePUTEIbLHON aria-
paTypbl BMECTO TPAAHIIMOHHBIX METONUK HEHTPOHHOI'O pacCesHHus, KOTOpbIe
OOBIYHO WCIIOJB3YIOTCA [JIA MUATHOCTUKY MATHUTOYIIOPSIJOUYEHHBIX MaTepua-
soB. IIpencraBiaeHHbIe aHATUTHYECKYE U YUCJIEHHBIE PE3YIbTaThI 0 UG y3HOM
pacceanuu B (mmapa)MarHuTHBIX ciiaBax I'IIK-Ni—Fe corsiacyiorcs ¢ Hag€KHBI-
MU [TaHHBIMU W3MEPeHUN IUMPAKIUU PEHTTeHOBCKUX JIyuell W TeIJIOBBIX
HEHUTPOHOB, HAKOILJIEHHBIMY 38 MHOT'HIE TOBI.

Keywords: f.c.c.-Ni—Fe alloys, interatomic interactions, magnetic impurity

interactions, short-range atomic ordering, diffuse scattering, statistical ther-
modynamics, Monte Carlo simulation.
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1. INTRODUCTION

Nowadays, metallic alloys take one of the leading places in materials
science and advanced technological applications due to their strength,
heat resistance, electro- and thermal conductivities, specific optical
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and magnetic properties, an occurrence of superconductive state, etc.
The whole spectrum of these physical properties is closely related with
the microscopic (crystal-lattice symmetry, point defects, static and dy-
namic crystal-lattice imperfections, etc.), mesoscopic (nanoscale for-
mations, defects clusters, etc.) and macroscopic (phase composition,
size, shape and spatial distribution of inclusions, etc.) structures of the
system at issue [1-7]. On the other hand, the majority of the equilibri-
um microscopic structural states and the nonequilibrium processes con-
trolled by kinetics of both the structural and magnetic phase transfor-
mations are determined mostly by the interatomic-interaction energies
(including magnetic (‘exchange’) ones), namely, appropriate inter-
change (‘mixing’) energies of atoms, in such mixed systems. Undoubt-
edly, it is evident that the exhaustive knowledge and detailed under-
standing of both the microscopic parameters for (para)magnetic intera-
tomic-interaction energies and the configuration part of the thermody-
namical potentials (such as the Helmholtz free energy) of certain
(dis)ordered phases are crucial for the self-consistent determination of
the ‘nature’ and precise prediction of many thermodynamic and kinetic
properties of solid alloys.

Thus, due to its importance, many researchers have been attracted to
this field, and, as a result, a set of outstanding experimental findings
[8, 9] as well as theoretical ones [1-7, 10—61] have appeared for the last
decades. Moreover, both the classical (semi-phenomenological) theoret-
ical descriptions [10—19, 29-61] and ab initio electronic structure cal-
culations (based on quantum-mechanical first principles) [20—28] were
found to be remarkably fruitful. It is also worth noting that all these
theoretical achievements were stimulated by many impressive results
of experimental works on an ‘elastic’ interaction of radiations (X-rays
or thermal neutrons) with disordered condensed matter [6—9] (for de-
tails, see also references therein). Consequently, to date, one of the
unique experimental methods, which enables to extract theoretically
the quantitative information about ‘mixing’ energies of atoms in al-
loys, is referred to as the ‘elastic’ diffuse scattering of radiations from
disordered solid solutions [6—9]. The interrelation between the diffuse
scattering intensities in atomically disordered solid solutions and the
‘mixing’-energies’ Fourier components has been proposed theoretically
for the first time by Krivoglaz (1957) [10] and later by Clapp and Moss
(1966-1968) [11-13]. Nowadays, this famous relation is widely known
as the KCM formula. Using the KCM formula in its original form and
within the scope of its main approximations (independence of ‘mixing’
energies on concentration and temperature), it is possible to evaluate
the ‘natural’ temperature and concentration dependences of the diffuse
scattering intensities (see below) or evaluate the ‘mixing’ energies on
the basis of known experimental data on diffuse scattering intensities.
However, in many practical cases, the situation becomes complicated
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due to the presence of several anomalies in the experimental diffuse
scattering patterns such as the concentration- and temperature-in-
duced diffuse intensity splitting [8] near the Lifshitz high-symmetry
points within the first Brillouin zone (1** BZ) in reciprocal space of a
host crystal lattice, their ‘unusual’ temperature and concentration de-
pendences, etc. In order to explain these features, a number of improved
approximations were developed, in particular, considering the many-
body interatomic-interactions’ effects, interatomic correlation phe-
nomena, etc. In fact, as will be shown below, the absence of a proper un-
derstanding of some above-mentioned diffuse scattering anomalies was
the main reason for numerous critiques addressed to the conventional
‘pairwise’ interatomic-interaction models in mixed solids as well as to
the KCM approximation for some metallic alloys. To our knowledge, the
most fruitful theoretical methods are as follow: Tahir-Kheli method
[14], cluster variation method (CVM) [15—17], spherical model (SM)
[18, 19], Onsager cavity field (OCF) method [20, 21] and other advanced
first-principles approaches [22—-28], inverse Monte Carlo (IMC) [29]
method and its linearized (LIMC) [30] version, Vaks—Zein—Kamyshen-
ko cluster-field (CF) approach [31—-33], Tokar—Masanskii—Grishchenko
theory (based on the ‘gamma’ expansion method (GEM)) [34—37], alpha-
expansion (AE) methods including high-temperature methods (HTM)
[38—41]. Also, a series of quite new approaches was developed on the
basis of the so-called ‘ring’ approximation [42—55] and recently on the
basis of the self-consistent-field (SCF) and mean-SCF (MSCF) approxi-
mations’ approach (taking into account strong interrelations between
magnetic and atomic subsystems of an alloy) [56—61]. All these meth-
odologies for evaluations of the interatomic ‘mixing’ energies (diffuse
intensities) can be naturally subdivided into two groups: (i) the recipro-
cal-space representation methods (i.e. in k-space) [10—-14, 18-28, 42—
61] and (ii) the direct-space representation approximations (i.e. in r-
space) [156—17, 29—-41]. It is clear that the main disadvantage of the lat-
ter methods is the restriction of the extent of interatomic-interaction
energies to the finite number of coordination shells due to considering
of a limited number of Warren—Cowley SRO parameters, o(r,,,) (where
l, m, and n denote the conventional Miller’s indices). This shortcoming
disappears, if one employs the methods developed for the infinite radi-
us of interaction energies (i.e. within the Fourier representation). In
case of alloys with a short-range interatomic-interaction nature, for
example, such as the ‘exchange’ magnetic interaction, the results of
both k-space approach and r-space one are almost identical.

In a given work, in imitation of f.c.c.-Ni,_/Fe, alloy, a simple and ac-
curate as well as physically understandable statistical-thermodynamics
model of the atomic SRO states for (para)magnetic substitutional alloys
with two magnetic constituents is developed (Sec. 2). The model is based
on classical statistical-mechanics approximations only (i.e. SCF + MSCF
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[66—61]), which assume the ‘pairwise’ interatomic and magnetic inter-
actions solely, neglecting the interatomic correlation and many-body
interaction effects. Along with such analytic description, as an alterna-
tive, we also consider an ‘interpolating’ approximation, assuming the
(3™ order) polynomial temperature dependence of the total ‘mixing’-
energies’ Fourier components in the (T—c)-domain of a macroscopically
ferromagnetic alloy. Thus, within the scope of both considerations, the
relations for the diffuse scattering intensity are obtained, and, as a re-
sult, similar ones can be applied in general to any magnetically
(dis)ordered substitutional solid solutions with the atomic SRO. The
main results and their discussion are presented in Sec. 3. In particular,
here, the Monte Carlo (MC) simulations are carried out, using the liter-
ature data on the experimentally obtained values of Warren—Cowley
SRO parameters for disordered f.c.c.-Ni—Fe alloy (at different composi-
tions and annealing temperatures). In addition, the modelled local
atomic configurations in a real space and their Fourier transforms (dif-
fuse scattering intensity patterns in a reciprocal space) are thoroughly
analysed. In addition, both the rigorous statistical-thermodynamics
and ‘interpolating’ approximations are applied for calculations of the
(T—c)-dependences of the diffuse scattering intensities for two domi-
nant quasi-wave vectors k within the 1% BZ, namely, superstructural
kx(001) point and ‘fundamental’ Bragg’s kr(000) one for disordered
(para)magnetic f.c.c.-Ni—Fe solid solution. In conclusion of Sec. 3, the
available models and theories, which were applied before for the esti-
mation of interatomic-interaction energies and diffuse scattering pat-
terns for f.c.c.-Ni—Fe alloy, are critically analysed. The summary and
perspectives of a given work are presented in Sec. 4. Finally, we would
like to emphasize that, here, we will not discuss the diffuse scattering
intensities’ distribution over the reciprocal space in details as well as
the ‘mixing’ energies’ Fourier components symmetry behaviour near
the ‘fundamental’ Bragg’s kr(000) point, i.e. in the vicinity of a centre
of the 1°* BZ, although, the suggested models are valid for such a recip-
rocal-space region as well. Due to the special importance of mentioned
information for quantitative interpretation of X-ray or thermal-neu-
tron small-angle scattering data, such an analysis will be done exhaust-
ively and separately in the forthcoming publication.

2. STATISTICAL-THERMODYNAMICS MODEL

OF THE SUBSTITUTIONAL ATOMIC SHORT-RANGE ORDER
AND KINEMATICS OF THE DIFFUSE SCATTERING

OF RADIATIONS IN F.C.C.-Ni—Fe-TYPE ALLOYS

Within the scope of the SCF approximation [1-7] (at temperature, T,
higher than the (Kurnakov) order—disorder phase transformation
point, T), the equilibrium relation between the diffuse scattering in-
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tensities and the ‘mixing’ energies’ Fourier components for a binary
substitutional alloy is defined by the famous Krivoglaz—Clapp—Moss
formula [10-13] as follows:

D
1+c(l-c)B,, (k)

To (K) o< G(K) = (1)

where (k) is the k-th Fourier component of the SRO parameters (or
so-called diffuse scattering intensity, Igzo(k), in dimensionless units
[Laue units]); p=(k5T) " is proportional to the inverse absolute temper-
ature; c is the relative concentration of an alloying element; k5 is the
Boltzmann constant; D is the normalization factor defined as[10—-13]:

|1 - 1 1 o
D= l:Q kEIJ:BZ dk(x(k)} |:Nu.c. ke;BZ 1+c-c)pw,, (k)} - @)

1 1 B
- |:N_uc ke;BZ 1+ec(- C)Bwtot(k)j| .

In Eq. (2), the integration is carried out over the volume Q of the 1°* BZ.
Replacing the integral by the sum leads to the summation that should be
carried over all the N, . points of quasi-continuum with quasi-wave vec-
tors k belonging to the 1°* BZ. Note that, for many alloys, the coefficient
D =1 with accuracy of about 3% (this statement is also true for f.c.c.-
Ni—Fe alloy; for details, see analysis in Sec. 3). One should note that, in
all theories and approximations [10—61], the factor D is defined by Eq.
(2) with distinctions only in the definition of the so-called total ‘mix-
ing’-energies’ Fourier components of an alloy, w, , (k) (see below).

In Eqgs (1) and (2), the total ‘mixing’-energies’ Fourier components,
w,,(k), and the atomic SRO parameters’ Fourier components, G(k)
(i.e. diffuse scattering intensities, Iszo(k)), are defined by correspond-
ing quantities in a direct space by means of the conventional Fourier
transform as follow [1-9]:

D, (k)= D w,(r)exp(-ik-r), (k) = D ofr)exp(-ik -r),(3a)

where, taking into account the intrinsic self-consistency of Egs (1) and
(2), the following constraints should be satisfied [1-9]:

ar=0)=1 (ie. Y dak)=N,,),

(3b)
Windireet (T = 0) =0 (ice. Z Wi girecs (K) = 0).

kel®* BZ

In fact, the second formula in Eq. (3b) means the gauge condition of
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the lack of indirect self-action of atoms in alloys. Furthermore, in the
second formula of Eq. (3a), the quantities o(r) define the so-called
Warren—Cowley SRO parameters determined as follow [1-9]:

a(r) =1-P*2(r)/d -c) =1- PP (r)/c, (3c)

where 1—c (c) is the average concentration of A (B) kind atom, P*%(r)
(PP4(r)) is the ‘two-particle’ probability of finding of A (B) kind atom sep-
arated by a distance r=R—R’ from B (A) kind atom located at the origin
(r=0) in a substitutional solid solution A, .B.based on the Bravais lattice.

In Eq. (3a), w,(r) is the total ‘mixing’ energy presented in terms of a
certain coordination shell with a radius-vector r and defined through
the ‘pairwise’ interatomic ‘mixing’ energies as follows [1-9]:

10,,,(r) = WA (r) + W2 (r) - 2W 22 (r), (4)
where I/Vt‘;‘f (r) are the energies of a total ‘pairwise’ interaction between
the atoms (o, B=A, B) located at the sites R and R’ at the distance r
from each other. As it was shown in [56—61], the total ‘mixing’ energy
for f.c.c.-Ni—Fe alloys can be presented as a sum of three microscopic
energy contributions, namely, ‘direct’ short-range interaction, e.g., (i)
‘electrochemical’ or (ii) magnetic (for instance, Ising- or Heisenberg-
type ‘exchange’) interactions, and (iii) indirect interaction, i.e. ‘strain-
induced’ one (which is long-range and quasi-oscillating in a real space).
Note that the ‘electrochemical’ interactions are usually referred to as
the ‘atom—atom’ or ‘ion—ion’ ‘effective’ interactions arising between
the atoms (ions) located at the sites of a rigid (non-relaxed) crystal lat-
tice. This interaction has an electromagnetic nature matched with ex-
change-correlation effects. The ‘strain-induced’ interaction arises be-
cause of interference of the local static distortion fields of a host crystal
lattice due to introduction of alloying atoms. In other words, this con-
tribution takes into account semi-phenomenologically the atomic-sizes’
mismatch effects in an alloy. An exhaustive theoretical analysis of all
these ‘mixing’ energy contributions for f.c.c.-Ni—Fe alloys and most
salient literature in this matter can be found elsewhere [59, 60].

By the analogy with Refs [10-55], but based on the SCF and MSCF
approximations [56—61], one can immediately develop the simple mod-
el for calculation of the kinematic diffuse-scattering intensity for sub-
stitutional (para)magnetic f.c.c.-Ni—Fe alloys with two magnetic con-
stituents. Thus, in general case, such a part of the scattered-radiation
intensity is caused by both the composition and magnetic-moments’
fluctuations in an alloy. Along with the rigorous model, the simple in-
terpolating approach can also be suggested. Thus, according to Eqs (1)
and (2), one should calculate the total ‘mixing’ energies’ Fourier com-
ponent, w, ,(k), as a function of temperature, T, and composition, c.

Let us consider briefly the statistical-thermodynamics model of
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such an alloy. As shown in [566—61], the total configuration-dependent
part of free energy of (dis)ordered f.c.c.-Ni—Fe alloy is as follows:
FrXt =UY  +UM —T{S™  +XZ S™¥}  where U, and S, are the
configuration internal energies and entropy, respectively, for both
atomic (at) and magnetic (mag) interacting subsystems of an alloy
(a=Ni, Fe). According to [56—61], the configuration entropy of the
magnetic subsystem (i.e. moments with the spin numbers s,=1/2, 1,
3/2,20r5/2, ...)in the long-range ordered magnetic states such as the
ferromagnetic or ferrimagnetic ones can be presented within the scope
of the correlationless (MSCF) approximation as follows [56—65]:

o o

Sree® = N ke, {Ilnsh 1+L y, |- Insh Lya -y,B, (y,);-(5)
- 2s 2s o

Here, B, (y,) is the conventional Brillouin function defined as [62-64]:

1 1 1 1
B =|1+—|cth||1+— —— cth|—uy. |, 6
. (W,) ( ZSJC K 28@}%} 280(0 [2.9“ ya} (6)

Yo=(8eH %)/ (k5T) is the magnetic-to-thermal-energy ratio correspond-
ing to the Weiss intracrystalline ‘molecular’ field Hg, = -gu,X%T" 0,
(within the MSCF approximation with coefficients {I',p}), 0, is the spe-
cific spontaneous magnetization of o-th magnetic subsystem (o = Ni,
Fe), g is the Landéfactor, iz is the Bohr magneton.

The configuration entropy for atomic subsystem of a binary alloy
within the (T—c)-domain of disordered state (with SRO only) can be
presented in the correlationless ‘regular solid solution’ form [1-7]:

Sat

conf

=-N_ kg [clnc+(1—c)1n(1—c)] . (N

Within the scope of the correlationless approximation, configuration
internal energies of magnetic and atomic interacting subsystems in the
atomic SRO state of f.c.c.-Ni—Fe alloy have the forms as follow [56—61]:

Um&lg = % u.c. [erFe (O)CZGiesf‘e + jNiNi(O)(]' - c)2 Giﬁsiﬁ +

conf —

(8)
+ ZJFeNi(O)C(]‘ - C)GFeGNiSFeSNi:| ’
a 1 -
ccfnf = AUOprm + ENu.c.wprm (O)C2 ’ (9)

respectively. In Eq.(8), J,,(0) is the ‘exchange’-integrals’ Fourier
component (a, o =Ni, Fe) corresponding to k=0. In Eq. (9), AU, is the
configuration-dependent part of the internal energy, which is a linear
function of the relative substitutional-atoms’ concentration, ¢ (Fe in
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f.c.c. Ni or Ni in f.c.c. Fe); w_, (0) is the ‘paramagnetic’ ‘mixing’-
energies’ Fourier component within the (T—c)-domain of a paramagnetic
alloy (i.e. above the Curie temperatures, where the replacement
W, (k) —» . (k) is valid; for details, see below). Finally, considering
the above-mentioned approximation of the total configuration-depen-
dent part of free energy of an alloy, F.°, and taking into account Eqs

(5)—(9), one can immediately obtain a relation, e.g., for (para)magnetic
f.c.c.-Ni,_/Fe, alloy with the atomic SRO only in the following form:

Fot = AUy, " 1[11; (0)c® + J 5 (0)C*G2 8% + o s (0)(1 — €)? 62,82, +
Nu.c. Nu.c. 2 o o o - o

+ 2y (0)C(1 = €003, 08,5 | + BT clnc+(1-¢)In(1-¢)] -

_kBT {C {]‘n Sh |:[1 + Lj yFe (GFe ):| - ]'n Sh [L yFe(GFe)J - GFeyFe (GFe ):| +
ste ste
1 1
+1-¢) {ln sh l:(l + J yNi(cNi)} —Insh (— Yni (GNi)j - GNini(GNi):|} .
23Ni 23Ni

(10)

Based on Eq. (10), one can see that Fcffntf can be transformed immedi-
ately into its classical form [1-7] within the (T—c)-domain of a para-
magnetic alloy (i.e. above the Curie temperatures, where the replace-
ment F*' — F’™ is valid too). Using Eq. (10) and considering condi-

conf conf
tions when the derivatives of free energy, JdF., /dc,, and OF"' /do,; ,
are equal to O for thermodynamically equilibrium state, the set of tran-
scendental equations is obtained for determination of the specific

spontaneous magnetizations, 65, and oy;, of both magnetic subsystems:

1

Om = B, K_W{JNiNi(O)(]‘ —¢)’sy0p; + erNi(O)c(]‘ — €)855xiOre }j )

a1

1 - -
Op, = BsF (_ {JFeFe (O)czsf“eGFe + JFeNi (0)c( - c)sFesNiGNi}j .
“\ ck;T

In Eq. (10), the specific combination of w,  (0) and J , (0) gives the
so-called total ‘mixing’ energies’ Fourier component of an alloy for
‘fundamental’ Bragg’s I'(000) point, and thus, for any quasi-wave vec-
tor within the 1°* BZ, it can be presented as follows [56—61]:

Z'Z)tot (k) = prrm (k) + wmag (k) = (pchem (k) + I;;fEFe (k) + lbmag (k) = (pchem (k) +

+I7sfeFe (k) + J NiNi (k)GinSIii + erFe (k)ciesge - 2JNiFe(k)GNiGFeSNiSFe' (12)
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In Eq. (12), ., (k) and V (k) are the Fourier components of ‘electro-
chemical’ ‘mixing’ energies and substitutional-atoms’ (o—a) ‘strain-
induced’ interaction energies, respectively. As a result, from (12), one
can see that the total ‘mixing’ energies’ Fourier components are the
temperature and concentration dependent quantities (due to the contri-
butions of w . (k,c,T) and w,_ (k,c,T); for details, see an analysis in
[60]) and uniquely determine the diffuse-scattering intensities of radi-
ations, Igo(k,c,T) (1), for magnetic binary substitutional alloys at
presence of composition—magnetic moments’ fluctuations. Thus, omit-
ting the ‘weak’ temperature dependence of ‘paramagnetic’ ‘mixing’ en-
ergies, w . (k,c,T) [60], the pronounced temperature dependence of
w,,(k,c,T) (12) at constant composition arises mostly due to the tem-
perature dependences of spontaneous magnetizations for both magnetic
subsystems, 6y.(c,T) and Gy;(c,T), explicitly defined by Eq. (11). Note
that, within the paramagnetic domain of a magnetic-alloy phase dia-
gram, Eq.(12) corresponds immediately to the classical KCM-
approximation constraint with the (T—c)-independent value of w, (k) .
In order to express the total ‘mixing’ energies in the explicit form as a
function of temperature, one can consider a simplest interpolation mod-
el for approximate estimation. Thus, according to [65] (see also a set of
quite similar representations in [62—64]), the temperature dependence
of the spontaneous magnetization in Eqs (11) for a-th (oo = Ni, Fe) sub-
system of atomically disordered alloys based on a cubic Bravais lattice at
certain composition can be presented by the approximate relation:

o, = 1+1<m1 1-L (13)
TC TC

Here, «, is the adjustable parameter, which depends on a concentra-
tion. Substituting Eq. (13) into (12), we obtain immediately as follows:

W, (k) = a,(k) + a, (k)T + a,(k)T* + a,(k)T*. (14)

One can easily find that the wave-vector-dependent coefficients, ay(k),
a,(k), a,(k), as(k), entered into Eq. (14), are defined as follow:

a8y (K) = B, (K) + V1™ (K) + T, (K)5, + I s (K — 2 i (K)Sy S
a,(k) = T, | J g, (K55 (2K, — 1) + J s (K)S%, (2, — 1) -
2 yipe (K)S;r, (K + K, = 1)
a,(k) = Tp” | I yop, (R)sp, (5, — 25, ) + I s (KD, (3 — 2K,) - (9)
2 o ()88, (K Ky, = Koy — K) |5

a;(k) = _TC_3 I:erFe (k)sﬁeKi“e + jNiNi (k)sliiKiIi _sziFe (k)SNisFeKNiKFeJ :
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Next, within the scope of the MSCF approximation, the magnetic
phase-transition temperature (Curie temperature), T, entered into Eq.
(15), is determined by the ‘exchange’ ‘integrals’ of magnetic interac-
tions, J,,(0), and the concentration of Fe atoms, ¢, in a homogeneous
atomic SRO state exclusively in accordance with the formula [56—60]:

T, = —(6ky) " {(1+ 58y i (O)L = €) + (1 + 85,)8p, T e (0 —
_ [((1 + 58Tt (O)(L = €) = (L + 85,085, Tgup (0)¢) + (16)

+ 4L+ 8y)5 (1 + 85, )85, T Ny (001 — c)]%}

Thereby, combining of Eqs (14), (15) and (16), we arrive at the same
conclusion as in the case of above-mentioned SCF + MSCF model,
namely, that, in the magnetic (T—c)-domain of an alloy, the total ‘mix-
ing’ energies’ Fourier components are the (T—c)-dependent quantities.
Moreover, as can be seen from Eq. (14), such dependences at constant
composition can be approximated by the polynomial temperature de-
pendences of the 8™ order, where the parameters, a,(k), a,(k), ay(k),
a;(k), in accordance with Eq. (15), are defined through the microscopic
energy contributions of different natures. Finally, within the scope of
both ‘mixing’ energies’ Fourier components’ representations for
W, (k) (i.e.in accordance with Eqs (12) and (14)), the diffuse scattering
intensity of radiations, I(k)e<o(k), is still determined by the KCM
formula (1) with an appropriate definition of the normalization factor
D (2).

3. RESULTS AND DISCUSSION

3.1. Monte Carlo Simulations of the Atomic SRO States
in (Para)Magnetic F.C.C.-Ni—Fe Alloys

In order to model the local atomic configurations and corresponding
diffuse scattering intensity patterns for f.c.c.-Ni—Fe alloys, the statis-
tical MC simulation method [66—68] is used. The method is based on
the most suitable MC algorithms, which have been developed before,
with regard to the SRO modelling for binary substitutional alloys, and
more details about these techniques can be found elsewhere [69—-78].
Thus, the used algorithm is as follows: (i) the initial random configura-
tion of Ni and Fe atoms (with respective concentrations, cy;=1—c and
Cro=C; Cni +Cp.=1) is generated over the sites of f.c.c. crystallite lattice
with a linear size of L=100 unit-cell parameters (the total number of
sites within the crystallite corresponds to 100x100x100x4 positions);
(ii) two different Ni and/or Fe atoms are chosen randomly and ex-
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changed; (iii) the residual parameter R is calculated in accordance with
the following formula:

R=73 (o — o)’ /Z (), 17)
Imn lmn
where oc?,‘:,fel , o P are the Warren—Cowley SRO parameters for mod-

elled crystallite and experimental data, respectively; (iv) if the parame-
ter R decreases, the atoms are left at the ‘new’ positions, and otherwise,
the exchange is rejected, the atoms are returned to the ‘old’ lattice
sites. The steps (ii)—(iv) are repeated until R reaches some minimum
value, e.g., 107®®, Within the described algorithm, the exchange of at-
oms is realized between arbitrary-distant Ni and Fe atoms. Further-
more, the modelled alloy is considered without site vacancies that is the
reasonable assumption only for analysis of the equilibrium SRO states
with or without a long-range order (LRO) of the atomic spatial distribu-
tion. The periodic free-surface boundary conditions are also applied.

The 2D (001)*-type diffuse scattering intensity patterns are calcu-
lated using the conventional Fourier transformation (3) for both sets
of Warren—Cowley SRO parameters, namely, experimental and mod-
elled ones, o™ and o>, respectively.

The MC simulations are carried out for Permalloy (*2Ni, z65Fe€.235 [79]
or Nigq.sFeqqs [81, 82]), Elinvar (NigsssFeosss [81]) and Invar
(Feg 605" Nig 302 [80] or Feg 35Nig 365 [83]) compositions of f.c.c.-Ni—Fe
alloys isothermally annealed at temperatures above and below the Cu-
rie points, T.

In Tables 1 and 2, the experimental Warren—Cowley SRO parame-
ters, o , taken from [79—-83], where both the thermal neutrons with
the Borie—Sparks—Gragg separation technique [79, 80] and the anoma-
lous X-ray scattering methods with the 3A separation technique [81—
83] were used, are presented along with the SRO parameters calculated
for modelled crystallites, ocfrf,‘fel , at Permalloy, Elinvar and Invar com-
positions and given isothermal annealing temperatures, T,.

Then, using data from Tables 1 and 2 and Fourier transform (3), we
have calculated the 2D diffuse-scattering intensity patterns in (001)*-
type plane of a reciprocal space for f.c.c.-Ni—Fe alloys, Iszo(k,c,T) (Figs
1 and 2). As can be seen, the 2D isodiffuse intensity distributions,
Iszo(k,c,T), depend significantly on the (T—c)-region, where f.c.c.-Ni—
Fe alloys with the atomic SRO are considered.

From Figs 1 and 2, one can see that, in spite of the insignificant dif-
ference between the absolute values of both experimental and modelled
diffuse intensity distributions, the 2D diffraction patterns for modelled
crystallites in their reciprocal-space representation details are in overall
decent agreement with the experimentally measured ones [79—-83].

As can also be seen from Figs 1 and 2, the maximum of the diffuse
scattering intensities is localized at the X(100)-type superstructural
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points, ky, of a reciprocal space (with the insignificant elongation in
(1 k£, 0)-type directions, which is probably due to the interference of the
‘itinerant’ electron waves with the static concentration waves when
kr = kyx, where kyis the Fermi wave number) that shows the preferential
formation of the homogeneous atomic SRO states locally ordered like
to the L1,-type superstructure unit cells.

TABLE 1. The Warren—Cowley SRO parameters, o;." (left columns), extract-
ed from the neutron elastic diffuse scattering experiments [79, 80] for single

crystals of f.c.c.-Ni—Fe alloys with various compositions, ¢, and at different

annealing temperatures, T,, as well as the modelled SRO parameters, o

model
Imn

(right columns). The superscript ‘®*’ denotes an atom of **Ni isotope.

ER o | o

; E %Ni 765F€0.235 | *“Nigr65F€0.235 %Ny 765F€ 235 Feq 695 *Nig 500
Z 808 K[79] 873K |[79] 958 K[79] 743 K[80]

0 000 | 0.932 1 1.1 1 0.988 1 1.0214 1

1 110 |-0.111 -0.1305|-0.0868-0.0957| —0.0946 -0.1310|-0.0201 -0.0282
2 200 | 0.136 0.1388| 0.100 0.1123| 0.0848 0.0933| 0.0451 0.0562
3 211 (-0.006 —0.0361|-0.0024-0.0135| —0.00302 —-0.0193| 0.0046 0.0017
4 220 | 0.052 0.0685|0.0200 0.0427| 0.0183 0.0259| 0.0042 0.0148
5 310 [-0.022 -0.0452(/0.0140 -0.0029| —0.00823 —0.0363| 0.0003 -0.0030
6 222 | 0.031 0.0260|0.0175 0.0168| 0.0067 0.0057| 0.0042 0.0021
7 321 [-0.014 —-0.0113]-0.0026 0.0078 | —-0.00205 —0.0085| 0.0008 0.0077
8 400 | 0.022 -0.0029|0.0084 0.0091| 0.00612 -0.0165 0.0037 0.0034
9a | 330 [-0.013 -0.0376|] — — -0.00073 -0.0192 — —
9 | 411 |-0.013-0.0177] — — -0.0034 -0.0133 — —
10 | 420 | 0.001 0.0199 — — 0.00392 0.0049 — —
11 | 332 | 0.019 -0.0090] — — —-0.00093 -0.0087 — —
12 | 422 | 0.005 0.0192 — — 0.0041 0.0104 — —
13a | 431 | 0.016 -0.0009| — — -0.0013 -0.0043 — —
13b | 510 | 0.016 —0.0192| — — -0.00032 -0.0236 — —
14 | 521 0 0.0039 — — 0.000785 0.0057 — —
15 | 440 |-0.007 -0.0167| — — 0.00162 -0.0131 — —
16a | 433 |-0.007 -0.0112| — — —-0.00059 -0.0103 — —
166 | 530 [-0.007 —0.0098| — — -0.0025 -0.0098 — —
17a | 442 | 0.008 0.0134 — — 0.00121 0.0089 — —
17b | 600 | 0.008 —0.0374| — — 0.000418 -0.0348 — —
18a | 532 |-0.008 -0.0206] — — -0.00105 -0.0186 — —
18b | 611 [-0.008 0.0026 — — -0.00461 0.0027 — —
19 | 620 |[-0.011 0.0055 — — 0.00346 0.0018 — —
20 | 541 | 0.002 0.0027 — — 0.000276 —0.0016 — —
21 | 622 ]0.012 0.0097 — — 0.00151 0.0063 — —
22 | 631 | 0.006 -0.0002] — — -0.00202 -0.0032 — —
23 | 444 — -0.0144| — — -0.00127 -0.0124 — —
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TABLE 2. The Warren—Cowley SRO parameters, o,,” (left columns), extract-
ed from the X-ray anomalous diffuse scattering experiments [81-83] for sin-
gle crystals of f.c.c.-Ni;_Fe, alloys at different annealing temperatures, T, as

well as the modelled SRO parameters, o

model
lmn

(right columns).

R o o

2 S Niy 775Feq 55 Nij 75Feq 55 Nig 555F€0 465 Feg 655N 568
Z 1273 K[81] 1273 K [82] 1273 K[81] 753 K [83]

0 |000|1.00121 1 0.9901 1 1.00002 1 1.0025 1

1 |110-0.10821-0.13664/-0.1557-0.1518-0.07665-0.1396{-0.0583 —0.0797

2 1200/0.11948 0.12729|0.1288 0.1363|0.06463 0.10073|0.0522 0.0675

3 |211|-0.00472-0.02733-0.0165-0.0326| —0.0022 —-0.0189-0.0032 -0.0107

4 1220(0.03077 0.05169|0.0217 0.0547|0.00371 0.01819|0.0002 0.0152

5 |310-0.01792-0.05157-0.0224-0.0542/ —0.0100 —0.0436-0.0062 —0.0186

6 |222|0.01305 0.00634(0.0165 0.0087|0.00371 —-0.0084| — —

7 1321}-0.00752-0.01405-0.0123-0.0158/-0.0039 —-0.0109| — —

8 [400(0.01734 -0.00332 — — 10.00711 -0.0028] — —
9a (330(0.00052 -0.03033] — — [-0.0022 -0.0193] — —
9b [411]|0.00461 -0.00766| — — 10.00077 -0.0106| — —
10 {420|0.00483 0.01855| — — 10.00128 0.00355] — —
11 |332]-0.00322-0.00897 — — [-0.00077-0.0090 — —
12 |422|0.00302 0.01203| — — [-0.0003870.00142| — —
13a |431-0.00251-0.00426] — — [-0.00085-0.0054| — —
136 (510-0.00231-0.03124] — — 10.00026 -0.0251] — —
14 |521|-0.00259-0.00172] — — [-0.00114-0.0001 — —
15 |440/0.002310-0.01563] — — 10.00077 -0.0130] — —
16a |433|-0.00422-0.01156] — — |0.00035 -0.0066] — —
166 [530-0.00171-0.00793 — — [-0.00026-0.0073| — —
17a 442 — 0.00199| — — — -0.0037 — —
175 1600|0.00873 —0.03226| — — [-0.00379-0.0214| — —

Moreover, by moving from Permalloy (of L1,-Ni;Fe type) through

Elinvar (of L1,-NiFe type) to Invar (of L1,-Fe;Ni type) composition re-
gions, the diffuse scattering intensities for the superstructural point
ky, Isro(ky,c), decrease significantly. It can be explained by the signifi-
cant decrease of values of the ‘mixing’ energies’ Fourier components,

W, (ky,c), with increasing of Fe atoms’ concentration (see Table 3
and Eqs (12) and (14) in line with [59, 60]).

Using the Warren—Cowley SRO parameters of modelled crystallites,
for instance, for f.c.c.-®2Ni, ,s5Fe, 235 Permalloy (Table 1) annealed at
T,=958, 873 or 808 K, the local atomic configurations of Ni and Fe at-
oms are reconstructed (Fig. 3). Due to the L1,,-type symmetry of LRO
superstructures of f.c.c.-Ni—Fe alloys and for the ease of further anal-
ysis, the atomic distributions are presented in (001)*-type 2D sections
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Fig. 1. The 2D diffuse-scattering intensity patterns in (001)*-type plane of a
reciprocal space, Igzo(k,c,T) in [Laue units]: (@) Ni, ;¢sFeq 235 @808 K [79], (b)
Nl 765F€0.235@873 K [79], (¢) *Nig 765F'€0 235@958 K [79], (d) Fey 695°*Nig 30,@743
K [80]. The modelled data correspond to the MC simulation results.

in a direct space.

From Fig. 3, one can see that the number of LRO regions ordered by
the L1,-type superstructure increases with decreasing temperature
when changing from PMS (paramagnetic state of atomic SRO) region to
FMS (ferromagnetic state of atomic SRO) one. As shown in [84], the dif-
fuse scattering intensities significantly deviate from those predicted by
the classical KCM formula (1) that confirms the conclusion made in [56—
61] about the essential role of the magnetic contribution into the total
‘mixing’ energies of an alloy within the FMS region (see analysis below).
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Fig. 2. The 2D diffuse-scattering intensity patterns in (001)*-type plane of a
reciprocal space, Igzo(k,c,T) in [Laue units]: (a) Nig ;75Feq 025@1273 K [81], (b)
Ni r75F€0.225@1273 K [82], (¢) Nig 535F€.465@1273 K [81], (d) Fey 655Ni 365@753
K [83]. The modelled data correspond to the MC simulation results.

3.2. (T—c)-Dependence of the Atomic SRO States in (Para)Magnetic
F.C.C.-Ni—Fe Alloys

As shown recently in [60], the ‘paramagnetic’ ‘mixing’ energies Fouri-
er components, W, . (k), calculated for quasi-wave vectors k along the
high-symmetry A(kr — ky) direction within the 1°* BZ are the concen-
tration-dependent functions in accordance with the approximant:

W, (k,c) = Ky(k) + K, (k)c + K, (k)c* (18)
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Fig. 3. The temperature dependence of Ni (o) and Fe (e) atomic configurations
in (001)*-type crystallographic plane for f.c.c.->Ni, ;ssFe,.35 Permalloy ob-
tained by the MC simulations: (a) initial random configuration; (b), (¢) and (d)
modelled atomic SRO configurations at T, = 958, 873 and 808 K, respectively.
The chosen temperatures correspond to the respective annealing tempera-
tures reported in [79]. The atomic L1,-Ni;Fe type LRO clusters are clearly vis-
ible and marked by dark areas.

with the fitting parameters, K (k), K;(k) and K,(k), presented in Table
3. The ‘exchange’ ‘integrals’ Fourier components for magnetic interac-
tions, J . (k), which were calculated within the scope of the MSCF ap-
proximation [58—60] for various possible spin numbers for Ni and Fe
atoms in f.c.c.-Ni—Fe alloys, are presented in Table 4. As evidently from
Table 4, the ‘exchange’ ‘integrals’ Fourier components, Jy,;(k) and
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TABLE 3. The coefficients Ky(k), K;(k) and K,(k) (in [eV]) entered into (18)
for estimation of the concentration-dependent ‘paramagnetic’ ‘mixing’ ener-
gies Fourier components for quasi-wave vectors k within the 1°* BZ, namely,
k(100), A(kr — k) and k(000), for f.c.c.-Ni,_.Fe. alloys [60].

k | Ky(k) | K, (k) | Ky(k) | Approximation
X(001) -0.414 0.450 — 1°* order
X(001)->T(000) 0.855 -2.177 2.087 2" order
o0 0.843 -2.339 2.344 2" order

TABLE 4. The ‘exchange’ (magnetic) interaction energies’ Fourier compo-
nents (in [meV]) for two quasi-wave vectors k within the 1% BZ, k;(100) and
kr(000), depending on local spin numbers of Ni and Fe atoms in f.c.c.-Ni,_Fe,
alloys (c€ [0, 1]) [58-60].

sNi SFe jNiNi(O) erFe (0) JNiFe(O) JNiNi (kX) erFe (kX) e7NiFe (kX)
1/2 1/2  -215.9 274.6 -517.6 172.0 -91.5 172.5
1/2 1 -215.9 103.0 -316.9 72.0 -34.3 105.6
1/2 3/2 2159 549 -231.5 72.0 -18.3  77.2

Jir. (K) » correspond to ferromagnetic interactions, and J . (k) corre-
sponds to the antiferromagnetic character. In spite of the recently ap-
peared and debatable point of view about the completely ferromagnetic
interactions in f.c.c.-Ni—Fe alloys, our result is in an overall agreement
with many experimental and theoretical findings (see Refs [56—60] and
references therein) as well as with the conception of f.c.c. y-Fe itself.

As shown by means of the MC simulations above, the atomic SRO
states of f.c.c.-Ni—Fe alloys depend significantly on the (T—c)-region
where a certain solid solution is considered.

Using the concentration dependence of the ‘paramagnetic’ ‘mixing’
energies’ Fourier components, @, (k,c), for two quasi-wave vectors k
within the 1% BZ, ky and kr, (Table 3) and the temperature—concentra-
tion dependence of the magnetic ‘mixing’ energies’ Fourier compo-
nents, w, . (k,c,T) (according to (11) and (12)), one can calculate the
(T—c)-dependences of the diffuse SRO intensity, Iszo(k,c,T), by means
of the KCM formula (1). Here, all calculations are done for three cases:
(1) Wy, (k) =w,,, (k) = const [10-13], (ii) w,,(k,c) =w,,, (k,c) (Table 3)
[60], and (iii) w,, (k,¢,T) =w,,, (k,c) +w,, (k,¢,T) (12). The results of
such calculations are shown in Fig. 4.

In Figs 4, a, b, one can see that, for both wave-vectors, the function
Igro(k,c,T) has the well-known form predicted by the KCM theory [10—
13], assuming that i, ,(k) = const. A maximum (minimum) of the dif-
fuse-scattering intensities at the ky (kr) point lies at the concentration
¢ =1/2 and decreases (increases) with increasing T, obeying a trivial law.

mag



288 S. M. BOKOCH, V. A. TATARENKO, and I. V. VERNYHORA

1300 1300

\ ‘n,?
1200 + 1200 0.65
0.58 0.72)
4 0.51
M 2.5 x
g 1100 g 11004 - 0.44
1 0.65
7.0
1000 - 1000 !nld
11 rid i
900 AL\ 000 42| . . .
0.0 04 . 06 0.8 1.0 . . y X .
Fe e
a
1300 1300
1200 4 1200
1100 - 1.1 1100
~ i
& 1.8 t':
1000 - 1000
- 3
900 - a7 900 4
//‘4.4 ¥
1.8 5 U\\ )
- 2.4 L5
80041 I [ | 800
0.0 0.2 04 . 0.6 0.8 1.0 .
Fe
c
1300 1300
1200 1200
1100 1100
[ =4}
B B
1000 ~ 1000 <457
900 4 900 o
800 1.2 800
0.0 1.0

Fig. 4. The (T—c)-dependences Igzo(k,c,T) (in [Laue units]) at the high-sym-
metry points within the 15 BZ for f.c.c.-Ni—Fe alloys: superstructural X(001)
and Bragg’s ‘fundamental’ I'(000); (a) w,,,,(ky) =-0.3eV and (b) @, (k;) =
=0.5eV [10-13]; (¢) w,,,, (k) =w,, (k;,c) and (d) w,,, (k) =w,, (k. c) (Ta-
ble 3) [60]; (e) w, ,(ky,c, T) and (f) w,,(k.,c,T) (12). In (e), (f), dotted lines
are the Curie points’ curve of the magnetic phase transitions, T'x(c), calculat-
ed in accordance with (16). The calculation results according to (14) are not
presented because they are almost the same as for (12).
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In the second case shown in Figs 4, ¢, d, when 0, ,(k,c) =w, . (k,¢), a
maximum (minimum) of the diffuse-scattering intensity, Iszo(k,c,T),
is shifted to the composition of ¢c=1/3 for ky or c=1/4 for kr, respec-
tively, due to some competition of the addendums, c¢(1 - c¢)Bw. . (k,c)
and 1, in denominator of the KCM formula (1).

A special attention should be given to the third case presented in Figs
4, e, f, where the total ‘mixing’ energies’ Fourier components are (T—c)-

dependent functions, w,,(k,c,T) (12). As can be seen, the relation
o (k) /(@TOc)|,_, > 0l (ky)/(@TOc)|, . is satisfied and again indi-

cates that, within the FMS (T—c)-domain, the atomic L1,-type SRO
state is stabilized with respect to its PMS region. Apparently, taking
into account the magnetic interactions does not change the total dif-
fuse-scattering intensity pattern but only increases its absolute value
(for both ky and kr) within the FMS state of an alloy.

Let us now analyse the diffuse scattering from f.c.c.-*Ni, ;¢;Fe, 035 solid
solution, using the statistical-thermodynamics model presented in Sec. 2.
The diffuse-scattering patterns from such an alloy were studied in details
experimentally by the elastic diffuse scattering of thermal neutrons [79,
84, 85]. The data obtained in those studies were repeatedly used in devel-
oping and testing of different theoretical models and approximations for
the evaluation of interatomic-interaction energies [30—36, 79]. Table 5
shows the total ‘mixing’ energies for f.c.c.-%2Ni, ,ssFe, .35 Permalloy esti-
mated as ‘effective’ ones in certain approaches with using the different
approximations [30, 33, 36, 79]. The theoretical data are presented for
several isothermal-annealing temperatures, T,, in accordance with [79,
85]. As can be seen from Table 5, the values of total ‘mixing’ energies sig-
nificantly differ, depending on the models used for their calculation. For
ease of further analysis, we have recalculated the Fourier components of
those real-space energies. Thus, using the data shown in Tables 3 and 4 as
well as the ‘mixing’ energies for different coordination shells in a real
space, w,,(R —R/,T), from Table 5 and applying the Fourier transform (3),
the ‘mixing’ energies’ Fourier components, 0, .., (k), for quasi-wave
vectors k within the 1% BZ, namely, ky, A(kyx — k) and kr, are calculated.

For each set of ‘mixing’ energies, the temperature of the absolute loss
of stability with respect to the formation of concentration waves with
the quasi-wave vector ky is calculated, according to the formula [4—7]:

prm

T = —c =)y, (ky )/kB . (19)
The results of such calculations are presented in Table 6. From Table 6,
one can immediately see that, from all instability temperatures, T, on-
ly those, which are calculated using the data extracted from [33] (*CFM:
T,=745K, 780K), [36] (GEM: for all thermal treatments) and in our
model, are agreed reasonably with the experimental value of the order—
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disorder phase transformation temperature, T=771-773 K. The worse
results (with deviation of £150 K) are obtained for the interaction ener-
gies taken from [33] ((CFM: T,=808 K, 958 K; >*CFM: T,=780K) and
for [36] (SM: for all thermal treatments). T, calculated by using the da-
ta from other references poorly match the experimental value of T'x.

The values of the ‘mixing’ energies obtained using the KCM [79] and
LIMCM [30] approaches (see Tables 5 and 6) are underestimated com-
paring with the CFM [33], SM and GEM [36] data as well as with the
present-work results and, therefore, give significantly lower values of
the instability temperatures (Table 6). One can also conclude that the
main reason of such a disagreement is caused by the use of incorrect
values of the Warren—Cowley SRO parameters, o(r,,,), calculated in
[79] (especially for the FMS (T—c)-domain), neglecting the magnetic
contribution and its temperature and concentration dependences (see,
e.g., Eqs (12) or (14) along with (1) and (2)). It should also be mentioned
that the assumption made in [34—37] about separating the interatomic
interaction into two contributions, the short-range and long-range
ones (with consecutive expansion by a small parameter ‘y’), is quite
reasonable; however, at the same time, it is not so evident as in the
suggested models, where the total ‘mixing’ energies are given in the
form of (12) or (14). In such cases, the total ‘mixing’ energies consist
of both the ‘short-range’ (‘electrochemical’ and magnetic) and ‘long-
range’ (‘strain-induced’) energy contributions in their explicit forms.

3.3. Kinematics of the Diffuse Scattering of Radiations
in a (Para)Magnetic F.C.C.-Ni, ;¢;Fe .35 Permalloy

Let us consider another application of the models developed in Sec. 2 by
way of illustration of detailed calculations of the diffuse scattering in-
tensities for f.c.c.-*?Ni, ;ssFe, 235 Permalloy. With such a goal, at the be-
ginning, we calculate the temperature dependence of the spontaneous
magnetizations for both interacting magnetic subsystems, &5(T),
oni(T), using the SCF + MSCF approximations (11) and the interpolation
scheme (13) (with the admissible adjustable parameters, Ky;, Kg,).

The results of such calculations are shown in Fig. 5, where one can see
that the results on the temperature dependence of spontaneous magnetiza-
tions obtained in both approximations in accordance with Eqs (11) and (13)
are in a good agreement with each other within the whole temperature in-
terval (0, T.). Slight disagreements for Ni-subsystem magnetization,
oni(T), including its nonphysical value >1, appeared at T e (0, 450 K), is
caused by the inaccuracy of Eq. (13). Thus, using the values of o (T),
oni(T) (Fig. 5) and the ‘paramagnetic’ ‘mixing’ energies, w_ . (k,c) (Ta-
ble 3), as well as the ‘exchange’ ‘integrals’, J (k) (Table 4), one can cal-
culate the T-dependence of total ‘mixing’ energies’ Fourier components,
w, . (k,c,T), in accordance with Egs (12) and (14) for ¢=0.235.
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TABLE 6. The total (‘effective’) ‘mixing’ energies’ Fourier components,

wtot (k)

(in [meVY]), calculated using the data for f.c.c.-52Ni, ,ssFe, o35 Permalloy from Ta-
bles 3, 4 and 5 for quasi-wave vectors k within the 1% BZ: near the ‘fundamental’
T'(000) point, A(k — kr); at the ‘fundamental’ T'(000) point precisely, kr; for the
superstructural X(100) point, ky. The absolute instability temperatures, T, (in
[K]), calculated with (19), using the values of & (k, ), are presented too.

Theory | o T Kl 958 808 780 776 745
nergies
7Tk > k) 338.1  225.6 241.1 — —
I%%V]I B (k) _135.6  -158.8  -152.8 — —
Tt 282.9  331.3 318.7 _ _
} 7k — k) 4494  273.6 403.2 454.2 _
Ll[lg’IOC]M’ B (k) 1714 -192.0  -196.8  -205.0 —
Tt 357.5  400.5 410.5 427.6 _
; 7k — k) 493.8  361.8 420.0 487.8 _
Ll[lg’l(%M’ B (k) ~179.8  -193.4  -196.0  -208.2 —
Tt 375.0  403.4 408.8 434.3 —
i 7Tk — k) 847.4  1708.8 683.8 661.7
(331 B (k) ~306.2  -425.6  -378.6 _ ~377.6
Tt 638.7  887.8 789.7 _ 787.7
; 7k — k) — _ 803.8 _ _
a1’ e (k) — — ~409 — —
Tout _ — 853.1 _ _
; 7k — k) _ _ 839.2 _ _
(Egé\g[ B (k) - - _418.4 — -
Tt — — 872.7 _ —
ot 77k — k) 815.0  640.4 605.2 _ 575.4
36, B (k) 314.6  -441.2  -385.2 _ -384.9
Tt 656.2  920.207  803.5 _ 802.8
\GEM 7k — k) 796.8  642.6 675.6 _ 756.6
361 B (k) -372.8  -379.8  -367.6 _ -369.8
Tt 7.6 792.2 766.8 _ 771.4
- 7k — k) 744.0 7224 703.2 — —
561 B (k) 248.0 -240.8  -234.4 _ _
Tt 517.3  502.3 488.9 _ _
7, (k- k) 458.7  458.7 458.7 458.7  458.7
@, (k,) 500.0  500.0 500.0 500.0  500.0
@, (k) ~308.0 -308.0  -308.0  -308.0 —308.0
& (k) 0 61.4 89.8 93.8  123.6
pﬁfj;’l‘{“ D, (ky) 0 -20.5 -29.9 -31.3  -41.2
&,k - k,) 458.7  520.1 548.5 552.5  582.3
,,, (k,) 500.0  561.4 580.8 593.8  623.6
@, (k,) ~308.0 -328.5  -337.9  -339.3 -349.2
Tt 745 745 45 745 745

=771 Kis the experimental Kurnakov temperature value reported in [84].

The title abbreviations of theoretical methods are in Table 5.

* For exchange 1nteract10ns, which are the ‘direct’ and limited to the 1°* coordmatlon shell

only, @ W, k) =

T.=862K, for energies calculated at T,=958 K, it is necessary to replace

mag

(k — k) . Because the estimated Curie point of f.c.c.-**Nig 76;Feq 235 is

~eff(k) N ~eff (k)

tot

prm
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Fig. 5. The temperature dependence of the spontaneous magnetization for o-
th (o= Ni, Fe) subsystem, 6,(7T), calculated for f.c.c.-Ni, ;5;Fe,.055 alloy with-
out the atomic LRO; (! is extracted by solving Eqgs (11), 6 is extracted with
use of (13) (ky;=3/4, kp.=1/2). In calculations, the ‘exchange’ ‘integrals’
Fourier components, J (k) , are chosen for values of sy;=1/2, sg,=3/2 (Table
4). Note that, at the Kurnakov point precisely, Ty, the functions ¢?(T)
should demonstrate the jumps, Ac$?(T), due to the jump of the atomic LRO
parameter, An(T), and, in such a case, the functions c"?(T € (0, Tx)) must be
calculated in accordance with the more general SCF+MSCF equations with
respect to (11), which can be found elsewhere [56—61]. Since here, we are in-
terested in consideration of the (meta)stable FMS region only, such a reasona-
ble correction in the 6{"?(T) functions may be omitted for T e (T, T,) (and
even for the quenched ‘high-temperature’ SRO state fixed at T e (0, Tx)).
Here, FML, FMS and PMS are the ferromagnetic atomic LRO, ferromagnetic
atomic SRO and paramagnetic atomic SRO regions, respectively. The estimat-
ed Curie temperature, T, is equal to 862 K.

Next, substituting the dependence w, , (k,c,T) into the KCM formu-
la (1) (assuming D =1 in (2)), it is possible to calculate the temperature
dependence of the diffuse scattering intensities, Iszo(k,c,T), for quasi-
wave vectors k within the 1** BZ such as ky, A(ky — kr) and kr. The re-
sults of such calculations and the recalculated data (using the ‘mixing’
energies taken from [30, 33, 36, 79] and the data presented in Tables 5
and 6) are shown in Fig. 6 in comparison with the experimental results
reported in [79, 84, 85].

From Fig. 6, one can see that the temperature dependence of the dif-
fuse scattering intensity (in accordance with both approximations (12)
and (14)) for the dominant superstructural point ky, Iszo(ky,T) are in
an excellent agreement with the experimental data reported in [79, 84,
85]. It is also visible that the ‘non-analyticity’ of the interatomic-
interaction energies’ Fourier component at k = kr (see Refs in [58, 60])
leads to the difference in the diffuse scattering intensities for the qua-
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Fig. 6. The temperature dependence of the diffuse scattering intensities,
Iro(k,T) in [Laue units], for f.c.c.-2Ni, ,ssFe, 035 Permalloy, for quasi-wave
vectors k within the 1** BZ: ky, A(ky — kr) and kr. The data in [30, 33, 36, 79]
are obtained theoretically; m—the experimental data on Igzo(k) from [84] (for
808 K from [85], for 873 and 958 K from [79]). "KCM (n=1, 2, 3)—the results
of a given work: 'KCM—a classical approximation with an assumption of
W, (k) = W, (k) = const [10-13], ’KCM and *KCM are based on Eq. (12) and
Eq. (14), respectively. As assumed here, w_ (k,) =-0.30eV, w_ (k.)=0.50
eV, and w,, (k; — k) =0.46 eV (see also Tables 3 and 6) [60]. Here, the re-
sults of other theories should be addressed to KCM [79], 'LIMCM [30],
LIMCM [30], SM [36], 'GEM [36], *GEM [36], 'CFM [33], 2CFM [33], and
3CFM [33]. T\, is the absolute stability-loss temperature: T, (?>¥=626, 745,
755 K. The data, for which T, > 745 K, are not shown for lucidity. The esti-
mated Curie temperature, T, is equal to 862 K (16).

si-wave vectors kr and A(ky — kr). (Taking into account such a differ-
ence is crucially important for the correct interpretation of the dif-
fraction data on isostructural and spinodal decompositions in solid so-
lutions.)

The obvious disagreement between the calculated temperature de-
pendence of the diffuse scattering intensities for ‘fundamental’
Bragg’s (structural) reflection, Iszo(kr,T), and the estimated depend-
ences Igzo(k — kr,T) (obtained by means of the extrapolation of exper-
imental data taken from Refs [79, 84, 85]) is most likely due to the ex-
perimental difficulties appeared in the measurement and during sepa-
ration of the diffuse scattering intensity (because of the strong coher-
ent scattering as well as the scattering by phonons, magnons, and other
nonlocalized excitations) in the vicinity of the ‘fundamental’ I'(000)
point. In addition, the diffuse scattering intensities for all quasi-wave
vectors significantly deviate from the KCM prediction (at assumption
of w, (k) = const ), when the temperature decreases from PMS to FMS
regions. At the same time, the results of the suggested models and the
classical KCM approach [10-13] are matched completely within the



296 S. M. BOKOCH, V. A. TATARENKO, and I. V. VERNYHORA

PMS region for the alloy at issue (T'>T).

3.4. Constant D in the KCM Formula for F.C.C.-Ni—Fe Alloys

Finally, let us analyse in this Section the constant D (2) entered into
the KCM formula (1). In the theoretical works [30—36] and experi-
mental studies [79, 84, 85], much attention was paid to the analysis of
the normalization constant D (2). In particular, the main conclusion
was about the strong concentration and temperature dependences of D,
D(T,c), and the significant deviation of D from D=1 with decreasing
temperature. As a result, the authors claim that the KCM formula (1)
cannot be used adequately for the analysis of f.c.c.-Ni—Fe alloys at
temperatures close to the Kurnakov points and within the FMS region.
Their argumentation is based solely on the fact that the KCM approach
is adequate if and only if the condition is satisfied as follows:
w,,(ky)/ (E;T) < 1. However, as can be seen from Fig. 6, there is no
necessity in such a conclusion. Let us consider this point in detail fit-
ting with observed data.

Using the total ‘mixing’ energies’ Fourier components’ representa-
tion in the form of (12) with the factor D (2) for f.c.c.-Ni—Fe alloys, one
can carry out the integration over the 1% BZ in order to obtain the (T—
c)-dependence of D =D(T,c). The results are shown in Fig. 7. For such a
calculation, three cases are considered as follow: (i) w,, (k) = const (as
original KCM assumption [10-13]), (ii) @, (k) =w . (k,c) (based on
Table 3) [60], and (iii) w, (k) = w,,(k,c,T) (based on Egs (12) or (14) in
line with Tables 3 and 4).

As can be seen from Fig. 7, the constant D deviates slightly from the
value D=1 within the whole (T—c)-domain of f.c.c.-Ni—Fe alloys with
the atomic SRO. There is only the exception near the Invar composition
region (cgp. = 0.65). This unconventional behaviour is likely due to the
competition between the (T—c)-dependent energy contributions such as
Eq. (12) (within the PMS region) multiplied by the concentration—
temperature factor ¢(1 —c)p and 1 in denominator in Eq. (2). As a re-
sult, within the Invar composition region, it is necessary to consider
the correction of D#1 into the KCM formula (1). In any event, the con-
clusion about the constant D reported in [30—-37, 79, 84, 85] does not
correspond to validity because of fact that the factor D tends strongly
to D=1 within the FMS region, compared with the PMS one (Figs 7, b,
¢). Moreover, in this case, the ratio w,_ (k) / (k;T) <1 [10-13] is not
violated, and the ratio w, , (k) / (B,T) can be even compared with 1.

4. CONCLUSIONS

In a given work, within the scope of the SCF and MSCF approximations
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Fig.7.The (T—c)-dependence of the normalization ‘constant’, D (namely,
D=D(c,T)), in Eq. (2) calculated at several assumptions: (a) w,,, (k) = const
[10-13], (b) @,,,,(K) = ,,,,(k,¢) (Table 3) [60], (¢) W, (K) =, (k.c,T) (see
Eqs (12) or (14) and Tables 3 and 4). Here, ¢ = ¢y.. The function T(cy,) is calcu-
lated according to Eq. (16).

[66—61], on an example of detailed consideration of disordered f.c.c.-
Ni-Fe alloy with the atomic SRO, the statistical-thermodynamics
model of the substitutional atomic SRO states for binary (pa-
ra)magnetic alloys based on the cubic Bravais crystal lattice with two
magnetic constituents is improved. In addition, a simple approxima-
tion representing the total ‘mixing’ energies’ Fourier components as a
polynomial temperature-dependent function of 3™ order within the
magnetic (T—c)-domain of an alloy is suggested. As a result, the inter-
polating relations for the (T—c)-dependence of the diffuse scattering
intensities are obtained on the basis of the classical KCM formula and
representing the total ‘mixing’ energies’ Fourier components as a sum
of three energy contributions of different natures, namely, the ‘short-
range’ and ‘direct’ ‘electrochemical’ and ‘exchange’ (magnetic) inter-
actions as well as the ‘long-range’ and ‘indirect’ ‘strain-induced’ in-
teraction. In both cases, we have suggested the explicit form for (T—c)-
dependence of the total ‘mixing’ energies (Eqs (12) and (14)) for f.c.c.-
Ni-Fe alloys.

Using the statistical MC simulation technique and the Warren—
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Cowley SRO parameters extracted from the radiation diffuse scatter-
ing experiments [79-83], the local atomic configurations (and their
Fourier transforms, i.e. diffuse scattering patterns) for f.c.c.-Ni—Fe
alloys within the Permalloy, Elinvar and Invar compositions are ob-
tained at temperatures above and below the Curie points, T,. As
shown, the diffuse scattering intensity at the superstructural quasi-
wave vector, ky(001), significantly depends on temperature and com-
position of an alloy. This phenomenon testifies on the essential role of
the alloy magnetism in thermodynamics of the atomic SRO states.

Within the scope of suggested models, we have calculated the (T—c)-
dependence of the diffuse scattering intensities for two preferential
quasi-wave vectors within the 1% BZ, namely, for the high-symmetry
points—superstructural ky(001) and ‘fundamental’ kr(000). As a re-
sult, as shown unambiguously, taking into account the magnetic (‘ex-
change’) interactions in the statistical thermodynamics of disordered
alloys leads to the significant deviation of the diffuse scattering inten-
sity from its classical form governed by the KCM formula, which as-
sumes the (T—c)-independence of the total ‘mixing’ energies. Such a
deviation is mainly caused by the strong (T—c)-dependence of the mag-
netic ‘mixing’-energies’ contribution (Eqs (12) and (14)) within the
magnetic domain of an alloy phase diagram as well as its strong influ-
ence on the atomic subsystem and vice versa.

Furthermore, we have carefully verified the accuracy of suggested
models on an example of the prediction of the diffuse scattering inten-
sities for f.c.c.-%2Ni, ;6sFe, 235 Permalloy across its magnetic and para-
magnetic domains with the atomic SRO. The results were compared
with the most reliable data of the neutrons’ diffuse scattering experi-
ments [79, 84, 85] as well as with the theoretical results reported be-
fore [30—36]. As a result, we have found an excellent agreement of
both approximate models reported here with the experiments (Fig. 6).

Finally, within the scope of the suggested models, the normalization
factor D, which enters into the KCM formula, has been estimated with-
in the whole (para)magnetic (T—c)-domain of f.c.c.-Ni—Fe alloys with
the atomic SRO. As shown, the constant D does not significantly devi-
ate from the value D=1 for the whole (T—c)-domain of (para)magnetic
f.c.c.-Ni—Fe alloys, and within the magnetic region of an alloy, such a
requirement is satisfied rigorously, compared with the paramagnetic
state of the system at issue. As a result, we demonstrate that, in case of
magnetic alloys, the numerous criticisms of the KCM formula as such
expressed by many researchers over the last several decades are ground-
less for realistic simulation of interatomic interactions. Moreover, the
correct consideration of magnetism (even within the scope of the sim-
plified local magnetic-moments’ model only) in the statistical thermo-
dynamics of magnetic alloys is still making the KCM approach as a
unique theoretical tool for precise evaluations of the interatomic ‘mix-
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ing’ energies in magnetically ordered mixed systems.

Therefore, as may be concluded, in many practical cases, it is not
necessary to overestimate the relevance of both the interatomic corre-
lation and the many-body interaction effects in statistical physics of
disordered magnetic materials. Almost all reliable experimental fea-
tures of the diffuse scattering of radiations can be easily explained and
reasonably described within the scope of the simplest ‘pairwise’ intera-
tomic-interactions’ model solely and with using the conventional SCF
and MSCF approximations, in particular, the classical KCM formula
within the simple representation of the total ‘mixing’ energies’ Fouri-
er components in the form of (12) or (14).

In conclusion, one may suggest the possible applications of the sug-
gested models for ‘indirect’ evaluation of the magnetic ‘mixing’ ener-
gies (or ‘exchange’ ‘integrals’) for atoms with magnetic moments in
alloys by using the synchrotron X-ray scattering technique only in-
stead of the conventional neutron scattering methods [86—88]. Thus,
(i) by measuring the temperature dependence of the diffuse scattering
intensity, Iggo(k,,T), within the paramagnetic and magnetic (T—c)-
domains for the superstructural quasi-wave vector, k,, generating the
dominant fluctuation concentration wave in a magnetic alloy with the
atomic SRO, and (ii) by interpolating these data by the KCM formula
(1), taking into account the representation by (12) or (14), it becomes
possible to estimate theoretically a set of microscopic parameters of an
alloy, including magnetic ‘mixing’ energies and corresponding ‘ex-
change’ ‘integrals’.

We believe that the presented study may shed a fresh insight into
the physics of substitutional atomic-SRO phenomena in conventional
and up-to-date (para)magnetic alloys, revising several established con-
ceptions in the statistical thermodynamics of solid solutions.
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