PACS numbers: 75.10.Dg, 75.30.Et, 75.30.Gw, 75.30.Kz, 75.30.Mb, 75.60.Ch, 75.80.+q

Локально-ковалентная модель магнетизма 4f-металлов

А.И.Мицек

Институт металлофизики им. Г.В.Курдюмова НАН Украины, бульв. Академика Вернадского, 36, 03680, ГСП, Киев-142, Украина

Электронная структура редкоземельных 4f-металлов (РЗМ) рассчитывается в представлении многоэлектронных операторных спиноров (МЭОС). Локализованные 4f-электроны (МЭОС F_r^n , n = 1-7) имеют спин S_r (спиновый фактор МЭОС $c_{rS\sigma}$) и орбитальный момент L_r (фактор МЭОС v_{rL}). Возбуждаемые на ковалентные связи 5d-электроны (МЭОС $D_r = \{d_{r \circ l} c_{r \circ \sigma} v_{rL}\}$) с амплитудой ξ_D волновой функции создают также обмен 4f-5d-4f между ионами. Условия локализации ($d_r d_r = 1 = F_r \overline{F_r}$) строго определяют МЭОС и их вторичное квантование методом боголюбовских функций Грина. Спонтанная намагниченность M_s и ферромагнитная анизотропия (ФМА) выражаются через угловой момент \mathbf{J}_r (или $J_T = \langle J_r^z \rangle$). Малая величина $T_c(T_N) \cong 10^2$ К тяжелых РЗМ (кроме Gd) определяется размораживанием s_r , l_r и $\xi_D^2 \ll 1$ ковалентных 5*d*-электронов. Их флуктуации химических связей (ФХС) $E_k^D = \Gamma k^2$ уменьшают энергию магнона $E_k^m = 2AJk^2 + \mu(B_A + B)$ на $\Delta E^m = -\Delta Ak (\Delta A \propto T^2)$. Поле ФМА ($B_A > 0$) стабилизирует ФМ-фазу при $T < T_{0c} \cong 10^2 M$ $\cong 10^2$ К. При $T > T_{0c}$ немонотонная функция $E^m(k)$ изменяет знак при $k=k_0=$ $= Q_c \propto (T-T_{0c})$. Дестабилизированная Φ М-фаза переходит в геликоид с вектором $Q_c(T) \cong 0,1$ для Tb, Dy, Ho. Приложение магнитного поля $B = B_c \propto (T - C)$ $-T_{0c})\cong 1$ Тл вызывает метамагнитный переход первого рода в ФМ-фазу. Обменный интеграл A(S, L) слагается из спиновой и орбитальной частей за счет размораживания s, или l,. Механизм кристаллического поля (КП — СF) для ФМА рассчитывается как отталкивание «эффективных зарядов» ($\propto F_r \overline{D}_r$). ГПУ-деформация ($\propto u_{zz} \cong -10^{-2}$) кубической решетки выделяет анизотропные части КП ($\propto s_r^z S_r^z$ и $l_r^z L_r^z$). Их вклады в константы ФМА инноогронные насти си (z, z_r) (A_D) и спин-орбиты λ . Их выражение через фактор Ланде g (при переходе к форме $(J_r^z J_R^z)$) выделяет критическое значение g = 5/4. При g < 5/4 константа K_1^{CF} (>0 для Tb, Dy, Ho) меняет знак ($K_1^{CF} < 0$ для Er, Tm). Соответственно изменяется знак экспериментальной константы ФМА ($K_1^{exp} = -(K_1^{CF} + 2K_2^{CF})$). Аналогичный расчет ферромагнитной магнитострикции (ФМС) в механизме КП дает также большие параметры ФМС ($ilde{\lambda}\cong 10^{10}$ эрг/см 3) и их константы $\widehat{\lambda}\cong 10^{-3}$. Анизотропия «гигантской ФМС» кубического TbFe₂ (и других аналогичных интерметаллидов) объясняется сильной связью Fe–Tb–Fe вдоль [111], что

61

дает $\lambda_{111} >> |\lambda_{100}|$. Особый случай — Gd (n = 7, L = 0, устойчивая наполовину заполненная 4f-оболочка). При слабом размораживании s_r и l_r вклад КП в ФМА мал. Конкурирующий вклад ковалентного члена ФМА (такой же величины, но обратного знака), сильно зависящий от T, благодаря эффектам экранирования, создает немонотонность $K_1^{exp}(T)$ и сложную МФД. Большое растворение водорода в РЗМ объясняется сильными ковалентными Ме-Hсвязями. Система MeH_x (x > 1), за счет ФХС, имеет сильную зависимость $x_0(T)$ в равновесии ($x = x_0$). Рост электросопротивления R(x) с ростом x объясняется изменением поверхности Ферми вблизи пересечения зонного спектра с ФХС. Появляется линейная часть закона его дисперсии $\tilde{\varepsilon}(k) \propto k$. Падает DOS(ε_F) и изменяются МФД, тепловые и другие свойства. Предлагается модель кубитов на основе нанодоменов геликоида.

Електронна структура рідкісноземельних 4f-металів (P3M) розраховується в зображенні багатоелектронних операторних спінорів (БЕОС). Льокалізовані 4*f*-електрони (БЕОС F_r^n , n = 1-7) мають спін S_r (спіновий фактор БЕОС c_{rSo}) і орбітальний момент L_r (фактор БЕОС v_{rL}). Збуджувані на ковалентні зв'язки 5*d*-електрони (БЕОС $D_r = \{d_{rot} c_{rSo} v_{rL}\}$) з амплітудою ξ_D хвильової функції створюють також обмін 4*f*-5*d*-4*f* між йонами. Умови льокалізації $(d_r d_r = 1 = F_r F_r)$ визначають БЕОС та їхнє вторинне квантування методою Боголюбових Ґрінових функцій. Спонтанна намагнетованість M_s і феромагнетна анізотропія (ФМА) виражаються через кутовий момент \mathbf{J}_r (або J_T = гненна анізотроння (Фіміч) вправилоться через кутовий монент о_r (мос о_T = $\langle J_r^z \rangle$). Мала величина $T_c(T_N) \cong 10^2$ К важких РЗМ (крім Gd) визначається розморожуванням s_r , l_r і $\xi_D^z << 1$ ковалентних 5*d*-електронів. Їхні флюкту-ації хемічних зв'язків (ФХЗ) $E_k^D = \Gamma k^2$ зменшують енергію магнона $E_k^m = 2AJk^2 + \mu (B_A + B)$ на $\Delta E^m = -\Delta Ak$ ($\Delta A \propto T^2$). Поле ФМА ($B_A > 0$) стабілізує ФМ-фазу при $T < T_{0c} \cong 10^2$ К. При $T > T_{0c}$ немонотонна $E^m(k)$ змінює знак при $k=k_0=Q_c\propto (T-T_{0c})$. Дестабілізована ФМ-фаза переходить у гелікоїд з вектором $Q_c(T) \cong 0,1$ для Tb, Dy, Ho. Прикладання магнетного поля $B = B_c \propto$ $\propto (T-T_{0c})\cong 1$ Тл викликає метамагнетний перехід першого роду в $\Phi\mathrm{M}$ -фазу. Обмінний інтеґрал A(S,L) складається зі спінової та орбітальної частин за рахунок розморожування s, або l,. Механізм кристалічного поля (КП — CF) для ФМА розраховується як відштовхування «ефективних зарядів» $(\propto F_r\overline{D}_r)$. ГЩУ-деформація ($\propto u_{zz} \cong -10^{-2}$) кубічної ґратниці виокремлює анізотропні частини КП ($\propto s_r^z S_r^z$ і $l_r^z L_r^z$). Їхні внески до констант ФМА ($K_1^{
m CF}$, ...) залежать від Хундового обміну (A_D) і спін-орбіти λ . Їхнє вираження через фактор Лянде g (при переході до форми ($J_r^z J_R^z$)) виділяє критичне значення g = 5/4. При g < 5/4 константа K_1^{CF} (>0 для Tb, Dy, Ho) змінює знак ($K_1^{CF} < 0$ для Ег, Тm). Відповідно змінюється знак експериментальної константи Φ MA ($K_1^{exp} = -(K_1^{CF} + 2K_2^{CF})$). Аналогічний розрахунок феромагнетної магнетострикції (Φ MC) у механізмі КП дає також великі параметри Φ MC ($\hat{\Lambda} \cong 10^{10}$ ерг/см³) та їхні константи $\hat{\lambda} \cong 10^{-3}$. Анізотропія «гігантської Φ MC» кубічного TbFe₂ (та інших аналогічних інтерметалідів) пояснюється сильним зв'язком Fe-Tb-Fe вздовж [111], що дає $\lambda_{111} >> |\lambda_{100}|$. Особливий випадок — Gd (*n* = 7, *L* = 0, стійка напівзаповнена 4*f*-оболонка). При слабкому розморожуванні s, і l, внесок КП до ФМА малий. Конкуруючий внесок ковалентного члену ФМА (такої ж величини, але протилежного знаку), сильно залежного від T, завдяки ефектам екранування, створює немонотонність $K_1^{\exp}(T)$ і складну МФД. Велике розчинення водню в РЗМ пояснюється сильними ковалентними Me–H-зв'язками. Система MeH_x (x >> 1), за рахунок

ФХЗ, має сильну залежність $x_0(T)$ у рівновазі ($x = x_0$). Зростання електроопору R(x) із зростанням x пояснюється зміною поверхні Фермі поблизу перетину зонного спектру з ФХЗ. З'являється лінійна частина закону його дисперсії $\tilde{\varepsilon}(k) \propto k$. Падає DOS(ε_F) і змінюються МФД, теплові та інші властивості. Запропоновано модель кубітів на основі нанодоменів гелікоїда.

The electronic structure of rare-earth 4f-metals (REM) is calculated within the many-electron operator spinors (MEOS) representation. Localized 4f-electrons (MEOS is F_r^n , n = 1-7) have spin S_r (MEOS spin factor is $c_{rS\sigma}$) and orbital moment L_r (MEOS factor is v_{rL}). The 5*d*-electrons exited on covalent bonds (MEOS is $D_r = \{d_{rot} c_{rS\sigma} v_{rl}\}$ with amplitude ξ_D of wave function create the 4f-5d-4f exchange between ions. Localization conditions ($d_r \overline{d}_r = 1 = F_r \overline{F}_r$) define MEOS and their secondary quantization by the Bogolyubov Green functions' method. Spontaneous magnetization, M_s, and ferromagnetic anisotropy (FMA) are expressed through the angular moment \mathbf{J}_r (or $\mathbf{J}_T = \langle \mathbf{J}_r^z \rangle$). The small value of $T_c(T_N) \cong 10^2$ K for heavy REM (except Gd) is defined by unfreezing of s_r , l_r and $\xi_{c}^{D} \ll 1$ of covalent 5*d*-electrons. Their chemical by differentiations (CBF) $\xi_{c}^{D} \ll 1$ of covalent 5*d*-electrons. Their chemical bond fluctuations (CBF) $E_{k}^{D} = \Gamma k^{2}$ decrease magnon energy $E_{k}^{m} = 2AJk^{2} + \mu(B_{A} + B)$ by $\Delta E^{m} = -\Delta Ak$ ($\Delta A \propto T^{2}$). FMA field ($B_{A} > 0$) stabilizes FM phase at $T < T_{0c} \approx 10^{2}$ K. When T > $> T_{0c}$, the nonmonotonic $E^{m}(k)$ changes its sign at $k = k_{0} = Q_{c} \propto (T - T_{0c})$. Destabilized FM phase transforms in helicoid with vector $Q_c(T) \cong 0,1$ for Tb, Dy, Ho. Application of magnetic field, $B = B_c \propto (T - T_{0c}) \cong 1$ T, causes the first-kind metamagnetic transition into FM phase. Exchange integral, A(S, L), is composed from spin and orbital parts owing to s_r or l_r unfreezing. Crystal field (CF) mechanism for FMA is calculated as repulsion of 'effective charges' ($\propto F_{r}\overline{D}_{r}$). H.C.P. deformation ($\propto u_{zz} \simeq -10^{-2}$) of cubic lattice separates CF anisotropic parts ($\propto s_r^z S_r^z$ and $l_r^z L_r^z$). Their contributions into FMA constants (K_1^{CF} , ...) depend on the Hund exchange (A_D) and on the spin-orbit coupling, λ . Their expression through the Lande's g-factor (at transition to $(J_r^z J_R^z)$ form) separates critical value g = 5/4. When g < 5/4, constant K_1^{CF} (> 0 for Tb, Dy, Ho) changes its sign ($K_1^{CF} < 0$ for Er, Tm). The sign of experimental FMA constant ($K_1^{exp} = -(K_1^{CF} + 2K_2^{CF})$) changes accordingly. Analogous calculation of ferromagnetic magnetostriction (FMS) within the CF mechanism gives also large FMS parameters ($\hat{\Lambda} \cong 10^{10} \text{ erg/cm}^3$) and their constants, $\hat{\lambda} \cong 10^{-3}$. Anisotropy of 'giant FMS' of cubic TbFe2 (and other analogous intermetallides) is explained by strong Fe–Tb–Fe bonds along [111] that gives $\lambda_{111} >> |\lambda_{100}|$. Particular case is Gd (n = 7, L = 0, stable half-filled 4*f*-shell). The CF contribution into FMA is small at weak s_r and l_r unfreezing. Competing contribution of covalent FMA term (of the same value, but opposite sign) with strong dependence on Tcreates $K_1^{exp}(T)$ nonmonotony and complex MPD owing to screening effects. Large absorption of hydrogen in REM is explained by strong covalent Me-H bonds. MeH_x system (x > 1) has strong dependence $x_0(T)$ in equilibrium $(x = x_0)$ owing to CBF. Growth of electrical resistance, R(x), with x growth is explained by change of the Fermi surface near crossing of band spectrum with CBF. The linear part of its dispersion law, $\tilde{\varepsilon}(k) \propto k$, appears. DOS(ε_{F}) decreases; the MPD, thermal and other properties change. The model of q-bit is proposed and based on helicoid nanodomains.

Ключевые слова: ковалентные связи и их флуктуации (ФХС), многоэлектронные операторные спиноры (МЭОС), магнитная фазовая диаграмма (МФД), растворение водорода, кубит.

(Получено 15 июня 2009 г.)

1. ЛОКАЛЬНОСТЬ МАГНИТНЫХ 4f-ЭЛЕКТРОНОВ

Сильный магнетизм 4*f*-ионов основан на локальности (радиус ~ 1 Å) их магнитной 4*f*-оболочки. Поэтому к спиновому S_r добавляется номинальный (не замороженный, в отличие от ковалентных 3*d*электронов группы Fe) орбитальный момент L_r . Суммарный угловой момент узла r[1-3]

$$J_{r} = S_{r} \pm L_{r}, \ M_{s} = M_{4f} = N\mu_{B}J >> M_{3d}$$
(1.1)

тяжелых редкоземельных металлов (P3M) создает (знак + в (1.1)) большую спонтанную намагниченность M_s (при одинаковом числе N магнитных ионов в объеме), по сравнению с M_{3d} группы Fe. Обратной стороной этой локальности оказывается слабый косвенный 4f-5d-4f-обмен. Его малая величина дает $T_c(4f) \ll T_c(3d) \cong 10^3$ К. Как следствие, для получения рекордных магнитных и т.п. свойств необходимо соединение 4f- и 3d-ионов. Этот аспект будет частично освещен в данном обзоре.

Основное внимание уделим чистым 4f-P3M. Стабильность магнитного (в частности ферромагнитной (ФМ) фазы) состояния, кроме T_c , связана с магнитной жесткостью (магнитной анизотропией (ФМА) и ФМ магнитострикцией (ФМС), а также дисперсией взаимодействий). Изменение состояния 4f-иона в металле описываем волновой функцией

$$\Psi_r^+ = \xi_F F_r + \xi_D D_r, \ F_r = \{ \varphi_{roL}, c_{roS}, \nabla_{rL} \}, \ \sum \xi_j^2 = 1, \ F^+ = \overline{F}$$
 (1.2)

в представлении многоэлектронных операторных спиноров (МЭОС) [4]. Их факторы

$$\varphi = \prod_{\mu=1}^{n} a_{r\sigma L\mu}^{+}, \ c_{r\sigma S}^{2} = (1 + \sigma S_{r}) / 2, \ v_{rL}^{2} = (1 + LL_{r}) / 7, \ L = 3, n \le 7 \ (1.3)$$

выражаются через фермионы *a*_r локальных электронов и операторы (1.1) с помощью спиновых (σ) и орбитальных (L) матриц. Условия локальности

$$\varphi_r \overline{\varphi}_r = 1 = \operatorname{Sp} c_{ros}^2 = \operatorname{Sp} v_{rL}^2, \quad \left[\varphi_r, \overline{\varphi}_R\right]_{\pm} = \delta_{rR}$$
(1.4)

определяют МЭОС в симметричном (четные n) или антисимметричном (нечетные n) пространстве Фока для 4f- и 5d-электрона (D_r), а также для зонных фермионов (f_r).

Возбуждение 5d-электрона (из 4f-оболочки) уменьшает момент \mathbf{J}_r

иона при $n \neq 7$. Наоборот, локализация ионного 5*d*-электрона Gd при 4f-5d-обмене может увеличить момент (1.1).

2. ОБМЕН И ТЕМПЕРАТУРЫ КЮРИ T_c (НЕЕЛЯ T_N)

ФМ-фаза тяжелых РЗМ реализуется при низких температурах $T < T_c$. При $T_c < T < T_N$ существует длиннопериодная структура (в простейшем случае геликоид). Она нестабильна и переходит в ФМ-фазу при сравнительно небольших магнитных полях $B > B_c \sim 1$ Тл. Однако в Gd ($T_N = T_c \cong 300$ К) при L = 0 (n = 7) стабильна только ФМ-фаза. Поэтому для начала будем рассчитывать T_c (или $T_N(B > B_c) = T_c$). Прямой обмен 4f-оболочек разных ионов отпадает (их волновые функции не пересекаются [1]). Сразу вводим косвенный (ковалентный) обмен (Γ^F)

$$H^{\text{cov}} = -\sum \Gamma^{F} \left(r - R \right) F_{r} D_{r} \overline{D}_{R} \overline{F}_{R} \left(\xi_{F} \xi_{D} \right)^{2} - \xi_{D}^{2} \sum \Gamma^{D} D_{r} \overline{D}_{R} \qquad (2.1)$$

наряду с прямым обменом ковалентными 5*d*-электронами (Γ^{D}). Прямая ковалентная связь (Γ^{D}) участвует в появлении жаропрочности РЗМ (наряду с металлической связью 6*s*-электронов).

Подставляем в (2.1) выражения МЭОС (1.2) через спиновый S_r и орбитальный L_r моменты (1.3). После их разложений в ряды

$$c_{ros} = (1 + \sigma S_r / 2 + ...) / \sqrt{2}, ...$$
 (2.2)

в формуле (2.1) и шпурирования по **σ** и L получаем обменный гамильтониан в стандартной для модели Гайзенберга форме, но с разными членами (спиновым и орбитальным)

$$H^{\text{ex}} = -\sum A_{S} \left(r - R, T \right) \mathbf{S}_{r} \mathbf{S}_{R} - \sum A_{L} \mathbf{L}_{r} \mathbf{L}_{R}.$$
(2.3)

Обменные параметры

$$A_{S} = Z_{S}\Gamma^{F}(r-R)Q_{D}(r-R)\xi_{D}^{2}, \quad A_{L} = Z_{L}\Gamma^{F}Q_{D}(r-R)\xi_{D}^{2},$$
$$Q_{D} = \langle D_{r}\overline{D}_{R} \rangle, \quad |\xi_{F}|^{2} \rightarrow 1.$$
(2.4)

Константы $Z_{S,L}$ легко вычисляются (шпурированием) и не приводятся.

Температурная зависимость входит через корреляторы МЭОС. Разлагая МЭОС в ряды Фурье

$$\varphi_r = \varphi_0 + \sum \varphi_k e^{i\mathbf{k}\cdot\mathbf{r}}, \quad \langle \varphi_r \overline{\varphi}_R \rangle = \langle \varphi_0 \overline{\varphi}_0 \rangle + \ldots \cong \mathbf{1}, \quad d_k = \sum d_r e^{-i\mathbf{k}\cdot\mathbf{r}} / N\xi_d^2 \quad (2.5)$$

и пренебрегая внутриионными ΦXC (т.е. φ_k), получаем приближение (2.4).

Для связи с экспериментом [1-3] выражаем H^{ex} через суммарный $\mathbf{J}_r(1.1)$

$$H^{\text{ex}} = -\sum A(r - R, T) \mathbf{J}_{r} \mathbf{J}_{R}, \ A = A_{S} (g - 1)^{2} + A_{L} (2 - g)^{2}.$$
 (2.6)

Малость обменного параметра $A \sim 10^{-2}$ эВ определяется малостью амплитуды $\xi_D^2 \sim 0,1$. Поэтому при $\Gamma^F \sim 0,1$, $\Gamma^D \sim 0,1$ эВ получаем $\tilde{A} << A(3d)$ гораздо меньше прямого ковалентного обмена 3*d*-ионов.

Используем приближение среднего поля для оценки T_c ($B > B_c$ — критического поля перехода геликоид— Φ M-фаза):

$$k_{B}T_{c} = AJ(J+1)/3, \ A = \tilde{Z}\Gamma^{F}\xi_{D}^{2}, \ \tilde{Z} = Z_{S}(g-1)^{2} + Z_{L}(2-g)^{2}, \ (2.7)$$

при $Z_S = 1/8$ и $Z_L = 1/28$.

Для элементов от Gd до Er получаем $\tilde{Z}/Z_s \cong 2$ (и для Tm имеем $\tilde{Z}/Z_s \cong 1$). Поэтому существенное падение T_c этих P3M от Gd до Er (и более резкое для Tm) требует объяснения в предположении об уменьшении ξ_D^2 при увеличении атомного номера, т.е. большей локализации 4*f*-электронов и уменьшении их роли в ковалентной связи.

3. МАГНИТНАЯ ФАЗОВАЯ ДИАГРАММА (МФД). ГЕЛИКОИДАЛЬНЫЕ СТРУКТУРЫ

Косвенный (ковалентный) обмен (2.1) включает плотность $\Phi XC N_k^c$ через дисперсионную часть корреляторов МЭОС $Q_D[4, 5]$:

$$oldsymbol{Q}_{D}=\left\langle D_{0}ar{D}_{0}
ight
angle +\sum_{k}N_{k}^{c}e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{R})},\ N_{k}^{c}=\left\langle D_{k}ar{D}_{k}
ight
angle \cong\left(e^{eta\Gamma_{k}}+1
ight)^{-1},$$
 (3.1)

где функция Ферми для плотности ФХС получается фурье-разложением МЭОС (2.5):

$$D_{k} = \sum_{r} D_{r} e^{-i\mathbf{k}\cdot\mathbf{r}} / N\xi_{D}^{2}, \quad \left[D_{k}, \overline{D}_{q} \right]_{+} = \delta_{kq} / N\xi_{D}^{2}, \quad \beta = 1/k_{B} T, \quad \Gamma^{F} \to \Gamma. \quad (3.2)$$

Энергия ФХС

$$\Gamma_{k} = \Gamma(\mathbf{0}) - \Gamma(k) \cong \Gamma k^{2}, \ \Gamma(k) = \sum \Gamma(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} , \qquad (3.3)$$

находится методом боголюбовских функций Грина (см. [4, 5]) в пренебрежении малым первым членом гамильтониана (2.1).

Локализация ковалентных МЭОС (1.4) определяет плотность ΦXC в виде функции Ферми в антисимметричном пространстве Фока для одного ковалентного 5*d*-электрона на узел **r**.

Подставляем (3.3) в обменный гамильтониан (2.6). Получаем [6]:

$$H^{\text{ex}} = H_0^{\text{ex}} + \Delta H_F^{\text{ex}}, \quad H_0^{\text{ex}} = -N \left\{ A(0) \mathbf{J}_0 \mathbf{J}_0 + \sum_k A(k) \mathbf{J}_k \mathbf{J}_{-k} \right\},$$
$$J_k = \sum_r J_r e^{-i\mathbf{k} \cdot \mathbf{r}} / N, \quad (3.4)$$

где к стандартному (гайзенберговскому) члену H_0 добавляется вклад ФХС

$$\Delta H_F^{\text{ex}} = -\sum_{kq} A(k+q) N_q^c \mathbf{J}_k \mathbf{J}_{-k}, \ \Delta A(k) \cong \mathbf{k} \sum_q \widehat{\Gamma}'_2(q) \mathbf{q} N_q^c , \qquad (3.5)$$

где тензор

$$\widehat{\Gamma}_{2}'(q) = \delta^{2} A(q) / \delta \mathbf{q} \delta \mathbf{q} \cong A$$
 (3.6)

аппроксимируем из простейшей (квадратичной) формы фурьеобраза ковалентного интеграла $\Gamma^{F}(r)$ (2.1).

Важнейшую роль играет щель в спектре магнонов [6] $\mu(B_A + B)$. Суммируя ее и (3.4)–(3.6), получаем для энергии магнона

$$E^{m}(k) = \left\{ A(0) - \left[A(k) + \Delta A(k) \right] \right\} 2J_{T} + \mu \left(B_{A} + B \right), \ J_{T} = \left\langle J_{r}^{z} \right\rangle.$$
(3.7)

Здесь B — внешнее магнитное поле, B_A — эффективное поле магнитной анизотропии [6, 7]. Интеграл (3.5)–(3.6) получаем (для данного направления **k** и q > 0) в виде

$$\Delta A(k) = (\Gamma_1 T^2)k, \ \Gamma_1 = \operatorname{const} (\Gamma' / \Gamma^2) \sim A(k_B / \Gamma)^2.$$
(3.8)

Вклад линейного (отрицательного) по k члена в (3.7) приводит к немонотонности $E^m(k)$. Минимум этой функции (рис. 1, a) вблизи

 $k = k_0 = \Gamma_1 T^2 / 2A$, $E^m(k_0) = -(\Gamma_1^2 / 4A)T^4 + \mu(B_A + B)$, ФМ ($T < T_{c0}$).(3.9) Она уменьшается при повышении T и пересекает ось абсцисс (рис. 1, б) при

$$T > T_{0c} = \left[4A\mu \left(B_A + B \right) / \Gamma_1^2 \right]^{1/4}, \ Q_c = k_0 \left(T \right) - k_0 \left(T_{0c} \right) \sim \left(T - T_{0c} \right). (3.10)$$

Выше T_{0c} низкотемпературная ФМ-фаза дестабилизируется. Теоретические (3.10) вектора структуры $Q_c(T)$ (сплошные кривые) сравниваются с экспериментальными точками для Но, Dy (рис. 1, *в*).

При $T_{0c} < T < T_N$ стабильна длиннопериодная структура (геликоид). Критическая температура перехода первого рода $T = T_{0c}$ уменьшается с ростом атомного номера [1, 7]. Формула (3.10) объясняет этот факт явной зависимостью $T_{0c}(T_N)$ через общий обменный фактор A в (2.7) и (3.10). Важную роль играет и магнитный фактор. Роль B на МФД проявляется переходом первого рода геликоид-ФМ-фаза при

Рис. 1. а) Зависимость энергии магнона (E^m) от импульса k (сплошная линия) и вклады в нее (пунктирные) от обмена и ФМА (верхняя линия) и от ФХС (нижняя линия), δ) зависимость минимума энергии магнона (E^m) от температуры T (сплошная линия) и вклады в нее (пунктир) от ФМА (верхняя линия) и от ФХС (нижняя линия), δ) рассчитанная зависимость угла φ между моментами J ионов в соседних моноатомных плоскостях (0001) от относительной температуры T/T_N . Теоретические прямые аппроксимируют экспериментальные точки [2] для Но (верхняя линия) и Dy (нижняя линия).

$$B > B_{c} = \left[\Gamma_{1}^{2} \left(T^{4} - T_{0c}^{4} \right) / 4A\mu \right] \sim \left(T - T_{0c} \right).$$
 (3.11)

Близкие к линейным зависимости $Q_c(T)$ и $B_c(T)$ (рис. 2) связаны здесь как с близостью T_{0c} и T_N , так и с падением $B_A(T)$ [1, 7].

Рис. 2. Теоретическая зависимость поля метамагнитного перехода геликоид-ФМ-фаза (сплошная линия) от температуры *T* и экспериментальные точки для Но [2].

Оценим (для сравнения с опытом) функции (3.10), (3.11). На рис. 1, б показаны (штриховыми линиями) обменный ($-J_TT^4$) и полевой (B_A) вклады в энергию ферромагнона (3.7). Они сравниваются в точке $T = T_{0c}$. Уменьшение $E^m(k_0 = 0)$ до $E^m(k_0)$ с ростом T (рис. 1, б) приводит к изменению ее знака. В рамках общей теории элементарных возбуждений это означает дестабилизацию выше T_{0c} исходной ФМ-фазы. Спектр магнонов неоднородной (геликоидальной) фазы не рассматриваем из-за его очевидной, согласно (3.5), уязвимости от дефектов (например, примесей других РЗМ).

Оценки критических температур требуют расчета амплитуд волновых функций (1.2). Добавляем к (2.1) внутриионные члены (Хаббарда (U_D) , Хунда (A_D) , спин-орбита (λ) , ...). Локальная плотность ковалентных электронов

$$N_r = \xi_D^2 D_r \overline{D}_r = \xi_D^2 \left(1 + \sigma \mathbf{s}_r \right) \left(1 + \mathbf{Ll}_r \right) / 10 \ (L = 2, \ d_r \overline{d}_r = 1) \ (3.12)$$

выражается через амплитуду волновой функции ξ_D , спин \mathbf{s}_r и орбиту \mathbf{l}_r ковалентного электрона (одного для тяжелых РЗМ). Подставляем (3.7) в гамильтониан Хаббарда (квадратичный по N_r) и добавляем связи ($\mathbf{s}_r, \mathbf{l}_r$) с локальными 4f-электронами ($\mathbf{S}_r, \mathbf{L}_r$)

$$H^{i} = (U_{D}/2)\{\xi_{D}^{4} + g_{s}s_{r}^{2} + g_{l}l_{r}^{2}\} - A_{D}\mathbf{s}_{r}\mathbf{S}_{r} - \lambda_{s}s_{r}L_{r} - \lambda_{l}l_{r}\mathbf{S}_{r} - \Gamma_{i}\xi_{D}^{2} - \lambda_{d}\mathbf{s}_{r}\mathbf{l}_{r}.$$
(3.13)

Пренебрегая (для начала) \mathbf{s}_r и \mathbf{l}_r , варьируем сумму (3.13) и (2.1). Имеем

$$\xi_D^2 = y = \tilde{\Gamma}_D / U_D, \quad \tilde{\Gamma}_D = \Gamma_D + \Gamma_i, \quad y \sim 0,1 \quad (3.14)$$

при $U_D \sim 1-10$ эВ, $\tilde{\Gamma}_D \sim 0, 1-1$ эВ. Малость амплитуды (3.14) определяет малые (по сравнению с 3*d*-металлами) критические температуры $T_c(T_N)$ (2.7), T_{0c} (3.10) и другие.

Аналогично варьируем (3.13) по s_r и l_r . Получаем:

$$s_r = \left(A_D S_r + \lambda_s L_r\right) / g_s U_D \sim 0.1 J_r \tag{3.15}$$

при $A_D \sim \lambda_s \sim 0,1$ эВ и $g_s < 1$. Аналогично имеем:

$$l_r = \left(\lambda_l S_r + \tilde{\Gamma}_F L_r\right) / g_l U_D \sim 0, 1 J_r \text{ при } g_l < 1, \quad \tilde{\Gamma}_F \sim \Gamma_F \xi_D^2 \left\langle F_r \overline{D}_R \right\rangle^2. \quad (3.16)$$

Малость моментов s_r и l_r связующих (ковалентных) 5*d*-электронов, как и малость их плотности (3.14), ослабляет магнитодипольные связи ионов (в частности, магнитную жесткость). Поэтому кристаллическое поле тяжелых РЗМ (кроме Gd) оказывается определяющим магнитную анизотропию (ФМА), а также большую магнитострикцию (ФМС). Несмотря на большую (по порядку величины) номинальную намагниченность M_s (1.1), еще более сильная (чем в 3*d*-металлах) ФМА увеличивает поля магнитного насыщения на порядки величины [1–3] (в кристаллах как с осью (ОЛН), так и с плоскостью легкого намагничивания (ПЛН)).

4. ФЕРРОМАГНИТНАЯ АНИЗОТРОПИЯ (ФМА) ТЯЖЕЛЫХ РЗМ. КРИСТАЛЛИЧЕСКОЕ ПОЛЕ (КП)

Сильная ФМА тяжелых РЗМ (кроме $Gd(4f^75d^16s^2)$, имеющего малые поля анизотропии $B_A < 1$ Тл) не позволяет достаточно полного своего измерения из-за больших $B_A > 10$ Тл. Ее локальный механизм, вытекающий из локальности 4f-электронов, теория [1–3] выводит из природы кристаллического поля (КП–СF). Кулоновская (диагональная, не обменно-ковалентная) энергия КП возникает (один из возможных механизмов) при отталкивании зарядов катионов. Для 4f-решетки вводим эффективные локальные заряды

$$\tilde{N}_r = \xi_D D_r \overline{F}_r = \xi_D d_r \varphi_r' c_{ros} v_{rl} c_{ros} v_{rL} = P_{df} \left(1 + \tilde{g}_l l_r L_r + \tilde{g}_s s_r S_r + \ldots \right).$$
(4.1)

Из них составляем гамильтониан КП:

$$H^{\rm CF} = \sum Q \tilde{N}_r \tilde{N}_R, \ Q(r-R) = \tilde{Q} \xi_D^2, \ \tilde{Q}(u) = \tilde{Q}(0) + Q'u, \ u_{zz} = u, \ (4.2)$$

который явно зависит от ГПУ-деформации $u_{zz} \sim 10^{-2}$, $P_{df} = \xi_D d_r \overline{\varphi}_r$. Гамильтониан (4.1) содержит вклады моментов l_r , s_r , а также

(1,1) codep(1,1) code(1,1) code(1,

$$S_r = (g-1)J_r, \ L_r = (2-g)J_r,$$
 (4.3)

что позволяет выделить его анизотропную часть

$$\Delta H^{ ext{CF}} \cong oldsymbol{Q}_A \sum_r \Bigl(oldsymbol{g}_s oldsymbol{s}_r^z oldsymbol{S}_r^z + oldsymbol{g}_l l_r^z L_r^z + ... \Bigr),$$

$$\boldsymbol{Q}_{A} = \sum_{R} \boldsymbol{Q} \left(\boldsymbol{r} - \boldsymbol{R} \right) \boldsymbol{\xi}_{D}^{2} \boldsymbol{u} \left\langle \boldsymbol{d}_{r} \boldsymbol{\bar{d}}_{R} \right\rangle \left\langle \boldsymbol{\varphi}_{r} \boldsymbol{\bar{\varphi}}_{R} \right\rangle. \tag{4.4}$$

Можно дописать в (4.4) члены, ответственные за ФМА высших порядков. Подставляем в (4.4) результаты (3.11) и (3.12) для *s*_r и *l*_r. Выражаем гамильтониан ФМА через угловые моменты **J**_r узлов **r**:

$$\Delta H^{\rm CF} = H^{\rm MA} = K^{\rm CF} \sum \left(J_r^z\right)^2, \qquad (4.5)$$

где параметр ФМА

$$K^{\rm CF} = \left(\frac{Q_A}{U_D}\right) \left\{ \tilde{A}_D \left(g-1\right)^2 + \left(\tilde{\lambda}_s + \tilde{\lambda}_l\right) \left(g-1\right) \left(2-g\right) + \Gamma_F \left(2-g\right)^2 \right\}.$$
(4.6)

Видна явная (через Q_A) зависимость одноосной ФМА от (одноосной же) деформации кубической решетки (u_{zz}), а также от амплитуды ξ_D волновой функции (1.2). Поля B_A в РЗМ оказываются меньше таковых для актинидов (соединений U и др. [1]), что, возможно, связано с малостью ξ_D (3.9).

Знак K^{CF} определяется знаками спин-орбитальных параметров $\lambda_{s,l}$ при $A_D > 0$. Предполагая $\lambda = \sum \tilde{\lambda}_j < 0$, получим $K^{\text{CF}} > 0$ при (см. ниже (8.2))

$$(g-1)/(2-g) > \lambda \mid / \tilde{A}_D \mid, K_1^{\exp} \cong -K^{\mathrm{CF}}J^2N, \ \lambda = \tilde{\lambda}_s + \tilde{\lambda}_l,$$
 (4.7)

или $K^{CF} < 0$ при обратном неравенстве. Имеем [1-3]:

Экспериментальная константа ФМА меняет знак при увеличении n [1-3]. Из (4.8) видно, что $K_1^{\text{exp}} < 0$ (т.е. $K^{\text{CF}} > 0$) при $n \le 4$, или при $g \ge 5/4$. Из (4.7) получаем:

$$|\lambda| / \tilde{A}_D \le 1 / 3, \tag{4.9}$$

поэтому при оценках констант ФМА можно использовать значение хундовского обмена $A_D \sim 1$ эВ [1]. Отметим здесь, что величина $K_1^{\exp}(J)$ увеличена также за счет фактора $J^2 \sim 10-10^2$.

Хундовского обмена A_D го год [1]. Огметим здеся, что величина $K_1^{\text{exp}}(J)$ увеличена также за счет фактора $J^2 \sim 10-10^2$. Оценим K^{CF} . Фактор $A_D(g-1)^2 < A_D/4$. Полагая $U_D \sim 1-10$ эВ [4] и оценки входящих в Q_A малых факторов ($\xi_D^2 \sim u \sim 10^{-2}$) при $Q' \sim 10$ эВ, получаем $K^{\text{CF}} \sim 10^{-3}$ зВ. Это дает для наблюдаемой константы $K_1^{\text{exp}}/N \sim 10^{-2}$ зВ $\sim k_B T_c$. Экспериментально это проявляется в существенной разнице температур Кюри–Вейсса Θ_j (j = || или \bot) для компонент магнитной восприимчивости χ_{\parallel} (внешнее поле $B \mid| C_6$ при $T > 10^{-2}$ зВ $\sim k_B T_c$). $> T_c$) или χ_{\perp} [1-3, 7].

Температурная зависимость констант ФМА тяжелых РЗМ (кроме Gd) удовлетворительно описывается теорией магнонов. Для $K_1^{exp}(T)$ получаем вклад КП

$$K^{\mathrm{CF}}(T) \sim \left\langle \left(J_r^z\right)^2 \right\rangle \sim \left[M(T)/M(0)\right]^3, \ T < 3T_c/4.$$
 (4.10)

Он подчиняется закону Акулова-Зинера [6, 8].

5. МАГНИТОСТРИКЦИЯ ТЯЖЕЛЫХ РЗМ (КРОМЕ Gd)

Большие поля $B_A \sim 10$ Тл (ФМА и иногда метамагнетизма) не позволяют достаточно точно измерять константы $\hat{\lambda}$ ФМС (или магнитоупругие параметры $\hat{\Lambda}$) тяжелых РЗМ для n < 7. Поэтому точность в измерении компонент тензоров $\hat{\lambda}$ (или $\hat{\Lambda}$) и их зависимостей от T (и вообще говоря, от B) невелика. Тем не менее, большие величины $|\lambda| > 10^{-3}$ (или $|\Lambda| \sim 10^{10}$ эрг/см³) позволяют предположить механизм КП-СF для ФМС, аналогичный ФМА, кроме Gd. Гамильтониан КП (4.2) имеет параметры Q(r-R), сильно зависящие от деформации \hat{u} .

В отличие от ФМА (4.4) вводим отклик $u(T, \mathbf{B}, \mathbf{P})$ на внешние воздействия (поле **B**, давление **P** и т.п.). Здесь рассматриваем (пока) вращательную часть ФМС. Вращение момента **J** задаем тензором $\hat{\alpha}$ связи координат решетки (x, y, z) и квантования (ξ, η, ζ) с осью 0 ζ

$$J_{r}^{i} = \alpha_{ij}J_{r}^{j}, \ i = x, y, z, \ j = \xi, \eta, \zeta.$$
 (5.1)

Тогда нужные компоненты угловых факторов МЭОС (\hat{c} и \hat{v}) будут:

$$c_{rS_{l}\sigma}^{2} = \left(1 + \alpha_{i\zeta}S_{r}^{\zeta}\sigma_{\zeta}\right) / 2, \quad v_{rL_{l}}^{2} = \left(1 + \alpha_{i\zeta}L_{r}^{\zeta}L_{\zeta}\right) / 7.$$
(5.2)

Отсюда для гамильтониана ФМС, аналогично (4.4), получаем:

$$\Delta H^{\rm CF}\left(\hat{u}\right) = \sum_{r} \hat{\Lambda} \otimes \hat{u} \otimes \mathbf{J}_{r} \otimes \mathbf{J}_{r}, \qquad (5.3)$$

учитывая (4.3). Расчет основан на преобразовании

$$c_{rs_i\sigma}c_{rs_j\sigma} = \left\{1 + \alpha_{i\zeta}\alpha_{j\zeta}\left(s_r^{\zeta}\sigma_{\zeta}\right)\left(S_r^{\zeta}\sigma_{\zeta}\right)/4 + \ldots\right\}/2, \qquad (5.4)$$

равно как и для факторов орбитального момента $L_r(v_{rL})$.

Собираем все факторы ($\hat{\alpha}$, корреляторы МЭОС в (4.4) и т.д.). Получаем магнитоупругие параметры:

$$\Lambda_{ijpq} \cong Q_{ijpq}^{ms} \left\{ \tilde{A}_D \left(g - 1 \right)^2 + \lambda \left(g - 1 \right) \left(2 - g \right) \right\},$$
(5.5)

где

$$\boldsymbol{Q}_{ijpq}^{ms} = \alpha_{p\zeta} \alpha_{q\zeta} \sum_{R} \left(\delta \boldsymbol{Q} / \delta \boldsymbol{u}_{ij} \right) \xi_{D}^{2} \boldsymbol{K}_{DD} \boldsymbol{K}_{\varphi\varphi}, \qquad (5.6)$$

где

$$K_{DD} = \left\langle d_r \overline{d}_R \right\rangle, \ K_{\varphi\varphi} \left(r - R \right) = \left\langle \varphi_r \overline{\varphi}_R \right\rangle = 1 - \sum_k N_k^{\varphi} \left(1 - e^{i\mathbf{k} \cdot (\mathbf{r} - \mathbf{R})} \right), \ (5.7)$$

куда входят корреляторы МЭОС для ФХС:

$$N_k^d = \left\langle d_k \overline{d}_k \right\rangle, \ N_k^{\phi} = \left\langle \phi_k \overline{\phi}_k \right\rangle.$$
 (5.8)

Эти корреляторы вносят в *T*-зависимости параметров ФМС (5.5) $\Lambda(T)$ добавочные факторы, функционально зависящие от энергий ФХС [4,5], которые велики по сравнению с энергиями магнонов (3.7).

Теория магнонов [6, 8] после усреднения (5.3) дает закон Акулова-Зинера (4.10) для ФМС тяжелых РЗМ (см. [16, 17]):

$$\widehat{\Lambda}(T) \sim \left[M(T) / M(0) \right]^3, \qquad (5.9)$$

который и наблюдается [8, 9], например, в Tb в полях 1,8 < B < 14,4 Tл. Из этих данных также следует, что возможная зависимость $\widehat{\Lambda}(B)$ относительно мала. (Обсуждение «силовой» ФМС (парапроцесса) см. в [11].) Наблюдаемую сильную анизотропию констант $\lambda(\mathbf{B})$ при T = 4,2 К [9]

$$\lambda_s(\mathbf{B} \parallel [0001]) = 2, 2 \cdot 10^{-2} >> \lambda_s(\mathbf{B} \parallel \mathbf{a}) = 0, 54 \cdot 10^{-2}$$
для Тb (5.10)

или

$$\lambda_s(\mathbf{B} \parallel \mathbf{c}) = 2, 1 \cdot 10^{-2} >> \lambda_s(\mathbf{B} \parallel \mathbf{a}) = 0,85 \cdot 10^{-2}$$
для Dy (5.11)

можно рассматривать как более сильную деформацию РЗМ при вращении **M** из основного состояния в плоскости базиса (0001) к оси трудного направления $C_6[0001]$ (ОТН). Она выражается через диагональную компоненту тензора ФМС Λ_{3333} (5.5).

6. ИНТЕРМЕТАЛЛИДЫ 4*f*-3*d*. ГИГАНТСКАЯ ФМС КУБИЧЕСКОГО ТЬFe₂

Применяемые соединения 3d- и 4f-ионов обладают рекордными магнитными, магнитоупругими и другими свойствами. Их использование в технике [10] до сих пор вызывает большой поток исследований. Из теоретических идей отметим неизменный стержень расчетов в виде локальности J_r ионов РЗМ [3]. Однако для расчета коллективных эффектов (T_c , ФМА, ФМС, ...) приходится учитывать образование межионных связей. Учет только 5d-электронов, обра-

зующих ковалентные связи в чистых P3M, оказывается недостаточным при переходе к соединениям 4*f*-элементов с ионами других групп (как металлов, так и неметаллов или органических объектов) [8, 11].

Эти аспекты теории подробно обсуждены на примерах системы P3M–Co, Fe [12, 13], а также поляронов в соединениях P3M [14]. Здесь ограничимся применением теории КП–CF для расчета гигантской ФМС в соединениях класса TbFe₂. Используем локально-ковалентную модель разд. 4, 5. Большая величина параметров $\hat{\Lambda}$ (и $\hat{\lambda} \sim 10^{-2}$) указывает на главную роль подсистемы J_r -моментов, т.е. 4f-ионов. Однако обмен между 4f-ионами (разделенными 3d-ионами) должен осуществляться в геометрии 4f-3d-4f.

Кристаллическое поле на узле 4f-иона должно, наоборот, создаваться 3d-окружением ближайших соседей. В первом приближении аппроксимируем это окружение парой Fe^{3^+} ионов. Рассматриваемое соединение $\mathrm{Tb}(4f^95d^06s^2)$ и $\mathrm{Fe}(3d^64s^2)$, имеет три t_{2g} -электрона и один e_g -электрон) представляем МЭОС F_r^5 и D_R^3 . Связь 3d-4f-3d образует КП-СF в четырехоператорной форме (опускаем индексы n сверху МЭОС):

$$H^{\rm CF} = \sum Q F_r D_R \overline{D}_t \overline{F}_r. \tag{6.1}$$

Поскольку эта связь осуществляется вдоль пространственных диагоналей элементарной ячейки [15], см. рис. 3, при шпурировании по спиновым и орбитальным матрицам учтем отклонение J_r от оси квантования (типа [001]) системы (i, j = x, y, z) к системе координат с осью квантования 0 ζ . Имеем [16]:

$$J_r^i = \alpha_{i\zeta} J_r^{\zeta} + \dots . \tag{6.2}$$

Отсюда из (5.1) и (5.2) имеем:

$$\boldsymbol{c}_{rS_{l}\sigma} = \left(1 + \alpha_{i\zeta} \boldsymbol{J}_{r}^{\zeta} \boldsymbol{\sigma}_{\zeta} / 2 + ...\right) / \sqrt{2} , \qquad (6.3)$$

и аналогичное разложение для v_{rL_i} .

Учитываем зависимость типа (4.2) от переменной деформации \hat{u} . Подставляем (6.3) в спиновые факторы МЭОС и учитываем условие их локальности (1.4). Получаем для спиновой части ФМС (механизм КП) кубического TbFe₂:

$$\Delta H_{ms} \left[\mathbf{S}_{r} \right] = \sum Q_{S}^{ij} S_{r}^{i} S_{r}^{j} u_{ij}, \qquad (6.4)$$

где

$$\boldsymbol{Q}_{S}^{ij} = \sum \left(\delta \boldsymbol{Q} / \delta \boldsymbol{u}_{ij} \right) \left\langle \boldsymbol{d}_{R} \overline{\boldsymbol{d}}_{i} \right\rangle \boldsymbol{g}_{S2} \boldsymbol{\alpha}_{i\zeta} \boldsymbol{\alpha}_{j\zeta}, \qquad (6.5)$$

Рис. 3. Ковалентная связь Fe-Tb-Fe в решетке TbFe₂.

причем

$$\left\langle d_{R}\overline{d}_{t}\right\rangle = 1 - \sum N_{k}^{d}e^{i\mathbf{k}\cdot(\mathbf{R}-\mathbf{t})}, \ N_{k}^{d} = \left\langle d_{k}\overline{d}_{k}\right\rangle, \ g_{S} < 1/8,$$
 (6.6)

и коррелятор МЭОС (6.6) выражается через плотность $\Phi XC N_k^d$.

Аналогичный расчет орбитальной части $\Delta H_{ms}[\mathbf{L}_r]$ дает выражение (6.4) с заменой ($\mathbf{S}_r \rightarrow \mathbf{L}_r$), а также тензора Q_L^{ij} (замена $g_S \rightarrow g_L < 1/14$). Для сравнения с экспериментом получаем суммарный гамильтониан ФМС:

$$H_{ms}\left[\mathbf{J}_{r}\right] = u_{ij}\Lambda_{ij}\sum J_{r}^{i}J_{r}^{j}, \ \Lambda_{ii} = \Lambda_{1}, \ \Lambda_{ij}\left(i \neq j\right) = \Lambda_{2},$$
(6.7)

где

$$\widehat{\Lambda}(T) = \widehat{Q}_{s}(g-1)^{2} + \widehat{Q}_{L}(2-g)^{2}.$$
(6.8)

Добавочная зависимость $\hat{\Lambda}(T)$, связанная с плотностью ФХС N_k^d (6.6), должна проявляться при T > 300 К.

Анизотропия Λ для TbFe₂ [9] ($\lambda_2 = 4, 4 \cdot 10^{-3} >> \lambda_1$) в данной модели обусловлена сильной зависимостью параметра связи Q(r-R, r-t) от деформации u_{ij} ($i \neq j$) вдоль диагонали элементарной ячейки. Она изменяет расстояния между 4f- и 3d-ионами. Наоборот, деформация u_{ii} , изменяющая расстояние между парой 4f-ионов, слабо отражается на 3d-4f-связи. Это приводит к малой величине $\Lambda_1 \sim \delta Q / \delta u_{ii}$ (и $|\lambda_{100}| << \lambda_{111}$) для TbFe₂. Аналогичные данные получены для ErFe₂ ($\lambda_{111} \cong -2 \cdot 10^{-3}$) и TmFe₂ ($\lambda_{111} \cong -3, 6 \cdot 10^{-3}$) при T = 4,2 К, а также для RMe₂ (R = Tb, Er; Me = Al, Mn, Co) [9]. Обратное соотношение ($|\lambda_{111}| << |\lambda_{100}|$), наблюдаемое для R = Ho, Dy, требует более детального рассмотрения анизотропии связей, создающих КП. Наблюдение гигантской ФМС в кубических 4f-3d-интерметаллидах обусловлено гораздо менышими полями анизотропии ($B_A \leq 1$ Tл) по сравнению с таковыми в РЗМ ($B_A \sim 10^2$ Tл).

7. КОНТРПРИМЕР. СЛУЧАЙ Gd

РЗМ Gd($4f^75d^16s^2$) отличается от всего ряда РЗМ (Ce-Yt), проявляющего разнообразие магнитных порядков. Это ФМ-металл с малой как ФМА, так и ФМС. Его $T_c \cong 300$ К максимальна в этом ряду. Угловой момент J(Gd) = S < (1/2) J(Tb-Tm) из-за L = 0. Волновые функции 4f- и 5d-электронов здесь не гибридизируют (в нулевом приближении)

$$\Psi_{rf}^{+} = F_{r}^{7}, \ \Psi_{rd}^{+} = D_{r}^{1}, \ \xi_{d}^{2} = 1, \ \nu_{rL} = 1.$$
 (7.1)

Поэтому в формуле (2.7) для $T_c(J)$ гораздо меньшая величина фактора J(J + 1) компенсируется увеличением ξ_d (7.1). (При равных по порядку величины ковалентных параметрах Γ и почти равных факторах \tilde{Z} .) Этот факт

$$T_c(J, \xi_d^2, \text{Tb-Tm}) < T_c(7/2, \xi_d = 1, \text{Gd}), \xi_d^2 << 1 \text{ (Tb-Tm)}$$
 (7.2)

подтверждает гипотезу разд. 1–6 о малости ковалентной части волновой функции (ξ_d) РЗМ, кроме Gd.

В свое время [1] дискутировался вопрос о наличии в Gd геликоидальной фазы. Общая теория разд. З дает и здесь добавку (3.8) в магнонный спектр Gd. Величина этой добавки функционально зависит от спектра ФХС, т.е. от параметра Г. Наряду с большей величиной обменной жесткости (~ $A ~ T_c$), можно ожидать увеличения Г(Gd) по сравнению с Г (Tb-Yb). Это уменьшает параметр Г₁ (3.8). Тогда, даже при небольших значениях размагничивающего поля $B = B_0 ~ 1$ Tл, критическая температура геликоидальной фазы (3.10) $T_{c0} > T_c (T_N)$ выходит из области магнитного упорядочения.

Спектр ФХС рассчитывается методом боголюбовских функций Грина. Здесь, используя фурье-разложение МЭОС d_r (2.5) и

$$\left[d_{k}, \overline{d}_{q}\right]_{+} = \delta_{kq} / N\xi_{D}^{2}, \quad G_{k} = \left\langle \left\langle \overline{d}_{k} \middle| d_{k} \right\rangle \right\rangle, \quad (7.3)$$

вводим ковалентный гамильтониан

$$H^{D} = -\sum \Gamma d_{r} \overline{d}_{R} = H_{0} + \sum \Gamma_{k} d_{k} \overline{d}_{k}, \ \Gamma_{k} = \Gamma(0) - \Gamma(k) \cong \Gamma k^{2}.$$
(7.4)

Получаем

$$N_{k}^{d} = \left(e^{\beta \Gamma_{k}} + 1\right)^{-1}, \ \beta = 1/k_{B}T, \ \Gamma\left(k\right) = \sum \Gamma\left(r\right)e^{i\mathbf{k}\cdot\mathbf{r}},$$

$$\Gamma \to \Gamma\xi_{D}^{2} \text{ (Tb-Yb).}$$
(7.5)

Появление фактора ξ_D^2 в выражении для энергии ФХС (7.4) увеличивает линейный член в законе дисперсии магнонов (3.7). Последний

дестабилизирует ФМ-фазу при повышении *Т* тяжелых РЗМ, кроме Gd. Появление геликоидальной фазы при малых добавках других РЗМ или уменьшении *B*₀ становится возможным для сплавов Gd.

8. ФМА И ЕЕ ЭКСПЕРИМЕНТАЛЬНАЯ ИНТЕРПРЕТАЦИЯ ДЛЯ Gd

Выше (разд. 4) рассчитана нижняя K_1 константа одноосной ФМА. Однако даже для этой симметрии важен учет констант ФМА высшего порядка (K_2 , плоскости базиса K_6^6 и др.). Исторически сложилось, что экспериментальные константы K_j^{exp} разложения ФМА в ряды «по направляющим косинусам» [16] α отличаются от констант K_n^m гармонического разложения

$$\Phi\left(\boldsymbol{\alpha}\right)=\sum K_{n}^{m}Y_{n}^{m}\left(\boldsymbol{\alpha}\right), \ K_{2}^{0}=K_{1}, \ K_{4}^{0}=K_{2}, \ \boldsymbol{\alpha}=\mathbf{M}\left(T\right)/M\leq\mathbf{m}. (8.1)$$

Нами доказано, что простые законы Акулова–Зинера [1, 7, 8] в рамках магнонной теории применимы только к параметрам K_n^m [17, 18]. Поэтому экспериментальная величина первой константы одноосной ФМА

$$K_1^{\exp} = -(K_1 + 2K_2), K_2^{\exp} \cong K_2.$$
 (8.2)

При разных зависимостях (уже в магнонном приближении) [1, 7, 8]

$$K_{1}(T) = K_{1}(0)m^{3}(T), K_{2}(T) = K_{2}(0)m^{10}(T)$$
 (8.3)

теоретическая интерпретация экспериментальной ФМА (8.2) сильно отличается от (4.10) или (8.3). Особенно велико это отличие в областях T (в частности, такой сложной МФД, как в Gd [1, 7]), где $|K_2| \sim |K_1|$. (Отметим ныне модные плагиаты работ [17, 18], разумеется, без ссылок на оригиналы.)

Локальность 4f-оболочки обеспечивает номинальный спин Gd $(S_r = 7/2)$ и $L_r(4f) = 0$. Поэтому в разложении (8.1) для анизотропной части КП-СF имеем

$$H_{\rm MA}^{\rm CF} = \sum_{rnm} B_n^m Y_n^m \left(\mathbf{L}_r \right), \ L_r = L_r(5d), \ B_2^0 = B_1 \sim -u_{zz} = 1,633 - c \ / \ a, \ (8.4)$$

где отношение параметров решетки (*с* и *а* разных РЗМ) несколько меняется [9]. Внутри узла *г* имеем:

$$H_{r} = (U/2) (1 + g_{s} s_{r}^{2} + g_{L} L_{r}^{2}) - A_{h} S_{r} s_{r} - \lambda s_{r} L_{r}, g_{s,L} < 1, \qquad (8.5)$$

откуда (варьируя по s_r и L_r) при $|\lambda| << U$ имеем:

$$s_r = \left(A_h/g_s U\right)S_r, \ L_r = \left(A_h\lambda/g_s g_L U^2\right)S_r, \quad (8.5a)$$

что и подставляем в (8.4).

Получаем аналогичный (4.5) вклад в ФМА:

$$H^{\rm CF} = K_1^{\rm CF} \sum (S_r)^2, \ K_1^{\rm CF} = B_1 (A_h \lambda / g_s g_L U^2)^2, \ B_1 \sim u.$$
 (8.6)

Ковалентный гамильтониан

$$H^{\text{cov}} = -\sum \Gamma(r-R)D_r\overline{D}_R = H_0 - \sum A\mathbf{S}_r\mathbf{S}_R - \sum K_{\text{ex}}S_r^zS_R^z \quad (8.7)$$

содержит обменную часть с параметром (согласно (8.5*a*) и (8.6))

$$\boldsymbol{A} = \Gamma \left(\boldsymbol{A}_{h} / \boldsymbol{U} \right)^{2} \left\langle \boldsymbol{d}_{r} \overline{\boldsymbol{d}}_{R} \right\rangle, \ \Gamma \left(\boldsymbol{r} \right) = \Gamma e^{-\kappa r} / \boldsymbol{r}, \ \boldsymbol{K}_{\mathrm{ex}} = \boldsymbol{A} \left(\Gamma' / \Gamma \right), \quad (8.8)$$

явно учитывающим экранирование ковалентных (обменных) связей (в частности, зонными электронами проводимости).

Вклад в ФМА определяет параметр

$$K_{\rm ex}(r-R) = \Gamma' g_s \langle d_r \overline{d}_R \rangle u, \ \Gamma' = \partial \Gamma / \partial u = -(k+1/r) \Gamma e^{-\kappa r} / r.$$
 (8.9)

При $\Gamma > 0$ и u < 0 [1–3] имеем $K_{ex} > 0$. Отметим, что знак $B_1 < 0$ (и $K_{1}^{CF} < 0$) противоположен знаку $K_{ex} > 0$ (8.9).

Малые величины вкладов КП (8.6) и ковалентного (8.8) в ФМА определяют меньшую (на два порядка) энергию ФМА Gd по сравнению с РЗМ, где $L \neq 0$. Сложная фазовая диаграмма Gd [1-3] (переходы ОЛН-конус ОЛН-базисная плоскость (для М)) определяется зависимостью $K_1^{exp}(T)$ в виде (8.2), рис. 4. Для упрощения (8.4) используем разложение одноосной части КП-СF

$$H^{\rm CF} = \sum_{r} \left\{ K_1^{\rm CF} \left(S_r^z \right)^2 + K_2^{\rm CF} \left(S_r^z \right)^4 + ... \right\}, \ K_2^{\rm exp} \left(T \right) \sim K_2^{\rm CF} \left(S_T/S \right)^{10}, \ (8.10)$$

что позволяет аппроксимировать (монотонную) зависимость $K_2^{\exp}(T)$ [3], оставляя для $K_1^{CF}(T)$ закон Акулова–Зинера (8.3).

В магнонном приближении усреднение члена ФМА (последнего) в (8.7) усложняется учетом экранирования (8.9) ковалентных связей.

Фурье-разложение операторов спина [8]

$$S_r = S_0 + \sum_k S_k e^{i\mathbf{k}\cdot\mathbf{r}}, \ S_k = \sum_r S_r e^{-i\mathbf{k}\cdot\mathbf{r}} / N, \ A(k) = \sum_r A(r) e^{i\mathbf{k}\cdot\mathbf{r}}, (8.11)$$

преобразует (8.7)

$$H_{\rm ex}/N = -A(0)S^2 + \sum_k E_k^m \widehat{N}_k^m, \ \left\langle S_k^- S_k^+ \right\rangle / S = N_k^m \cong \exp\left(-\beta E_k^m\right) / N.$$
(8.12)

Энергия магнона

$$E_k^m = 2S[A(0) - A(k)] \cong A_m(T)k^2$$
 при $T \to 0$ К, $\beta = 1/k_B T$ (8.12*a*)

Рис. 4. Интерпретация экспериментальной зависимости (гармонической [17]) константы ФМА для Gd (сплошная кривая) $K^{\text{har}} = K_1^{\text{exp}} + 2K_2^{\text{exp}}$ от температуры T теоретической формулой $K^{\text{har}} = K^{\text{CF}} + K^{\text{cov}}$, где $K^{\text{CF}} = -2,9\cdot 10^6 M^3(T)$ эрг/см³ (штрихпунктирная), $K^{\text{cov}} = (7,36-7\sqrt{T/T_c})\cdot 10^6$ эрг/см³ при 100 K < T < <225 К или $K^{\text{cov}} = (-1,52+5,15/T)\cdot 10^6$ эрг/см³ при T > 225 К (штриховая).

в квадратичном по k приближении выражается через обменную жесткость A_m , зависящую от T согласно (8.8). Далее используем фурьеобразы параметров (8.8)

$$\Gamma(\boldsymbol{k}) = \Gamma_1 / (\boldsymbol{k}^2 + \kappa^2), \ \Gamma'(\boldsymbol{k}) = -\Gamma_2 [\kappa + \varphi(\boldsymbol{k})] / (\boldsymbol{k}^2 + \kappa^2), \ \Gamma_2 = \boldsymbol{c} \boldsymbol{u} \Gamma_1 < < \Gamma_1,$$
(8.13)

которые дают для энергии магнона более общее выражение, чем (8.12*a*):

$$E_k^m = A_1 k^2 / (k^2 + \kappa^2) \kappa^2, A_1 \sim \Gamma_1, A_m \cong A_1 / \kappa^4 \gg A_1 / \kappa^2 \sim k_B T_c. (8.14)$$

Неравенство (8.14) частично объясняет наблюдаемые большие значения обменной жесткости A_m [4].

Спонтанная намагниченность

$$M = (7 + gs)\mu_B N(S_T/S), g \cong 2, \qquad (8.15)$$

где в магнонном приближении [1, 8]

$$S_T \cong S - \sum_k N_k^m \approx S - \alpha_{3/2} \tau^{3/2}, \ T/T_m = \tau, \ T_m = A_m/k_B \neq T_c$$
, (8.16)

получает стандартный закон «3/2» Блоха, учитывая $A_m(\kappa)$.

Усреднение обменного вклада в $\Phi MA(8.7)$ дает:

$$\Phi_{\mathrm{ex}}^{\mathrm{MA}} = K_{\mathrm{ex}}\left(T\right)\alpha_{z}^{2}, \quad K_{\mathrm{ex}}\left(T\right)/K_{\mathrm{ex}}\left(0\right) = 1 - \sum_{k}\Delta K_{\mathrm{ex}}\left(k\right)N_{k}^{m} = 1 - p_{\mathrm{ex}}, \quad (8.17)$$

где, согласно (8.9),

А.И. МИЦЕК

$$\Delta K_{\rm ex} \cong \kappa^2 / (k^2 + \kappa^2), \qquad (8.18)$$

что при $\kappa^2 << 1$ допускает выход (при повышении *T*) в область средних $k^2 > \kappa^2$. Видоизменяется стандартный магнонный интеграл (8.16). Получаем второй (магнонный) член $K_{ex}(T)$ (8.17) в виде

$$p_{\rm ex} = {\rm const} \int k^2 dk \left\{ \exp\left[-\beta A_1 k^2 / \kappa^2 \left(k^2 + \kappa^2\right)\right] \right\} / \left(k^2 + \kappa^2\right). \quad (8.19)$$

Заменяя

$$\beta A_1 k^2 = y^2,$$
 (8.20)

представляем (8.19) в виде (8.3) закона Акулова–Зинера только при низких T (при $A_1\beta >> \kappa^{-2}$). Но при более высоких T (при $\beta A_1 < \kappa^{-2}$) интеграл (8.19) переходит в более резкую функцию T:

$$p_{\rm ex} = (k_B T / A_1)^{1/2} X(T), \ (\beta A_1)^{-1} > \kappa^2, \ X(T) \cong {\rm const.}$$
 (8.21)

При дальнейшем повышении T (при «магнонном насыщении») получаем

$$K_{\rm ex}(T) \cong F_0 + p_1/(T).$$
 (8.22)

Ускоренное падение $K_{ex}(T)$ с ростом T (8.21) объясняет (в рамках данной модели) изменение знака экспериментальной константы МА $K_1^{exp}(T)$ и сложную магнитную фазовую диаграмму Gd [1-3]. На рис. 4 представлена теоретическая интерпретация $K_1^{exp}(T)$ (с учетом (8.2) сплошная линия для суммы ($K_1^{exp} + 2K_2^{exp}$) [2.19]). Штрихпунктирной линией показан ход (8.3) для $K_1^{CF}(T) < 0$. Разность сплошной и штрихпунктирной кривых отдана вкладу $K_{ex}(T)$ в виде (8.17) для области ориентационных фазовых переходов (ОФП) [8]. Ее вид (8.21) при данном неравенстве объясняет отклонение от закона Акулова-Зинера уже при достаточно низких T

$$T_1 > 0, 1A_1/k_B \ (<0, 1T_c = 30 \ {
m K}).$$
 (8.23)

Переход к функции (8.22) объясняет вторичное изменение знака экспериментальной константы МА при $T \cong 250$ К.

Расхождение экспериментальных данных для MA различных авторов проведенный здесь анализ может объяснить малыми (менее 1%) примесями других P3M, точечными (вакансии и т.п.), линейными и другими дефектами, искажающими $\Gamma(\mathbf{r})$ (8.9). Наш анализ может быть однозначно дополнен, с учетом известных моделей дефектов спиновых решеток, введением для них ковалентных взаимодействий.

9. ФМА ВБЛИЗИ Т.. СПИН-ОПЕРАТОРНЫЕ КОРРЕЛЯТОРЫ

Вклад КП–СF в ФМА находится усреднением спинового гамильтониана (4.5)

$$H_{A}^{\rm CF} = K^{\rm CF} \sum \left(S_{r}^{z} \right)^{2} = K^{\rm CF} \sum \left\{ \left(S_{r}^{\zeta} \right)^{2} - S_{r}^{-} S_{r}^{+} / 2 \right\} \alpha_{z}^{2}, \ S_{r}^{i} = \alpha_{iq} S_{r}^{q}, \ (9.1)$$

где $i = x, y, z, q = \xi, \eta, \zeta, \alpha_{z\zeta} = \alpha_z$. Круговые переменные [8]

$$S_{r}^{\pm} = S_{r}^{\xi} \pm i S_{r}^{\eta}, \ \left(S_{r}^{\zeta}\right)^{2} = S\left(S+1\right) - \left[\left(S_{r}^{\zeta}\right)^{2} + \left(S_{r}^{\eta}\right)^{2}\right] = S^{2} - S_{r}^{-}S_{r}^{+}/2$$
 (9.2)

после разложения в ряд Фурье [8]

$$S_r^{\zeta} = S_0^{\zeta} + \sum S_k^{\zeta} e^{i\mathbf{k}\cdot\mathbf{r}}, \quad \left(S_r^{\zeta}\right)^2 = \left(S_0^{\zeta}\right)^2 + \sum S_k^{\zeta} S_{-k}^{\zeta}, \quad \left\langle \left(S_0^{\zeta}\right)^2 \right\rangle = S_T^2, \quad (9.3)$$

представляют фигурную скобку (9.1) в виде (N — плотность узлов решетки)

$$S_T^2 + \sum_k \left(\left\langle S_k^{\zeta} S_{-k}^{\zeta} \right\rangle - \left\langle S_k^{-} S_k^{+} \right\rangle / 2 \right), \ N_k^m = \left\langle S_k^{-} S_k^{+} \right\rangle / 2S.$$
(9.4)

Плотность магнонов N_k^m определяет средний спин после разложения (9.2):

$$S_T \cong S - \sum N_k^m. \tag{9.5}$$

Поэтому через средний спин S_T (или намагниченность M(T)) удобно выражать зависимости от T.

Закон Акулова–Зинера получается из (9.4) с учетом (9.5) в пренебрежении продольным коррелятором (первый в скобке (9.4) в одномагнонном приближении для «поперечных» магнонов [6]):

$$K_{1}^{\mathrm{CF}}\left(T
ight)\cong K_{1}\left(0
ight)\left[\left(S_{T}^{2}-\sum_{k}N_{k}^{m}
ight)\middle|S^{2}\cong\left(S_{T}/S
ight)^{3},\ T<3T_{c}/4
ight].$$
 (9.6)

Однако при $T \to T_c$ уже нельзя пренебречь «продольными» магнонами [8]. Из общих соображений (и некоторых расчетов во втором приближении [20]) можно полагать

$$\left\langle S_{k}^{\zeta}S_{-k}^{\zeta}\right\rangle \cong \left\langle S_{k}^{-}S_{k}^{+}\right\rangle / 2 = \left\langle \left(S_{k}^{\xi}\right)^{2} + \left(S_{k}^{\eta}\right)^{2}\right\rangle - S/N$$
 (9.7)

компенсирующим последний член (в скобке) (9.4). Это дает

$$K_1^{\rm CF}(T) \sim S_T^2 \sim M^2(T),$$
 (9.8)

т.е. квадратичную зависимость первых констант ФМА (и магнитострикции) от спонтанной намагниченности M(T). Получается «классическое» приближение для зависимости от *T* для четных эффектов Акулова [16]. (В отличие от «квантового» (9.8) линейного магнонного «поперечного» приближения.)

Квадратичный закон (9.8) часто используется для интерпретации эксперимента, как вблизи T_c , так и вдали от T_c для сложных соединений. Многокомпонентные магнетики имеют разные (с разной зависимостью от T) вклады в ФМА [1, 5, 16, 19]. Простейшее классическое приближение (9.8) иногда позволяет хоть какую-то интерпретацию опыта.

10. «СИНУСОИДАЛЬНАЯ» КОЛЛИНЕАРНАЯ СТРУКТУРА, $K_1^{exp} > 0$ (Er, Tm) [20]

Кроме простого геликоида (Dy, Tb, Ho при T > 20 K), имеющего ПЛН (4.8) и константу ФМА $K_1^{\text{exp}} < 0$, наблюдаются менее понятные структуры. Их часто [1, 2, 7] рассматривают как промежуточные (несимметричные) между двумя предельными случаями. Один из них (геликоид, ПЛН) рассмотрен выше, разд. 3. Второй предельный случай — «синусоидальные» изменения величины локального спина плоскости (0001), направленного вдоль ОЛН ($K_1^{\text{exp}} > 0$) (4.8), т.е. оси с типа [0001]; см. ниже рис. 5, б в разд. 11 на примере кубита. Они наблюдаются в $\text{Er}(4f^{12}6s^2)$, парамагнитная температура $T_p = 40$ K) и $\text{Tm}(4f^{13}6s^2)$, $T_p = 10$ K). Большие значения $K_1^{\text{exp}}/N > k_BT_N$ удерживают моменты J_n плоскостей *n* типа (0001) вдоль оси *c*, но величина J_n периодически («синусоидально») изменяется. Эти два обстоятельства позволяют использовать модель Ван Флека [1, 6].

Выражаем модельный ТДП магнитной подсистемы через вероятности (n, m) состояний $(1 < n < N_z$, число узлов $N = N_z N_\perp$), где m — магнитное квантовое число,

$$\Phi = -(N_{\perp}/\beta) \ln Z, \beta = 1/k_B T, \ Z = \sum_{n,m} \exp(-\beta E_{nm}), \ |m| \le J. \ (10.1)$$

Статистическая сумма Z явно выражается через обменные энергии внутри плоскости $A_{11}(T)$, между плоскостями $A_{12}(T)$, дальнодействующую составляющую [20] $D_{1n} > 0$, магнитное поле B (входит $h = g_J \mu_B B$). Зависимость обменных интегралов от T возникает из их ковалентной природы (разд. 1–3).

Предлагаемая модель дает энергетический (магнитный) спектр

$$E_{nm} = \left[-A_{11}(T)J_{n}(\phi) - A_{12}(T)J_{n+1}(\phi) + \sum_{p} D_{np}J_{n+p}(\phi) - h_{n}\right]m. (10.2)$$

Для «синусоидальной» структуры полагаем

$$\mathbf{J}_{n+p} = \mathbf{J}_n \cos(p\varphi) \parallel 0z. \tag{10.3}$$

Рис. 5. Модели кубитов в нанопроволоке РЗМ (стрелками показаны моменты J в плоскостях типа (0001), FM — ФМ-фаза): a — случай геликоида, δ — «синусоидальная» фаза. Кубит длиной L_q ограничен (в пределе дискретными) стенками переходной доменной структуры [6, 8] (показаны горизонтальными линиями).

и используем вариационный принцип

$$\partial \Phi / \partial \phi = 0, \ \partial \Phi / \partial h_n = \mathbf{J}_n \ при \ \mathbf{J}_n(T) = \mathbf{J}_T \cos(n\phi).$$
 (10.4)

Второе уравнение (10.4) (при $A_{11} >> |A_{12}|, D_{1n}$) дает для $\mathbf{J}_T(T)$ решение в виде функции Бриллюэна [1].

Решение для вектора структуры (угла φ) получаем из первого уравнения (10.4). Угол φ является представлением «длины» синусоидального момента \mathbf{J}_n . Модуль «синусоиды» $\mathbf{J}_n(T)$ считаем определенным (10.4), причем учет K_1 заметно искажает функцию Бриллюэна [14]. Получаем для угла φ («длины» момента $\mathbf{J}_n(T)$ в плоскости типа (0001))

$$\cos \varphi = \left(\left\langle A_{12} \right\rangle - \left\langle D_{12} \right\rangle \right) / 4 \left\langle D_{13} \right\rangle, \ \left\langle G \right\rangle = G J_T R \left(T \right), \tag{10.5}$$

где температурные коэффициенты параметров, после усреднения, связаны со статистической суммой (10.1)

$$R(T) = \sum_{m} \left(\frac{m^2}{\pi} \right) \int_{0}^{\pi} \exp\left\{ \beta m \left[A_{11}(T) J_n(T) + h \right] \right\} d\phi, \quad (10.6)$$

Константа ФМА, ввиду ее большой величины, считается учтенной в

нулевой (основной) части ТДП (10.1) Φ_0 и не влияет на энергии (10.2) переходов между магнитными (ван-флековскими) уровнями.

Наблюдаемая [7] слабая зависимость $\varphi(T)$ согласуется с (10.5). Одинаковые зависимости от T входящих в отношение (10.5) величин сокращаются. Некоторое (~ 10%) увеличение $\varphi(T)$ при понижении T в Ег может быть связано с большим (~ 40 К) интервалом существования магнитной фазы, чем в Тт (10 К). Расчет метамагнитного перехода, в отличие от разд. 3, проводится сравнением ТДП (10.1) при синусоидальном среднем моменте плоскости (0001) (10.4) и ТДП при $J_n(T) \equiv J_T$. Магнитное поле $B = B_z$. Вращение момента в поле $B = B_\perp$ связано, в основном, с эффектами ФМА.

Расчет более сложных (неколлинеарных или некомпланарных) магнитных структур, наблюдаемых в Но (ниже 20 К), Nd (ниже 19 К) или Er (при 20 К < T < 53 К) [7] требует детального учета ФМА и явного включения дальнодействующего обмена D_{nm} . Отсутствие удовлетворительных экспериментальных данных делает эти расчеты преждевременными.

11. ДОМЕННАЯ СТРУКТУРА НАНОРАЗМЕРНЫХ РЗМ. КУБИТ-ГЕЛИКОИД

Наноразмерные антиферромагнетики (АФМ) должны привлечь больше внимания в связи с новыми областями физики магнетизма: спиновыми кубитами, спинтроникой, «гигантским» (или «колоссальным») магнетосопротивлением [20, 21] и т.п. АФМ доменная структура может быть весьма мелкой, особенно при небольшой энергии доменных стенок (ДС) [8]. Малая разность энергий фаз вблизи метамагнитного перехода (разд. 3) допускает возможность дискретных ДС, а также доменную наноструктуру (с размерами доменов ~ 1 нм). Последнее приближает к проблеме спиновых кубитов.

Рассматриваем нанотонкую проволоку РЗМ (Dy, Ho, Tb или их сплавы). Локальная неоднородность (концентрации примеси, например) может вызвать локальное уменьшение T_{c0} или увеличение критического поля метамагнетизма B_c (см. разд. 3) в малой области $L_q \sim 1$ нм. На рис. 5, a это часть нанопроволоки между двумя ФМ-фазами (отделена от них ДС, показанными горизонтальными отрезками).

Приложение магнитного поля $B \sim B_c \ll 1$ Тл (это возможно при $T \to T_{c0}$) переключает геликоидальный домен в ФМ-фазу. Смещению дискретных ДС (на рис. 5, *a*, *б*) можно препятствовать нанесением плоских поперечных дефектов [8]. Обратное переключение области L_q в геликоидальное состояние возможно либо отключением внешнего поля *B* (что проще), либо приложением *B* обратного знака.

Образование системы кубитов возможно периодическим изменением состава по длине нанопроволоки. Другая возможность переключения кубита локальным повышением (например, тонким лучом лазера) $T > T_{c0}$, а также (периодическим) понижением $T < T_{c0}$.

Альтернативную систему кубитов (тоже в нанопроволоке РЗМ) можно создать из «синусоидальных» доменов (см. разд. 10, рис. 5, б). Обобщение этой идеи на неколлинеарные (некомпланарные) структуры РЗМ позволяет создать «цветную» память варьированием магнитного порядка отдельного кубита.

12. СИСТЕМА $Me(4f)-H_x$. СПЕКТРЫ

Хорошее растворение водорода в РЗМ ставит несколько теоретических проблем. Одной из основных является разделение роли зонного спектра и прямых ковалентных Ме-Н межионных связей. Включение Н-ионов в ковалентные связи гибридизирует их волновые функции

$$\Psi_{H}^{+}(r) = \xi_{b}f_{r}^{+} + \xi_{L}P_{r}, \sum \xi_{j}^{2} = 1, N_{r\sigma} = P_{r\sigma}\overline{P}_{r\sigma},$$
(12.1)

МЭОС (*n* = 1) *P_r* локализуют водородный 1*s*-электрон на ковалентных орбитах. Условие локализации для МЭОС

$$P_{r\sigma}\overline{P}_{r\sigma} = 1 = \operatorname{Sp}c_{r\sigma}^{2}, \ P_{r} = \left\{P_{r\sigma}c_{rs\sigma}\right\}, \ P_{r} = P_{0} + \sum P_{k}e^{i\mathbf{k}\cdot\mathbf{r}}, \qquad (12.2)$$

аналогичное (1.3), определяет эти МЭОС в антисимметричных пространствах Фока, как и зонные фермионы f_r . Волновая функция Ме-иона имеет вид (1.2).

Уход части (ξ_b) 1*s*-электронов в зону проводимости изменяет плотность n_k зонных электронов, поверхности Ферми (энергию Ферми ε_F). N — плотность узлов r. Другая их часть (ξ_L) изменяет энергии ковалентной связи и ФХС.

Вводим фурье-образы МЭОС (D_k) 5d-электронов:

$$D_r = D_0 + \sum D_k e^{i\mathbf{k}\cdot\mathbf{r}}, D_k = \sum D_r e^{-i\mathbf{k}\cdot\mathbf{r}} / N\xi_D^2, P_k = \sum P_r e^{-i\mathbf{k}\cdot\mathbf{r}} / Nx\xi_L^2, (12.3)$$

Коммутаторы МЭОС, строго определенные,

$$\left[D_{k}, \overline{D}_{q}\right]_{+} = \delta_{kq} / N\xi_{D}^{2}, \left[P_{k}, \overline{P}_{q}\right]_{+} = \delta_{kq} / Nx\xi_{L}^{2}, \qquad (12.4)$$

позволяют рассчитать как спектры Φ XC (основную (Me) ветвь E_k^{M} и примесную E_k^{H}), так и перенормированный ($\tilde{\varepsilon}_k$) зонный спектр.

Спектральная часть гамильтониана взаимодействия зонных и ковалентных электронов включает (2.1) (опускаем пока второй его член)

$$H_k^{(2)} = \Gamma_k^{DD} D_k \overline{D}_k + x \left(\Gamma^{PD} D_k \overline{P}_k + \text{H.c.} \right) + x \Gamma_k^{PP} P_k \overline{P}_k +$$

А.И. МИЦЕК

+
$$x(\gamma_p P_k f_k + \text{H.c.}) + \tilde{\varepsilon}_k f_k^+ f_k$$
. (12.5)

Квантуем спектр методом боголюбовских функций Грина

$$G_{k}^{f,P,D} = \left\langle \left\langle f_{k}\left(\overline{P}_{k},\overline{D}_{k}\right) \middle| f_{k}^{+} \right\rangle \right\rangle.$$
(12.6)

Уравнения движения

$$\begin{pmatrix} \left(E - \tilde{\varepsilon}_{k}\right) & x\gamma_{p} & \mathbf{0} \\ \gamma_{p} & \left(E - \Gamma_{k}^{PP}\right) & \Gamma^{PD} \\ \mathbf{0} & x\Gamma^{DP} & \left(E - \Gamma_{k}^{DD}\right) \end{pmatrix} \begin{pmatrix} G_{k}^{f} \\ G_{k}^{P} \\ G_{k}^{D} \end{pmatrix} = \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{pmatrix}$$
(12.7)

решаем, считая уже учтенной роль Γ^{PD} в перенормировке $E_k^{\rm M}$ и пренебрегая малыми энергиями $E_k^{\rm H}$ (см. ниже разд. 13). Для качественного (графического) анализа ограничиваемся квадратичным приближением матричных элементов (12.7)

$$\Gamma_{k} = \Gamma k^{2}, \gamma_{p} = \gamma k^{2}, \tilde{\varepsilon}_{k} = \varepsilon_{k} - \varepsilon_{F}, \varepsilon_{k} \cong k^{2}/2m *.$$
(12.8)

В этих приближениях получаем решения (12.7) в виде двух ветвей

$$\boldsymbol{E}_{k}^{+,-} = \left\{ \tilde{\boldsymbol{\varepsilon}}_{k} + \boldsymbol{\Gamma}_{k}^{PP} \pm \left[\left(\tilde{\boldsymbol{\varepsilon}}_{k} - \boldsymbol{\Gamma}_{k}^{PP} \right)^{2} + 4 \mid \boldsymbol{\gamma}_{p} \mid^{2} \boldsymbol{x} \right]^{1/2} \right\} / 2 \qquad (12.9)$$

(здесь также введено приближение $\Gamma_k^{DD} \cong E_k^{\mathrm{M}}$). Решения (12.9) проиллюстрированы рис. 6 численным расчетом функций

$$E^{+,-}(k) = \left\{1, 1k^2 - 1 \pm \left[\left(0, 9k^2 - 1\right)^2 + 0, 1k^4\right]^{1/2}\right\} / 2. \quad (12.10)$$

Выше оси абсцисс рис. 6 зонному спектру соответствует решение (12.9) E_k^+ , ниже — ветвь E_k^- .

Слабо зависящая от *k* ветвь (выше оси абсцисс $E^{P} > 0$) в данном приближении соответствует примесной (водородной) ФХС. Зонные ветви (выше и ниже оси абсцисс) в окрестности поверхности Ферми ($\varepsilon_{k} \rightarrow \varepsilon_{F}$) соединяем интерполяционной прямой

$$E_b = Ak - 2, 4, A = 2, 5.$$
 (12.10a)

Линейная часть зонного спектра играет важнейшую роль в интерпретации электронных свойств (электропроводности, эффекта Холла, оптики и др.). Плотность зонных электронных состояний в этой области

$$\mathrm{DOS}(E) \sim \left(\partial E / \partial k\right)^{-1} \sim 1/A \sim 1/x \tag{12.11}$$

при достаточно больших коэффициентах A (при $x \sim 1$) оказывается ма-

Рис. 6. Искажение зонного спектра $\varepsilon_k(k)$ вблизи ε_F из-за пересечения с ФХС.

лой. Это интерпретирует уменьшение электропроводности в гидридах.

Кроме того, искаженная (12.10*a*) часть поверхности Ферми должна существенно влиять на тепловые свойства. Вклад (12.10) в ТДП оцениваем интегралом зонных энергий в линейной части спектра (12.10*a*)

$$\Delta \Phi^b \sim (AT) \sim xT\xi_b^2. \tag{12.12}$$

Эта величина может быть сравнима с ковалентными составляющими энергии связи и ТДП. Однако при сильной локализации 1*s*электронов ($\xi_b^2 \ll 1$) зонная часть водородных сил связи мала по сравнению с ковалентной. Поэтому локальные модели растворения H в металлах [22] оказываются достаточно адекватными.

13. ЗОННО-КОВАЛЕНТНАЯ МОДЕЛЬ РАСТВОРЕНИЯ Н В 4*f*-МЕТАЛЛЕ. СИЛЫ СВЯЗИ

Сильное поглощение H в P3M привлекает внимание как теоретиков, так и практиков [22]. Локально-ковалентная теория разд. 1 позволяет рассчитать основные свойства P3M и их соединений (силы связи и т.п.). Зонные спектры P3M имеют особенности, обусловленные наличием связанных 6s-5d-4f-оболочек. Растворение H также влияет на зонные спектры (см. разд. 12). Однако гипотеза разд. 12 о доминировании ковалентных водородных связей системы MeH_x требует тщательного рассмотрения парных взаимодействий Me-H и их ФХС.

Обсуждаем проблему в рамках вторичного квантования, вводя МЭОС (12.1) ионов Н и (1.2) для 4f-ионов. Гамильтониан сил связи учитывает перескоки зонных электронов (их интегралы $t_{\rm H}$ для 4f- H-перескоков)

А.И. МИЦЕК

$$H = -\sum \Gamma^{DD} D_r \overline{D}_R \xi_D^2 + \sum \tilde{\epsilon}_k f_k^+ f_k - \xi_D x \sum \left(\Gamma^{DP} D_r \overline{P}_R + \text{H.c.} \right) + x \sum \left(\gamma P_r f_R + \text{H.c.} \right) - t_H \xi_b^2 x + x \sum \left(\omega F_r f_r^+ \overline{P}_R \overline{F}_R + \text{H.c.} \right) + \sum \left(\Theta F_r D_r \overline{P}_R \overline{F}_R + \text{H.c.} \right) \xi_D + \frac{C}{2} u_H^2 , \qquad (13.1)$$

а также ковалентную связь Ме–Н (Γ^{DP}), зонно-ковалентную связь (γ). Влияние на магнитные свойства растворения Н учитывается четверными членами (параметры ω и Θ). Переход в *k*-представление (3.2) межионных сил (связи) дает:

$$H = H_0 + \sum_k H_k^{(2)} + \dots$$
 (13.2)

Добавляем внутриионные гамильтонианы

$$H_{i} = H_{i}^{\text{Me}} + xH_{i}^{\text{H}}, \text{ где } H_{i}^{\text{H}} = \frac{U_{\text{H}}}{2}\xi_{L}^{4}N_{r\sigma}N_{r,-\sigma} = \frac{U_{\text{H}}}{2}\xi_{L}^{4}, \xi_{D}^{2} << 1, \quad (13.3)$$

а также

$$H_i^{\rm Me} = \frac{U_D}{2} \xi_D^4 + A (\xi_D \xi_F)^2 \sum F_{rS} D_{r\sigma} \overline{D}_{r\sigma} \overline{F}_{rS}.$$
(13.4)

Последний член в (13.4) соответствует обмену Хунда.

Варьируем суммы H_i (13.3) и выделенный из (13.1) нулевой гамильтониан

$$H_0 = -\Gamma \xi_D^2 - x \xi_D \xi_L \Gamma^{DP} + x \xi_D \Theta K_{FDP} \xi_L - x t \xi_b^2$$
(13.5)

по амплитудам волновых функций ионов Me (1.2) и водорода H (12.1). Получаем изменение плотности ковалентных электронов

$$\xi_D^2 = \left\{ \Gamma^{DD} + x \left(\xi_L / 2 \xi_{D0} \right) \left(\Gamma^{DP} - \Theta K_{FDP} \right) \right\} / U_D, K_{FDP} = \left\langle F_0 D_0 \overline{P}_0 \overline{F}_0 \right\rangle,$$
(13.6)

которая при доминировании прямых ковалентных («водородных») связей Γ^{DP} Ме–Н увеличивается. Этой же связью определяется плотность 1*s*-электронов, переходящих с атомных H-орбит на ковалентные связи:

$$\xi_L^2 \cong \left(\Gamma^{DP} - 2t_{\rm H} \right) / 2U_{\rm H} > 0 \text{ при } \Gamma^{DP} >> 2t_{\rm H}, \xi_L^2 \to 1.$$
 (13.7)

По-прежнему предполагаем, что доля 1*s*-электронов, переходящих в полосу проводимости, мала. Усиление ковалентных связей приводит к изменению (при $x \rightarrow 1$ достаточно резкому) свойств раствора Me–H, в частности магнитных свойств (см. ниже разд. 14).

Деформация $u_{\rm H} = gx$ создается водородом (и часто хорошо наблю-

88

дается). Вводим $C_{\rm H} = Cg^2$ и варьируем H_0 по x. Получаем равновесную концентрацию растворенного Н

$$\boldsymbol{x} \cong \xi_{D} \xi_{L} \left(\left| \Gamma^{DP} \right| - \Theta K_{FDP} \right) / C_{H}, \ \Delta \Phi_{0} \left(\boldsymbol{x} \right) \cong - \boldsymbol{x} \left| \Gamma^{DP} \right|^{2} / 2 C_{H}, \quad (13.8)$$

явно зависящую от амплитуд ковалентных электронов Me (13.6) и H (13.7). При (ξ_D , ξ_L) \rightarrow 1 растворение H почти полностью определяется осаждением 1*s*-электронов на ковалентных связях. Полагая энергии этих связей $\Gamma^{DP} \sim 1$ эВ $\sim C_{\rm H}$, получаем $x \sim 1$, что согласуется с экспериментом [22].

Влияние *T* на растворение Н рассчитываем, находя ТДП $\Phi(x, T)$ с учетом ФХС. Для этого квантуем $H_k^{(2)}$ в квадратичном приближении по фурье-образам МЭОС (D_k и P_k) (12.3). Вычисленные спектры ФХС (неявно использованные выше в разд. 12)

$$E_{D} = \Gamma^{DD} + xR, R = |\gamma|^{2} / \Gamma^{DD}, E_{P} = \Gamma^{PP} - xR$$
(13.9)

дают вклад в ТДП. Его часть, сильно зависящая от x, равна

$$\Delta\Phi(x,T) = \alpha_p T^{5/2} / \tilde{T}_p^{3/2}, k_B \tilde{T}_p = \Gamma^{pp} - xR.$$
(13.10)

Сравнивая $\Delta \Phi_0$ (13.8) и (13.10), для $x \to 0$ получаем критическую температуру T_0 выхода (испарения) Н из раствора

$$T > T_0 = \left(\tilde{T}_p^{3/2} \left| \Gamma^{DP} \right|^2 / C_{\rm H} \alpha_p \right)^{2/5}.$$
 (13.11)

Факторы, входящие в (13.11) показывают, что *х* зависит от энергий ковалентных связей не только Me–H (Γ^{DP}), но и H–H (Γ^{PP}) через спектры ФХС. Существенную роль играет механическая реакция Me-решетки на примесь внедрения (в данном случае H).

Желательно более тщательное исследование спектров систем Me-H на предмет обнаружения Φ XC (как основных, так и примесных), «распухания» Me-H как функции x, а также зависимости предельных x и T_0 от атомного номера.

14. МАГНИТНЫЕ СВОЙСТВА СИСТЕМЫ МеН, ТЯЖЕЛЫХ Ме-РЗМ

Обычные методы контроля состава MeH_x (весовые и др.) могут оказаться недостаточными, когда возникает необходимость учета неоднородности распределения Н. Хорошие результаты дает эффект Мёссбауэра (зависимость сверхтонкого поля и т.п. от числа соседей Н около Ме-иона). Однако более простыми часто являются магнитные методы. Зависимость магнитной фазовой диаграммы (МФД) от x (температур фазовых переходов $T_c(x)$ и $T_{c0}(x)$, критических полей (коэрцитивной силы B_c , переходов ОЛН–ПЛН, метамагнетизма) и других характеристик: электросопротивления, магнетосопротивления и т.п.), а также от распределения Н по глубине образца сильно влияет как на интегральные магнитные свойства, так и на доменную структуру.

Интерпретация магнитных данных требует детальной квантовой теории. Ее удобно дать на основе ковалентно-локальной теории 4f-5d-системы электронов Ме-иона (разд. 1–3). Обменная связь моментов J_r (4f-оболочек) осуществляется через возбуждения 5d-электронов:

$$H^{\text{cov}} = -\sum \Gamma D_r F_r \overline{F}_R \overline{D}_R - x \sum \left(\gamma \ F_r D_r \overline{P}_R \overline{F}_R + \text{H.c.} \right).$$
(14.1)

Спиновая часть обмена (14.1) возникает после разложения (2.2) спиновых $c_{rS\sigma}(S_r)$ и орбитальных $v_{rL}(L_r)$ факторов МЭОС. Получаем спиновую и орбитальную части обменного гамильтониана в стандартной форме [3, 8]

$$H^{\text{ex}} = -\sum A_{S}(r - R, T) \mathbf{S}_{r} \mathbf{S}_{R} - \sum A_{L} \mathbf{L}_{r} \mathbf{L}_{R} - \dots$$
 (14.2)

Здесь обменные параметры, аналогично (2.7), выражаются через корреляторы МЭОС:

$$A_{S} = Z_{S} \left\{ \Gamma \left(r - R \right) \left\langle D_{r} \overline{D}_{R} \right\rangle + x \left[\gamma \left\langle D_{r} \overline{P}_{R} \right\rangle + \gamma^{*} \left\langle P_{r} \overline{D}_{R} \right\rangle \right] \right\} = Z_{S} \widetilde{\Gamma} \left(r - R, T \right)$$
(14.3)

И

$$A_{L} = Z_{L} \tilde{\Gamma} (r - R, T), \tilde{A} = (\tilde{Z}_{S} + \tilde{Z}_{L}) \Gamma (r - R, T).$$
(14.4)

От *х* зависит только спиновая часть (14.3) из-за нулевого орбитального момента 1*s*-электронов H.

Эффективный обменный гамильтониан

$$H^{\text{ex}} = -\sum \tilde{A}J_{r}J_{R}, \tilde{Z}_{S} = Z_{S}(g-1)^{2}, \tilde{Z}_{L} = Z_{L}(2-g)^{2}, T_{c}(x) \sim \tilde{A} \quad (14.5)$$

выражается через фактор Ланде g. Влияние H (второй член в фигурной скобке (14.3) выражения $\tilde{\Gamma}$) входит через парные корреляторы MЭOC (5d-1s). Зависимость от x входит как явно (через ковалентные параметры), так и (неявно) через координационные числа соседств Me-H. Поэтому зависимость $T_c(x)$ для ФМ-фаз MeH_x, вообще говоря, нелинейна:

$$T_{c}(x) \cong T_{c}(0) \Big[1 + x\gamma K_{DP}(x) / \Gamma \Big], K_{DP} = 2 \operatorname{Re} \left\langle D_{r} \overline{P}_{R} \right\rangle \quad (14.6)$$

(за счет коррелятора МЭОС пары $K_{DP}(x)$).

Влияние H на МФД ниже T_c (или T_N) должно сильно зависеть от неоднородности ковалентных связей $\tilde{\Gamma}(r-R)$, даже если пренебречь ролью ФХС (т.е. зависимостью (14.3) от *T*). Рассмотрим влияние корреляторов Ме-H на устойчивость магнитных фаз. Интерес представляет метамагнитный переход ФМ-геликоид. Используем теорию разд. 3, связывающую его с особенностями магнонного спектра [7, 8], точнее, с наличием линейного по *k* члена в энергии магнона E^m .

Расчет разд. 3 дисперсии обменного интеграла (14.3) при x = 0 дает:

$$A(k) = \varphi \left\{ \Gamma(k) \rho^{2} + \sum_{q} \Gamma(k+q) N_{q}^{D} \right\}, \ \rho^{2} = \left\langle D_{0} \overline{D}_{0} \right\rangle, \ N_{q}^{D} = \left(e^{\beta \Gamma_{q}} + 1 \right)^{-1},$$
(14.7)

где плотность ФХС $N_q^D(E)$ аппроксимируем больцмановским фактором при низких $T = (1/k_B\beta) \le 10^2$ К, при $\Gamma \sim 1$ эВ. Разложение фурье-образа

$$\Gamma(k+q) \cong \Gamma(q) + \Gamma'(\mathbf{k} \cdot \mathbf{q})$$
(14.8)

для малых k дает закон дисперсии магнонов:

$$E^{m}(k)/2J = A(0) - A(k) + \mu_{B}B_{0} = Ak^{2} + (\vec{\Gamma}_{1}T^{2}) \cdot \mathbf{k} + \mu_{B}B_{0},$$

$$\Gamma_{1} \sim \Gamma'/\Gamma^{2}, B_{0} \sim B_{A} + B. \qquad (14.9)$$

Вектор геликоида \mathbf{k}_0 (определяемый минимумом $E^m(k)$ (см. разд. 3) зависит от линейного члена (14.9).

Растворение Н перенормирует дисперсию обмена (14.3); добавка

$$\Delta A(k) = x \sum \gamma (k+q) K_{DP}(q), \langle D_q \overline{P}_q \rangle = K_{DP}(q) \qquad (14.10)$$

перенормирует (14.9). К линейному члену энергии магнона добавляется

$$\Delta E^{m}(k,x) = \text{const } x\mathbf{k} \cdot \vec{\Gamma}_{1}(x), \ \widehat{\gamma}_{k}'(x) \sum \mathbf{q} K_{DP}(\mathbf{q},x) = \vec{\Gamma}'; (14.11)$$

тем самым перенормируется волновой вектор геликоида $\mathbf{k}_0(x,T)$. В зависимости от знака Γ_1 (от ковалентного параметра γ (14.1), коррелятора K_{DP} (14.11) и его неоднородности) и параметров магнитной анизотропии (B_A) период геликоида либо уменьшается, либо увеличивается с ростом x.

выводы

1. Система электронов РЗМ по степени их локализации разбивается

на 1) локальные (в узлах *r*) 4*f*-электроны, 2) локализованные на ковалентных орбитах (для пар ионов РЗМ) 5*d*-электроны, 3) зонные делокализованные («свободные») 6*s*-электроны (проводимости).

2. Локальные 4f-электроны характеризуются суммарным орбитальным (\mathbf{L}_r) и спиновым (\mathbf{S}_r) моментами. Угловой момент (\mathbf{J}_r) и фактор Ланде (g) — хорошие квантовые числа.

3. 5*d*-электроны РЗМ (кроме Gd) возбуждаются и образуют ковалентные (обменные) связи, а также спектр их возбуждений (ФХС).

4. Зонный спектр вблизи уровня Ферми деформируется пересечением с ФХС. Здесь возникают линейные по квазиимпульсу k части.

5. Условия локальности позволяют представлять 4*f*- и 5*d*-электроны МЭОС. Строгое определение МЭОС в пространствах Фока обосновывает их вторичное квантование (боголюбовские функции Грина).

6. Спектры ФХС (и тепловые свойства РЗМ) определяются параметрами Γ ковалентных («парных») 5*d*-связей. Параметры ТДП (функционалы корреляторов МЭОС) выражаются через функции распределения (числа заполнения N_k^D) ФХС.

7. Есть аналогия ФХС и ФМ-магнонов (энергии ФХС $E_k \sim \Gamma k^2$, вклад в ТДП $\Delta \Phi^{\text{CBF}} \sim (T/\Gamma)^{5/2}$ для трехмерного РЗМ).

8. Амплитуда (ξ_D) возбуждения 5*d*-электронов из 4*f*-оболочки определяется конкуренцией хаббардовского отталкивания (U_D) и 4*f*-5*d*-гибридизации.

9. Интеграл косвенного (ковалентного) 4f-4f-обмена (межионного) $A \sim \Gamma \xi_D^2$ мал и явно зависит от N_k^D .

10. Обмен Хунда (A_D) и спин-орбита (λ) размораживают спин s_r и орбитальный момент l_r ковалентных 5d-электронов. Спиновый ($\sim S_r S_R$) и орбитальный ($\sim L_r L_p$) вклады в обменный гамильтониан имеют добавочные малые факторы (A_D/U_D) и (λ/U_D). Поэтому величина $T_c(4f) \sim 10^2 \text{ K} << T_c(3d) \sim 10^3 \text{ K}.$

11. Константы ФМА ($K_1 \sim 10^9$ эрг/см³) получаются из анизотропной части КП-СF. Величина $K_1^{CF} \sim u_{zz}$ (спонтанной деформации ГПУ вдоль оси c = 0z). Гамильтониан КП образован «эффективными зарядами» (парами 4*f*- и 5*d*-МЭОС).

12. Разложение спиновых и орбитальных факторов МЭОС дает спиновый (~ A_D) и орбитальный (λ) вклады в K_1 разного знака. Это дает зависимость знака $K_1(n)$ в ряду тяжелых РЗМ от g. При g < 5/4 меняется знак K_1^{CF} (переход П/ЛН–О/ЛН).

няется знак K_1^{CF} (переход ПЛН–ОЛН). 13. Зависимость $K_1^{\text{exp}}(T) = -(K_1^{\text{CF}} + 2K_2^{\text{CF}})$ [17, 18] близка к магнонному закону Акулова–Зинера для «поперечных магнонов» (~ $M_s^3(T)$ при $T < 3T_c/4$). Для больших T учет «продольных магнонов» [6, 8] изменяет этот закон на $K_1^{\text{CF}} ~ M_s^2(T)$, используемый часто эмпирически [16].

14. В исключительном случае Gd (n = 7, L = 0) вклад КП мал и конкурирует с ковалентным (анизотропным) вкладом $K_1^{cov}(T) \sim 10^7$ эрг/см³.

Учет экранирования связи $\Gamma(r-R) \sim -\kappa(r-R)$ усложняет вид $K_1^{\text{cov}}(\kappa, T) \sim -K_1^{\text{CF}}(T)$. Возникает немонотонность (и изменение знака) $K_1^{\text{exp}}(T)$: сложная МФД с переходами ОЛН–конус–ПЛН для Gd.

15. ФХС влияет на дисперсию обменного интеграла A(k) и дает линейный вклад $\Delta A \sim -kT^2$ в него. При $T > T_{0c} \sim 10^2$ К он изменяет знак энергии магнона $E^m(k)$ при $k = k_0 = Q_c$.

16. Вектор геликоида $Q_c(T) \sim (T - T_{0c})$. Критическое поле его перехода в ФМ-фазу $B_c \sim (T - T_{0c})J_T(T)$. Эти результаты интерпретируют данные для РЗМ (Tb-Ho).

17. Теория позволяет рассчитать сильное поглощение водорода в РЗМ. Ковалентные связи Me(4f)-Н сильны в системе MeH_x и дают $x \sim 1$. При x > 1 деформация поверхности Ферми (линейная часть закона дисперсии $\varepsilon_k \sim k$) резко уменьшает DOS(E) здесь, что объясняет уменьшение электропроводности гидридов.

18. Перенормировка линейной части $\Delta A(k,T,x)$ изменяет МФД системы Ме H_x .

Работа выполнена в рамках проекта 28/09-Н (06) Комплексной программы НАН Украины «Наноструктурные системы, наноматериалы, нанотехнологии».

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. С. В. Вонсовский, Магнетизм (Москва: Наука: 1971).
- К. Тейлор, М. Дарби, Физика редкоземельных соединений (Москва: Мир: 1974).
- Ю. П. Ирхин, В. Ю. Ирхин, Электронное строение и физические свойства переходных металлов (Свердловск: Изд-во Урал. гос. ун-та: 1989).
- 4. А. И. Мицек, Успехи физики металлов, 6, № 3: 233 (2005).
- 5. А. И. Мицек, В. Н. Пушкарь, *Металлофиз. новейшие технол.*, **30**, №12: 1591 (2008).
- 6. А. И. Мицек, Фазовые переходы в кристаллах с магнитной структурой (Киев: Наукова думка: 1989).
- 7. B. Coqblin, The electronic structure of Rare-Earth Metals and Alloys: The Magnetic Heavy Rare Earth (London: Academic Press: 1977).
- А. И. Мицек, В. Н. Пушкарь, Реальные кристаллы с магнитным порядком (Киев: Наукова думка: 1978).
- 9. К. П. Белов, *Магнитострикционные явления и их технические приложе*ния (Москва: Наука: 1987).
- 10. А. В. Дерягин, УФН, 120, №3: 393 (1976).
- А. И. Мицек, В. Н. Пушкарь, Металлофиз. новейшие технол., 31, № 7: 881 (2009).
- 12. А. И. Мицек, Металлофиз. новейшие технол., 26, № 5: 591 (2004).
- 13. А. И. Мицек, Металлофиз. новейшие технол., 26, № 2: 141 (2004).
- 14. А. И. Мицек, Металлофиз. новейшие технол., 26, № 7: 911 (2004).
- 15. Г. Шульце, Металлофизика (Москва: Мир: 1971).
- 16. С. В. Вонсовский, Я. С. Шур, Ферромагнетизм (Москва: Гос. изд-во техн.-

теор. лит.: 1948).

- 17. Е. А. Туров, А. И. Мицек, ЖЭТФ, 37, № 4 (10): 1127 (1959).
- 18. Е. А. Туров, А. И. Мицек, ЖЭТФ, 38, № 6 (12): 1847 (1960).
- О. А. Шматко, Ю. В. Усов, Структура и свойства металлов и сплавов.
 Электрические и магнитные свойства металлов и сплавов (Киев: Наукова думка: 1987).
- 20. А. И. Мицек, Металлофиз. новейшие технол., 26, № 12: 1553 (2004).
- 21. А. И. Мицек, Металлофиз. новейшие технол., 31, № 5: 579 (2009).
- 22. Hydrogen in Intermetallic Compounds. II (Berlin: Springer-Verlag: 1992).