PACS numbers: 71.45.Gm, 72.30.+q, 73.20.Mf, 73.50.Mx, 79.20.Hx, 79.20.Uv, 82.80.Pv

Формирование плазмонов в спектрах вторично-электронной эмиссии при низкоэнергетическом облучении электронами поверхности сплава Pt₈₀Co₂₀(111)

М. А. Васильев, В. А. Тиньков, С. В. Червонный

Институт металлофизики им. Г.В.Курдюмова НАН Украины, бульв.Акад. Вернадского, 36, 03680, ГСП, Киев-142, Украина

Методом низкоэнергетической спектроскопии характеристических потерь энергии электронов исследовано формирование плазмонов в спектрах вторично-электронной эмиссии в упорядочивающемся сплаве $Pt_{80}Co_{20}(111)$. Предложен способ определения границы раздела «поверхность-объем» по зависимостям интенсивности линий поверхностных и объемных плазмонов от энергий первичных электронов в диапазоне 150–700 эВ. Найдено, что толщина приповерхностного наноразмерного слоя для неупорядоченного сплава $Pt_{80}Co_{20}(111)$ больше в 2 раза, чем для упорядоченного состояния. Установлено также, что при упорядочении данного сплава в плазменных колебаниях принимает участие большее количество электронов проводимости.

Методою низькоенергетичної спектроскопії характеристичних втрат енергії електронів досліджено формування плазмонів у спектрах вторинної електронної емісії у стопі $Pt_{80}Co_{20}(111)$, що упорядковується. Запропоновано спосіб визначення роздільчої межи «поверхня—об'єм» за залежностями інтенсивности ліній поверхневих та об'ємних плазмонів від енергій первинних електронів у діяпазоні 150–700 еВ. Знайдено, що товщина приповерхневого нанорозмірного шару для невпорядкованого стопу $Pt_{80}Co_{20}(111)$ вдвічі більше, ніж для впорядкованого стану. Встановлено також, що при впорядкуванні даного стопу в плазмових коливаннях бере участь більша кількість електронів провідности.

A method of the electron energy loss spectroscopy is used to investigate a manifestation of the plasmons in the secondary electron emission spectra for the ordering $Pt_{80}Co_{20}(111)$ alloy. The method is offered for determination of a 'surface-bulk' boundary based on the dependences of line intensities of the surface and bulk plasmons on the primary-electron energies within the range of 150–700 eV. As revealed, the thickness of nanosize surface layer for the disordered $Pt_{80}Co_{20}(111)$ alloy is twice as much than thickness for the ordered

41

state. Under ordering of an alloy at issue, the greater quantity of conduction electrons takes part in plasma oscillations.

Ключевые слова: сплав $Pt_{80}Co_{20}$, упорядочение, поверхностные плазмоны, объемные плазмоны, характеристические потери энергии электронов.

(Получено 2 декабря 2005 г.)

1. ВВЕДЕНИЕ

Современное развитие науки в таких новых направлениях как нанофизика и нанотехнология предъявляет высокие требования к определению физико-химических характеристик поверхности объектов исследования наноразмерной толщины. Исследование в этих направлениях атомно-чистых граней монокристаллов металлов и сплавов в условиях сверхвысокого вакуума позволяет повысить достоверность и однозначность данных и сопоставить экспериментальные результаты с существующими теориями и теоретическими моделями, развитыми для идеальных кристаллов со свободной поверхностью. Так, например, в случае монокристаллических сплавов экспериментальные и теоретические работы показали, что реальная наноразмерная поверхность таких объектов существенно отличается как по составу, так и структуре от объема кристалла [1, 2].

Наибольшее распространение для физико-химического анализа поверхности материалов получили методы, основанные на явлении вторично-электронной эмиссии (ВЭЭ), возникающей при взаимодействии электронов малых энергий с поверхностью материала [3– 5]. Локальность этих методов по глубине обусловлена малой длиной свободного пробега эмитируемых электронов относительно процессов неупругого взаимодействия, которая определяется их кинетической энергией и, в зависимости от метода, находится в пределах от ~0,2 до ~5,0 нм. Наименее изученной областью ВЭЭ являются характеристические потери энергии первичных электронов, в частности, затраченные на возбуждение объемных и поверхностных плазмонов.

Одним из самостоятельных типом элементарных возбуждений в твердом теле являются коллективные возбуждения электронов (плазмонов), обусловленные кулоновским взаимодействием между электронами [6]. Обычно, изучение коллективных возбуждений электронов осуществляется с помощью неупругого рассеяния электронов либо при прохождении их через тонкие пленки, или при отражении от поверхности образца [3, 7]. Понимание механизма этого вида потерь открывает новые возможности использования вторично-электронной спектроскопии для проведения неразрушающего анализа поверхности твердого тела наноразмерной толщины.

В настоящее время большое внимание уделяется исследованию свойств поверхности ферромагнитных систем на основе благородных металлов типа Pt-Me, где Me — 3*d*-переходные металлы Fe, Co и Ni. Это объясняется широким использованием их в качестве каталитических и магнитных материалов.

Большинство существующих работ по сплавам Pt-Co, в частности по модельному сплаву $Pt_{80}Co_{20}(111)$, посвящены изучению, главным образом, профиля концентрации в поверхностном слое методом дифракции медленных электронов и ионизационной спектроскопии [8, 9].

Впервые в работе [10] была детально исследована природа появления тонкой структуры (межзонные переходы, плазмоны, ионизационные потери, Оже-электроны) в спектрах ВЭЭ в неупорядоченном сплаве Pt₈₀Co₂₀(111), которая отражает специфические свойства поверхности.

В настоящей работе изучена зависимость формирования интенсивности и энергии поверхностных и объемных плазменных колебаний в спектрах характеристических потерь энергии электронов (ХПЭЭ) от энергии первичных электронов для сплава $Pt_{80}Co_{20}(111)$, находящегося как в упорядоченном, так и неупорядоченном состоянии.

2. ЭКСПЕРИМЕНТ

Все измерения были выполнены в сверхвысоковакуумном спектрометре, оснащенном четырехсеточным квазиполусферическим энергоанализатором [11]. Рабочее давление остаточных газов в камере составляло $6 \cdot 10^{-8}$ Па. Подготовка образца состояла из нескольких циклов распыления ионами Ar^+ с энергией 600 эВ и последующим отжигом непосредственно в вакуумной камере при температуре $T = 850^{\circ}$ С в течение нескольких часов. Критерием чистоты поверхности образца и началом исследований считалось отсутствие в обзорных Оже-спектрах пиков примесных атомов и наличие четкой дифракционной картины от поверхности сплава.

Применение модуляционной методики позволяет выделить чистый сигнал в виде dN/dE и вычесть влияние фона от истинно вторичных электронов. Энергетическое разрешение энергоанализатора, оцененное по *peak-to-peak* амплитуде дифференцированного упругого пика, при $E_0 < 500$ эВ составляет $\Delta E/E_0 \approx 0.5\%$, а при $E_0 > 500$ эВ $\Delta E/E_0 \approx 0.3\%$, соответственно. На рис. 1 показан пример записи спектров характеристических потерь энергий электронов для неупорядоченного сплава $Pt_{80}Co_{20}(111)$ [10]. Погрешность измерения интенсивности и энергии поверхностных и объемных плазмонов не превышала 5%.

Рис. 1. Спектры ХПЭЭ от чистой поверхности неупорядоченного сплава Pt₈₀Co₂₀(111)[10].

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для экспериментального определения потерь, затраченных на возбуждение плазменных колебаний, были измерены спектры характеристических потерь электронов в интервале энергий первичных электронов от 150 до 700 эВ. На энергетическом спектре ВЭЭ наблюдались характерные пики объемных и поверхностных плазмонов. Анализ этих спектров показал, что как для неупорядоченного, так и упорядоченного состояния сплава в диапазоне энергий $E_0 = 150 - 250$ эВ интенсивность поверхностных плазмонов оказывается большей, чем у объемных. Было также установлено, что с увеличением $E_0 > 250$ эВ интенсивность объемных плазмонов растет, а поверхностных падает, и при $E_0 > 550$ эВ для неупорядоченного состояния и при $E_0 > 350$ эВ для упорядоченного состояния поверхностные плазмоны в спектрах ВЭЭ практически не обнаруживаются.

Известно, что первичные электроны, обладающие достаточно высокой энергией, при своем движении в кристалле могут испытывать многократные потери энергии на возбуждение объемных и поверхностных плазмонов [3]. Этим можно объяснить то, что в спектрах ХПЭЭ для (не)упорядоченного сплава $Pt_{80}Co_{20}(111)$ в интервале $E_0 = 200-400$ эВ появляются двукратные и гибридные моды плазменных колебаний, которые в среднем составляют $2\hbar\omega_b = 43-45$ эВ и $\hbar\omega_b + \hbar\omega_s = 33-35$ эВ (рис. 1) [10].

Проанализируем интенсивность линий (ИЛ) плазмонов от E_0 . Для начала рассмотрим твердое тело, в котором физикохимические свойства приповерхностной области некоторой толщины d отличаются от объема (рис. 2). Предполагается, что взаимодействие первичных электронов с энергией E_0 происходит по экспоненциальной модели затухания потока электронов и при варьировании E_0 (эффективная глубина зондирования) будет меняться доля вклада в ИЛ характеристических потерь от поверхности к объему. Условимся, что суммарный вклад η от поверхности и объема в общий спектр ВЭЭ при фиксированном значении E_0 равен 1. На основании обнаруженного ранее эффекта изменения интенсивности линий поверхностных и объемных плазмонов от энергии первичных электронов введем параметр $\eta_{eff}^{s,b}$, который будет характеризовать долю вкладов поверхностных и объемных плазмонов в общий спектр ХПЭЭ в зависимости от E_0 , в следующем виде

Рис. 2. Схема рассеяния электронов при ВЭЭ: экспоненциальная модель затухания потока электронов в твердом теле и доля вклада ИЛ $\eta_{eff}^{s,b}$ в спектр ХПЭЭ при варьировании E_0 .

$$\eta_{eff}^{s,b}(E_0) = \frac{I_{pl}^{s,b}(E_0)}{I_{pl}^s(E_0) + I_{pl}^b(E_0)};$$
(1)

 $I_{nl}^{s,b}$ — интенсивность линий поверхностных и объемных плазмонов от Е₀. На рис. З показаны результаты расчетов по уравнению (1) для сплава Pt₈₀Co₂₀(111). Так как энергия первичных электронов определяет длину их свободного пробега [9, 12], из результатов приведенных на рис. 4, можно заключить, что первичные электроны с энергией E_0 до 450–500 эВ (≈ 1 нм, 6 монослоев) для неупорядоченного состояния и до 250-300 эВ (≈0,75 нм, 3 монослоя) для упорядоченного состояния зондируют только поверхностную область. Дальнейшее увеличение энергии Е₀ приводит к увеличению объемного вклада в общий спектр ХПЭЭ, а вклад поверхности оказывается несущественным. Сопоставим полученные данные с результатами послойного восстановления профиля концентрации для упорядоченного и неупорядоченного состояния сплава $Pt_{80}Co_{20}(111)$, которые получены методом ионизационной спектроскопии [9]. Так в работе [9] было установлено, что сплав Pt₈₀Co₂₀(111) в неупорядоченном состоянии имеет осциллирующий, затухающий по глубине профиль концентрации. При этом верхний атомный слой состоит из чистой Pt, а осцилляция состава распространяются до шестого

Рис. 3. Рассчитанная доля вклада ИЛ поверхностных и объемных плазмонов $\eta_{eff}^{s,b}$ в общий спектр ХПЭЭ в зависимости от E_0 для (не)упорядоченного сплава. Линиями показана граница перехода «поверхность-объем»: (-----) упорядоченный сплав; (- - -) неупорядоченный сплав [9].

Рис. 4. Зависимость энергии объемных (ВР) и поверхностных плазмонов (SP) сплава: *a*) от энергии первичных электронов E_0 ; *б*) дисперсионные зависимости энергии ВР и SP плазмонов от k; (1) — упорядоченное состояние; (2) — неупорядоченное состояние [10].

атомного слоя. В упорядоченном состоянии поверхность сплава $Pt_{80}Co_{20}(111)$ также обогащена Pt, а все остальные атомные слои близки к объемным значениям концентрации сплава.

Вследствие этого Pt образует на поверхности сверхструктурную решетку $p(2\times2)$, которая вызвана эффектом упорядочения сплава в глубоколежащих слоях. Установленная граница раздела «поверхность-объем», полученная из отношения $\eta_{eff}^{s,b}(E_0)$ для упорядоченного и неупорядоченного состояния сплава, полностью согласуется с результатами, полученными в работе [9].

На рис. 4, а показаны результаты измерения энергий поверхно-

стных и объемных плазмонов от E_0 при разных состояниях сплава. Было установлено, что для упорядоченного состояния энергия объемных и поверхностных плазмонов больше, чем для неупорядоченного состояния. При этом для объемных плазмонов в среднем разница составляла 2–4 эВ, тогда как для поверхностных плазмонов это величина равнялась 4–7 эВ.

Известно, что зависимость энергии плазмонов от энергии первичных электронов связана с дисперсией плазменных колебаний, т.е. с зависимостью между частотой и волновым вектором плазмона $\omega = \omega(\mathbf{k})$ [13]. Эта связь возникает из-за того, что составляющая волнового вектора \mathbf{k}_{\parallel} , которая может быть передана плазмону первичным электроном с энергией E_0 , задается следующим выражением

$$\mathbf{k}_{\parallel} = (m/2)^{s} E_{d,s} / \left[\hbar(E_{0})^{s} \right].$$
⁽²⁾

Предполагается, что полученные энергетические зависимости (рис. 4, а) определяются в основном составляющей волнового вектора k. Поэтому, пользуясь формулой (2), получаем дисперсионные зависимости (рис. 4, б). Из данного рисунка видно, что для (не)упорядоченного состояния сплава наклон дисперсионных зависимостей объемных плазмонов одинаковый $\alpha^b_{(dis)ord} \approx 5^\circ$, однако для поверхностных плазмонов сильно отличается $\alpha_{ord}^s \approx 15^\circ$ и $\alpha_{dis}^s \approx 8^\circ$, соответственно. Также при значении волнового вектора $\mathbf{k}_{\parallel} = 3 - 4$ нм⁻¹ для упорядоченного состояния сплава Pt₈₀Co₂₀(111) наблюдаются незначительные немонотонности в дисперсионных зависимостях объемных плазмонов. Мы предполагаем, что появление немонотонности и изменение угла наклона $E_s^{ord}(\mathbf{k})$ связано с изменениями плотности электронных состояний в поверхностном слое, которые вызваны эффектом упорядочения сплава и образованием на поверхности сверхструктурной решетки $p(2 \times 2)$ [9].

Влияние неоднородности электронной плотности в поверхностном слое на дисперсию плазменных колебаний теоретически изучено в работе [14]. Описав полученные результаты в рамках соответствующей модели (рис. 4, δ) было установлено, что в области малых значений волнового вектора $E_{s,b}^{(dis)ord}(\mathbf{k})$ — почти линейные, причем знак их наклона соответствует случаю, когда электронная плотность в поверхностном слое некоторой толщины ниже, чем в объеме. Линейная аппроксимация $E_{s,b}^{(dis)ord}(\mathbf{k})$ позволила определить средние значения энергий плазмонов (на рис. 4, δ показано штриховой линией) для (не)упорядоченного сплава $Pt_{80}Co_{20}(111)$ (табл. 1).

Далее проанализируем, как изменение состава сплава может влиять на энергию плазмонов, и сопоставим с экспериментальными данными. Согласно модели однородной, изотропной и бесконечной плазмы энергия объемных плазмонов определяется следующим со-

ТАБЛИЦА 1. Энергия объемных плазмонов для чистых Pt, Co и сплава $Pt_{80}Co_{20}(111)$.

	$E_b^{ m Pt}$, əB	$E_b^{ m Co}$, ə $ m B$	$E_{\scriptscriptstyle b}^{{ m Pt}_{ m s_0}{ m Co}_{ m 20}(111)}$, əB	
			неупоряд.	упоряд.
Теория	30,08	32,6	30,6	30,6
Эксперимент	23,3	21,8	20,9	24,5

отношение [6]:

$$E_{b} = \hbar\omega_{b} = \hbar\sqrt{\frac{e^{2}n}{m\varepsilon_{0}}},$$
(3)

где \hbar — постоянная Планка; e — заряд электрона; m — масса электрона; ϵ_0 — электрическая постоянная; n — концентрация свободных электронов, которая определяется произведением валентности металла на число атомов в 1 см³. В рамках представленной модели при расчете n предполагается, что в плазменных колебаниях участвуют все электроны валентной зоны Co([Ar]3 d^74s^2) и Pt([Xe]5 d^86s^2) (способ 1). С учетом вышесказанного, рассчитаем энергию объемных плазмонов чистых Pt и Co по формуле (3), а также для объемного сплава Pt–Co в зависимости от состава по следующему уравнению

$$E_b^{alloy} = E_b^{\rm Pt} c_{\rm Pt} + E_b^{\rm Co} (1 - c_{\rm Pt}),$$
 (4)

где $c_{\rm Pt}$ — концентрация атомов Pt в сплаве Pt-Co, $E_b^{\rm Pt,Co}$ — энергия объемных плазмонов Pt и Co. Результаты расчетов представлены на рис. 5 (прямая 1) и табл. 1. Заметим, что (4) не учитывает эффекта сплавления, при котором может меняться вклад валентных электронов компонентов слава в общий электронный газ кристалла. Также были измерены энергии объемных плазмонов для чистых поликристаллических Со и Pt от E_0 (табл. 1). Оказалось, что средняя энергия объемных плазмонов поликристаллической Pt близко к $E_{h}^{\text{Pt(111)}}$ [15], измеренное в низкоэнергетическом диапазоне энергий электронов. Исходя из экспериментально наблюдаемых $E_b^{\rm Pt,Co}$ для Со и Pt, была рассчитана E_b^{alloy} для объемного сплава Pt-Co по (4) (см. рис. 5, прямая 2, способ 2). Также на этот рисунок была нанесена область изменения энергии объемных плазмонов по оси Е_b которые были измерены в зависимости от E_0 , и состава в атомных слоях для неупорядоченного и упорядоченного состояния сплава Рt₈₀Co₂₀(111) по оси *с*_{Рt}[9].

Из рис. 5. видно, что расчет энергии объемных плазмонов чистых

Рис. 5. Зависимость от состава сплава Pt–Co; (1), (2) — способ расчета энергии объемных плазмонов.

Pt, Со и сплава Pt-Co первым способом в среднем на 7-9 эВ больше при расчете вторым способом. Анализ полученных результатов показал, что область изменения энергий плазмонов для неупорядоченного сплава хорошо согласуется с расчетами, выполненными с учетом экспериментально наблюдаемых $E_b^{\rm Pt,Co}$ для чистых Pt и Co. Для упорядоченного состояния сплава наблюдается сдвиг плазмонов в сторону больших энергий и увеличения области изменения энергии объемных плазмонов. Это свидетельствует в пользу того, что в плазменных колебаниях упорядоченного сплава Pt₈₀Co₂₀(111) принимает участие большее количество электронов валентной зоны, чем в неупорядоченном состоянии.

Согласно [6], частота поверхностного плазмонов ω_s связана с частотой объемного плазмонов ω_b следующим соотношением:

$$\omega_s = \omega_b / \sqrt{1 + \varepsilon} , \qquad (5)$$

где ε — диэлектрическая проницаемость. В рамках рассматриваемой модели граница раздела «металл-вакуум» является совершенной и плоской, т.е. $\varepsilon = 1$. Следовательно, уравнение (5) может быть записано как

$$\omega_{s} = \omega_{h} / \sqrt{2} . \tag{6}$$

Наблюдаемые в спектре пики поверхностных плазмонов локализованы при меньших энергиях потерь, чем это следует из модели однородной, изотропной плазмы совокупности *s*- и *d*-электронов (рис. 4, *a*). Установлено, что отношение (6) для неупорядоченного сплава $\operatorname{Pt}_{80}\operatorname{Co}_{20}(111)$ равно $\omega_b / \omega_s \approx \sqrt{4,2}$, а для упорядоченного состояния $\omega_b / \omega_s \approx \sqrt{3,6}$. Такое расхождение наблюдается также для чистых моно и поликристаллических металлов W, Si, Cu, Au, Ag [16–19]. Следует отметить, что локальные границы области раздела «металл-вакуум» в действительности отличаются от идеальных, например, за счет того, что исследуемая поверхность имеет особую кристаллографическую ориентацию, рельеф и морфологию.

4. ВЫВОДЫ

Исходя из результатов, полученных в настоящей работе, можно сделать следующие выводы.

1. Показано, что по отношению интенсивностей линий плазмонов можно определить границу перехода «поверхность-объем» (толщину поверхностного слоя), после которой вклад поверхности в общий спектр вторично-электронной эмиссии будет несущественным. Найдено, что толщина приповерхностного слоя для неупорядоченного сплава больше в 2 раза, чем для упорядоченного сплава $Pt_{s_0}Co_{20}(111)$.

2. Установлено, что в плазменных колебаниях принимают участие не все электроны валентной зоны чистых Pt, Co и их сплава, чем это следует из модели однородной изотропной плазмы.

3. Экспериментально было определено, что энергия плазмонов для упорядоченного сплава $Pt_{80}Co_{20}(111)$ больше, чем для неупорядоченного. Это свидетельствует в пользу того, что при упорядочении исследуемого сплава в плазменных колебаниях принимает участие большее число электронов проводимости, чем в неупорядоченном состоянии.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. M. O. Vasylyev and S. I. Sidorenko, *Diffusion and Surface Segregation* (Kyiv: Ministry Education of Ukraine: 1998).
- 2. Y. Gauthier, Surf. Rev. and Lett., 3, No. 5&6: 1663 (1996).
- А. Р. Шульман, С. А. Фридрихов, Вторично-эмиссионные методы исследования твердого тела (Москва: Наука: 1977).
- 4. М. А. Васильев, Структура и динамика поверхности переходных металлов (Киев: Наукова думка: 1988).
- 5. В. Т. Черепин, М. А. Васильев, Методы и приборы для анализа поверхности материалов: Справочник (Киев: Наукова думка: 1982).
- 6. Д. Пайнс, Элементарные возбуждения в твердых телах. (Москва: Мир: 1965).
- 7. Л. Фелдман, Д. Майер, Основы анализа поверхности и тонких пленок (Мо-

сква: Мир: 1989).

- 8. Y. Gauthier, R. Baudoing-Savois, and J. M. Bugnard, Surf. Sci., 276: 1 (1992).
- 9. M. A. Vasylyev, V. A. Tinkov, A. G. Blaschuk, J. Luyten, and C. Creemers, *Appl. Surf. Sci.* (2006) (in press).
- А. П. Шпак, М. А. Васильев, В. А. Тиньков, Металлофиз. новейшие технол., 26, № 6: 765 (2004).
- 11. M. A. Vasil'ev and S. D. Gorodetsky, Vacuum, 37, No. 10: 723 (1987).
- 12. M. P. Seah and W. A. Dench, Surf. Interface Anal., 1, No. 1: 2 (1979).
- 13. J. O. Porteus and W. N. Faith, *Phys. Rev.*, **12**: 2097 (1975).
- 14. A. D. Boardman, B. V. Paranjape, and R. Teshima, Surf. Sci., 49: 275 (1975).
- 15. B. Lang, Surf. Sci., 66: 527 (1977).
- 16. W. S. M. Werner, Surf. Sci., 526: L159 (2003).
- Э. Ф. Чайковский, В. С. Редькин, В. В. Зашквара, В. Т. Сотников., ФТТ, 15: 1947 (1973).
- 18. D. E. Edward and F. M. Propst., J. Chem. Phys., 55: 5175 (1971).
- 19. В. В. Кораблев, *ФТТ*, **12**: 1638 (1970).