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Review covers some new concepts in theory and modelling of the initial stages 

of solid-state reactions in thin films, multilayers, nanoparticles, and bulk 

nanocrystalline materials. The following topics are included: possibility of 

oscillatory ordering and nucleation in the sharp concentration gradient; crite-
ria of suppression/growth of stable and metastable phases at the nucleation 

stage; possible nucleation modes in sharp concentration gradient and their 

competition; competitive nucleation and decomposition in small volumes; cri-
teria of unambiguous choosing the parameters of discontinuous precipitation 

based on the balance and maximum production of the entropy; formation of 

nanostructure under uniaxial compression of single-crystalline alloy.  

Огляд містить набір деяких нових концепцій в теорії і моделюванні 
початкових стадій твердофазних реакцій у тонких плівках, мультиша-
рах, наночастинках та в об’ємі нанокристалічних матеріалів. Обговоре-
но наступні теми: можливість осциляційного впорядкування і зародко-
утворення в полі градієнта концентрації; критерій пригнічення/росту 
стабільних і метастабільних фаз на стадії зародкоутворення; можли-
вість різних мод зародкоутворення в полі градієнта концентрації та їх 
конкуренція; конкурентне зародкоутворення і розпад в малих об’ємах; 
критерій однозначного вибору параметрів коміркового розпаду, що ба-
зується на балансі та максимумі виробництва ентропії; формування на-
ноструктур під дією одновісного стискання монокристалічного стопу. 

Обзор содержит набор некоторых новых концепций в теории и модели-
ровании начальных стадий твердофазных реакций в тонких пленках, 
мультислоях, наночастицах и в объеме нанокристаллических материа-
лов. Обсуждаются следующие темы: возможность осцилляционного 
упорядочения и зародышеобразования в поле градиента концентрации; 
критерий подавления/роста стабильных и метастабильных фаз на ста-
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дии зародышеобразования; возможность различных мод зародышеобра-
зования в поле градиента концентрации и их конкуренция; конкурент-
ное зародышеобразование и распад в малых объемах; критерий одно-
значного выбора параметров ячеистого распада, основанный на балансе 
и максимуме производства энтропии; формирование наноструктур под 
воздействием одноосного сжатия монокристаллического сплава. 

Keywords: concentration gradient, diffusion, nucleation, decomposition, 
simulation. 
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1. INTRODUCTION (A LITTLE BIT HISTORY) 

Present review is an attempt of summarizing the recent endeavours of 

modelling and theoretical description of the Big Bang of solid-state re-
actions (SSR) at the very initial stages including nucleation. Evident 

nano-trend of materials science makes initial stages of SSR (true nano-
process) an important issue. Our group at the Cherkasy University 

treats these problems during last two decades, in co-operation with such 

wonderful researchers as C. Gurov  and A. Nazarov (Moscow), P. 
Desré and F. Hodaj (Grenoble), F. van Loo and A. Kodentsov (Eindho-
ven), K. N. Tu (Los Angeles), G. Schmitz (Muenster), V. V. Slyozov and 

L. N. Paritskaya (Kharkiv). Some ideas and new understanding in this 

field, which nucleated, grew and even partially ripened during this pe-
riod, include (1) ordering, nucleation, competition and growth of sta-
ble and/or metastable intermediate phases in the nanoscale diffusion 

zone–phase transformations in sharp, time-dependent concentration 

gradient, (2) competitive nucleation in the isolated binary nanoparti-
cles or bulk samples with very high density of nucleation sites, (3) 

flux-driven coarsening in nanosystems, (4) possibility of bulk nano-
crystalline alloy formation under pulse loading.  
 So, how does the ‘reactive Big Bang’ look like?  
 Till 80’s a diffusion community, occupied mainly with diffusion and 

reactions in macrospecimens, treated the initial stages of these proc-
esses as some exotic problem, basically, as theoretical one. Reason was 

that initial stage is usually being ‘forgotten’ by the system (in accor-
dance with basic principles of non-equilibrium thermodynamics and 

statistical mechanics) when the diffusion zone reaches several mi-
crometers.  
 In case of interdiffusion with full mutual solubility, the notion ‘ini-
tial stage’ means the period till reaching the parabolic regime both for 

concentration redistribution and for Kirkendall shift. It includes:  
1. Formation of non-equilibrium vacancy distribution due to va-

cancy flux divergence arising from different mobilities of spe-
cies, and its relaxation due to vacancy sources/sinks [1—4]. 
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2. Possible diffusion-induced recrystallization–formation of new 

grains of solid solution [5]. 
3. In case of polycrystalline materials, transition from pure grain 

boundary diffusion (regime C) to the Fisher regime (B), and 

then to parabolic regime (A) [6]. 
 In case of reactive diffusion, ‘initial stage’ means the period till 
formation and parabolic growth of all stable intermediate phases. It 

includes, in principle, the following sub-stages:  
 1. Nucleation of intermediate phases–formation of the new phase 

overcritical nuclei (islands) at or in the vicinity of initial contact inter-
face [7].  
 2. Growth of new phase islands and competition (for space and mate-
rial) between them till formation of the phase layers with more or less 

planar geometry. In case of ternary and multicomponent systems, the 

two-phase layers can as well be formed.  
 3. Overcoming of interface barriers (if they exist) [1, 8—10] and/or 

the relaxation of vacancy subsystem.  
 Practical interest in the initial stages of SSR appeared due to inves-
tigation of reactive diffusion in thin films. The usually observed one-
by-one (sequential) phase growth meant that the initial stage for some 

phases might well be simultaneously the final stage. If, for example, 

intermediate phase A1B2 appeared to be suppressed by some reasons 

during the growth of the phase A2B1 till the consumption of pure B, 

this phase will never appear at all. Yet, even for explaining phase sup-
pression, people tried to avoid the consideration of nucleation proc-
esses. Instead, the suppression has been explained in terms of interplay 

of diffusion and interfacial barriers. Most successful theory of this 

type belongs to U. Goesele and K. N. Tu [11]. Introducing some arbi-
trary rate constants for fluxes across interfaces, they managed to de-
rive expressions for the critical thicknesses of suppressing phases and 

delay periods of suppressed phases.  
 Nucleation issues, in terms of standard nucleation approach, but in 

application to solid-state reactions, have been discussed by F. d’Heurle 

in 1986 [7]. 
 Situation became even more intriguing with discovery of the solid 

state amorphizing reactions (SSAR) [12, 13] demonstrating the growth 

of metastable amorphous layer without any evidence of stable phase 

formation till the amorphous layer reached certain critical thickness of 

hundreds of nanometres. It looked like the nucleation and/or growth of 

stable phases have been suppressed not by just low temperature, but by 

the growing metastable phase. 
 Detailed DSC-investigations of solid state reactions in multilayers 

by the groups of K. Barmak and P. Gas demonstrated [14—16] the pos-
sibility of the two heat release maxima for the same phase, which 

means some kind of two-stage phase formation (the first stage, possi-
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bly, being the lateral growth of new phase islands). 
 Recently G. Schmitz et al. used an atom-probe tomography (TAP) 

method to investigate the very initial stage of solid-state reactions [5, 

17]. This method, with resolution of a few angstroems, provides us 

with the 3-dimensional distribution of atoms of the reacting species. 

These experiments clearly show that usually even the first islands of 

the first phase to grow do not form immediately after contact. 
 One more important new nano-field governed by nucleation is the 

formation and properties of bulk nanocrystalline materials. Simulta-
neous and fast nucleation in highly imperfect supersaturated solid so-
lutions yields very small supply regions capable to feed new phase em-
bryo at each nucleation and growth site. As an example, the so-called 

bulk metallic glasses (BMG) [18, 19] often devitrify with a very high 

nucleation rate yielding, in a first crystallization stage, to a dispersion 

of nanocrystals in the amorphous matrix [20]. Arguing that such a 

high frequency of nucleation cannot be due to heterogeneous nuclea-
tion, Kelton [21] has explained such a phenomenon by enrichment with 

the crystallizing component in a shell, (of atomic size width), sur-
rounding embryos. During quenching, those frozen subcritical em-
bryos, with their surrounding enriched shell serving as a feeding ma-
terial, become overcritical and practically stop growing after consum-
ing the shell component. 
 Thus, indeed, the ‘nano-vector’ of solid-state reactions makes it 

more and more important to take the nucleation stage into account.  
 In 1982, one of the authors (A.G.), jointly with his teacher, late 

Prof. Cyril Gurov (A. A. Bajkov Institute of Metallurgy, Moscow) pre-
sented a simple (even ‘naïve’, as we see it today) model of the phase 

competition taking into account the nucleation stage of each phase 

[22]. Actually, the only concept, which had been taken in [22] from the 

nucleation theory, was the existence of critical nuclei. They appear due 

to some miracle called the heterophase fluctuations, which are the sto-
chastic events and cannot be described by some deterministic model. 

Initial idea was just that each phase cannot start from zero thickness; 

it should start from some critical size particle (about nanometre). Con-
trary to standard nucleation theory, the critical nuclei of intermediate 

phases during reactive diffusion are formed in the strongly inhomoge-
neous region–interface between other phases. Therefore, from the 

very beginning they have to let the diffusion fluxes passing through 

themselves. Evidently, fluxes change abruptly when passing across 

each new-formed boundary of the newly born nucleus, and thus drive 

the boundary movement. This picture of interface movement due to 

flux steps is well known for diffusion couples under the name of 

Stephan problem and means diffusive interactions between neighbour-
ing phases. Yet, the initial width of each phase is taken to be the criti-
cal nucleus size (instead of zero). Peculiarity of initial stage is just the 
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possibility that the width of some phase nucleus (distance between left 

and right boundaries can decrease as well as increase. If it decreases, 

then the nucleus becomes subcritical and should disappear. Usually it 

happens if the neighbouring phases have larger diffusivity and com-
parative thickness. Then these neighbours (‘vampires’ or ‘sharks’) will 
destroy and consume all of the new-forming nuclei, making new phase 

to be present only virtually–in the form of constantly forming (due to 

heterophase fluctuations) and vanishing (due to diffusive suppression 

by the neighbours) embryo.  
 Simple mathematical scheme was built predicting the sequence of 

phase formation and incubation periods, provided that one knows the 

integrated Wagner diffusivities and critical nucleus size for each 

phase. Simplest example of this scheme is presented in Section 3. This 

scheme was applied to competition with solid solutions [23], to the 

phase growth under strong electric current [24], to the reactive diffu-
sion in ternary systems [25], and to the phase competition in reacting 

powder systems [26, 27]. Applications to electric field case demon-
strated that the phase spectrum of reaction zone can be influenced and 

even controlled by strong enough current density. Large current densi-
ties become real due to miniaturization of integrated schemes and in-
troducing of the flip-chip technology [27, 28]. Last results on reactive 

diffusion in UBM-solder contacts under strong current crowding [29] 

confirm the mentioned idea: without current or under weak current, 

the reaction between copper and dilute solution of tin in lead at 150°C 

demonstrates only Cu3Sn1-phase formation; current density of 
8 210 A/mj >  leads to formation and fast growth of Cu6Sn5 phase. 

 Later we realized that in our naпve model of the phase competition 

we had taken the inhomogeneity of nucleation region into account only 

partially. Namely, we treated the diffusive interactions of the newborn 

nuclei, but we had not considered the possible change of the nucleation 

barrier, size and shape, caused by the very fact of sharp concentration 

gradient. Thus, we had to reconsider the thermodynamics of nuclea-
tion in the concentration gradient. The very first version of such a the-
ory was presented at the conference ‘Defects and Diffusion’ (DD-89) in 

Russia and first published May 1990 [30] (see also [31]). Main idea was 

as follows: if, prior to intermediate phase formation, narrow layer of 

metastable solid solution or amorphous alloy had been formed at the 

base of initial interface, the sharp concentration gradient inside this 

layer provides decrease of the total bulk driving force of nucleation, 

and corresponding increase of nucleation barrier. Nuclei were taken to 

be spheres, appearing in the strongly inhomogeneous concentration 

profile of the parent phase, so that local driving force of transforma-
tion could change significantly from the left to the right along the di-
ameter of nucleus. This effect appeared to be non-negligible, since 

usually the intermediate phases have very strong concentration de-
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pendence of the Gibbs energy. Main result was the new size dependence 

of the Gibbs energy; it contained, in addition to the terms of second or-
der (surface energy, positive) and third order (bulk driving force, 

negative), the new term proportional to the 5th power of size and the 

squared concentration gradient:  

 ( )22 3 5( )G R R R C R∆ = α − β + γ ∇ , (1.1) 

γ being positive and proportional to the second derivative of the new 

phase Gibbs energy over concentration. Expression (1) means that, for 

large enough gradient 
critC C∇ > ∇  (typically 

crit 8 110 mC −∇ ∝ ), the de-
pendence ( )G R∆  becomes monotonically increasing (infinitely high 

nucleation barrier) meaning thermodynamic suppression of nucleation 

by the very sharp concentration gradients. Thus, according to our 

model, at the very initial stage of reactive diffusion the nucleation can 

be suppressed even without diffusive competition, just due to too nar-
row space region, favourable for transformation.  
 Independently, similar results were published by P. Desré et al. in 

1990, 1991 [32, 33]. This approach had been applied to description of 

solid-state amorphizing reactions [32—35], explaining why the stable 

intermetallics appear in diffusion zone only after amorphous layer ex-
ceeds some critical thickness.  
 In spite of similar results, models [30, 31] and [32, 33] of nucleation 

in the sharp concentration gradient treated quite different possible 

mechanisms (nucleation modes). In [30, 31], a polymorphous mode has 

been suggested according to the following picture. Initial diffusion 

leads to formation and growth of metastable parent solution with 

sharp concentration profile. When this profile becomes smooth enough 

to provide sufficient space for compositions favourable for new inter-
mediate phase, this very phase nucleates just by reconstruction of 

atomic order, without changing immediately the concentration profile 

(at ‘frozen’ diffusion)–polymorphic transformation. In [32, 33] the 

transversal nucleation mode was suggested bearing in mind the follow-
ing picture: each thin slice of the new-formed nucleus, perpendicular 

to direction of concentration gradient, is considered as a result of de-
composition in corresponding thin infinite slice of parent solution, 

leading, of course, to redistribution of atoms among new and old 

phases. In this transversal mode, the redistribution proceeds within 

each slice, independently on others.  
 In Ref. [36], one more mechanism has been suggested (and analyzed 

in more details in Refs. [37, 38])–total mixing (longitudinal) nuclea-
tion mode, when the redistribution of atoms proceeds during nuclea-
tion, but only inside the new forming nucleus. Contrary to the two pre-
vious modes in this case, the concentration gradient assists the nuclea-
tion–in expression (1), coefficient γ is negative.  
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 Above-mentioned approach was generalized taking into account the 

shape optimization [39—42], the stresses [43], ternary systems [44], 

heterogeneous nucleation at grain boundaries [41], at interphase inter-
faces [45]. Most simple models in the frame of this approach are pre-
sented in Section 4. 
 ‘Natural’ thing is to expect that nature will use the mechanism with 

lowest nucleation barrier–the total mixing mode. Yet, nucleation is 

ruled not only by thermodynamics but by kinetics as well. Thermo-
dynamics of nucleation with constraints indicates only some probable 

paths of evolution. Real path is chosen by kinetics, taking into account 

not only the free energy profit, but as well the different ‘mobilities’ 

along each path. Mobilities often appear to be inverse to the profit that 

is kind of compensation rule, analogous to relation between activation 

enthalpy and frequency factor in diffusion.  
 To calculate the nucleation kinetics, we used the Fokker—Planck ap-
proach, first applied to nucleation problems by Farkas [46] and recog-
nized after classical work of Zeldovich [47]. Our contribution to this 

approach was just taking into account that the driving force depends 

on concentration gradient, which in its turn depends on time according 

to diffusion laws. It has been shown in [38] that the relative contribu-
tion of each mechanism depends on the ratio of atomic mobilities in the 

parent and nucleating phases. If atomic mobility in the new phase is 

much lower than in parent one, we can forget about total mixing mode. 
If opposite (high mobility inside new phase), then nucleation will pro-
ceed via total mixing, very fast (‘fast is the first’). Main results are 

briefly reviewed in Section 5. One of the ‘raisins’ of total mixing (as-
sisting) mode was that the easily formed nuclei, if not growing too 

fast, in comparison with decrease of concentration gradient, after 

some period can find themselves to be subcritical and be destroyed.  
 Further natural question was ‘How does system proceed from nu-
cleation of isolated particles to formation of continuous layer, which 

even initially appears much thicker (typically about 8 nm [48]) than 

the typical nucleus size?’ Model of ‘almost lateral’ growth, driven by 

interface diffusion along the curved moving new phase boundaries, is 

briefly discussed in Section 6.  
 After discovering that concentration gradient can play a role of con-
straint on nucleation, it was natural for us to look for other constraints. 
Sharp concentration gradient means narrow layer, suitable for nuclea-
tion, e.g. limited volume. Therefore, the most natural thing was to treat 

the nucleation in small (nanosize) particles and the multiple simultane-
ous nucleations during formation of bulk nanocrystalline materials. 
Main result was as follows: depending on the volume of parent particle 

(or, in bulk, on the volume of ‘responsibility region’ around the nuclea-
tion site), the same 3 possibilities exist as in sharp concentration gradi-
ent–nucleation and growth (large size), metastable state (medium 
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size), forbidden nucleation (small size). Results were published in [49, 

50]. Afterwards we learned that similar results have been published by 

Rusanov 30 years before [51] and later developed in [52]. Yet, we hope 

that our application of these ideas to the ‘traffic jam’ effect in bulk 

glasses might be of some interest (Section 7): When many persons try to 

pass through narrow door simultaneously, the process stops. Similar 

effect can be responsible for long-living nanocrystalline states [53].  
 Most of above-mentioned problems are related to choosing a path-
way for the evolution of a non-equilibrium system exhibiting phase 

transformations, whereby various regimes are possible for the same 

initial and boundary conditions. One more problem of this type, involv-
ing an invariant in the form of a product of the squared period of the 

growing structure and the growth rate, is how to predict both of these 

parameters for a discontinuous precipitation of a binary alloy with a 

given composition, which is supersaturated as a result of supercooling 

[6, 54]. In contrast to a spinodal decomposition that takes place homo-
geneously in the whole volume and is controlled by changes in the elas-
tic energy [55, 56], the transformation region represents a moving 

large-angle incoherent grain and phase boundary. A model of discon-
tinuous precipitation in supercooled binary polycrystalline alloys at 

reduced temperatures, taking place because of the diffusion-induced 

grain-boundary migration, is constructed with allowance of grain 

boundary diffusion (Section 8). The approach based on the balance and 

maximum production of the entropy allows independent determination 

of the main parameters, including the interplate distance, the maxi-
mum velocity of the phase transformation front, and the concentration 

jump at this boundary [57]. 
 One more unexpected field of ‘nano-ideas’ is a so-called anomalous 

mass-transfer under pulse loading of metals–transfer of atoms at dis-
tances of several microns, and sometimes much more, during shock 

lasting for less than hundred microseconds [58, 59]. Our recent mo-
lecular-dynamics simulation demonstrates the possibility of nanograin 

structure formation during the shock wave propagation in single crys-
tals (Section 9). This result correlates with recent experimental results 

on shock loading of monocrystalline copper [60]. Existence (even vir-
tual, during the shock) of nanograin structure can assist the mass-
transfer via mechanisms of grain-boundary or (that is more probable) 

‘mechanical diffusion’ [61]. In Section 10, we discuss briefly some pos-
sible future developments. 

2. KINETIC MC SIMULATIONS 

2.1. Direct MC Simulation of Reactive Diffusion 

Since in-situ observations of intermediate phase nucleation are lacking 
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so far (to our knowledge), let us see what simulations can do.  
 Recently, we investigated the kinetics of ordering during interdif-
fusion and found the possibility of oscillatory ordering [62] (also see 

subsection 2.2). In that case, ordering was a second-order transition. 
 Simulation of first order transitions in square lattice has some diffi-
culties. If one takes into account only the nearest neighbours interac-
tion, then transition to B2-ordered phase is of second-order type: or-
dering without nucleation barrier. The formation of ordered interme-
diate phase is often related to change of electron subsystem, meaning 

the change of effective pair potentials of atomic interactions. To simu-
late first-order transitions, including nucleation of intermediate phase 

we modified our model making pair interactions extremely dependent 

on the local order. The simplest (and so far the most effective) model is 

as follows. 
 Model system is a 2-dimensional square lattice filled by A and B at-
oms with initial step-like distribution ( BLC , BRC ) and periodic bound-
ary conditions transforming diffusion couple into multilayer. Atoms A 

are regarded as ‘special’ (and denoted as A
*) if they are surrounded by 4 

neighbouring atoms B. The same is for B
*. These ‘special’ atoms have 

‘special’ interactions with their neighbours. Our choice was as follows: 

3.0AA BB

kT kT

Φ Φ= = − ,   3.225AB

kT

Φ = − , 

* *

0.5AB A B AB

kT kT kT

Φ Φ Φ= = + ,   
* *

2.0A B AB

kT kT

Φ Φ= − . 

 Migration of atoms was induced by vacancy migration. For each va-
cancy position, activation energies of exchange with each nearest 

neighbouring (NN) and next nearest neighbouring (NNN) atom were 

calculated as differences iE∆  between the saddle-point energy and the 

energy in equilibrium site before jump. To simplify the model, we took 

all saddle-point energies to be equal to zero. Probability of each of 8 

possible NN and NNN vacancy jumps was calculated as 

 
8

1

i

j

E

kT

E

kT

j

e
p

e

∆−

∆
−

=

=

∑
. (2.1)  

 Subsequent MC simulation, using the residence-time algorithm [63], 

gave us full information about position of each atom after each MC 

step (MCS), including concentration profiles (averaged over y for each 

x-plane), domains of full-order A
*B*-particles of new phase, time de-

pendence of ordered volume and of the system’s energy [64]. 
 Here, we show some results for two initial concentration steps–
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(0.05—0.95) and (0.30—0.70) (Fig. 2.1). 
 1. For big initial concentration step, a new phase growth has clearly 

oscillatory behaviour–antiphase domains of intermediate ordered 

phase appear and disappear, competing with each other and with par-
ent phases. At the first stage, actually, all appearing nuclei eventually 

disappeared. Yet, with time some of them started surviving, which 

corresponds to our old naпve model of phase competition (the vampire 

phase being just the inhomogeneous solid solution with diffusivity 

much more than in the intermediate phase). In our model each domain 

is not permeable for vacancies, so that growth of new phase slows down 

after forming an initial layer, and further growth is possible due to 

‘channels’ between antiphase domains. 
 2. Growth of new phase is faster for less initial concentration step. 

This result coincided with our theoretical prediction about suppression 

of new phase by the sharp concentration gradient [30, 31].  
 3. Phase growth clearly demonstrates the lateral regime, predicted 

by Coffey, Barmak et al. [14]. 

2.2. Direct MC Simulation of Interdiffusion with Ordering  

It is interesting also to understand, how the interdiffusion proceeds at 

 

Fig. 2.1. Ordered intermediate phase formation in multilayer with initial 
concentration steps CR − CL = 0.90 and 0.40. 
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the very initial stage, if ordered phase does not need to overcome any 

nucleation barrier. In that case, we can observe the interplay of inter-
diffusion and ordering in concentration gradient. So, we used the same 

residence-time algorithm with constant pair interactions between the 

nearest neighbours in two-dimensional square lattice (triangular lattice 

was investigated as well). Energy of atom before jump was taken just as 

the sum of three energies (fourth neighbour being the vacancy). In the 

saddle-point of the jump to the nearest site, the atom is interacting with 

four neighbours. Our choice for pair energies was as follows: 

 for atoms in their sites, 3AA BB

kT kT

Φ Φ= = − , 5AB

kT

Φ = − ; 

 for jumping atom in the saddle point, ,  0.5ij ijB B′Φ = ⋅ Φ = . 

 Initial distribution of atoms corresponded to diffusion couple with 

different concentrations on the ‘left’ and ‘right’–concentration step. 

Initial profiles with concentrations steps 0.00—1.00, 0.20—0.80, 0.40—
0.60 and 0.50—0.50 (homogeneous case) were simulated. 
 Results were a little bit unexpected (for details see [62]): 
 1. Formation of ordered domains in the couples with nonzero con-
centration steps clearly demonstrated nonmonotonic behaviour–
blinking. Domains appeared, lived for some time and then disappeared. 

Blinking was more pronounced for samples with larger initial concen-
tration steps. 
 2. The total area of ordered phase, of course, eventually grew with 

time, but not monotonically: the time dependence of the ordered re-
gion’s area with order parameter above 0.9 showed nonmonotonic sto-
chastic behaviour. To distinguish the usual statistical noise of MC pro-
cedure from real order oscillations, we used the coarsening of the time 

scale. Choice of coarsening scale was made in such a way, that it pro-
vided monotonic ordering of initially homogeneous samples (couples 

0.5—0.5). The results are shown in Fig. 2.2. 
 To explain these rather unexpected results, we proposed the follow-
ing picture. Diffusivity strongly depends on the order parameter. 

Therefore, the newly formed ordered regions, though energetically fa-
vourable, have substantially less diffusivity than the surrounding par-
ent disordered solid solution. Hence, they start to ‘loose their game’ in 

diffusive competition with neighbouring phase. Therefore, we can ob-
serve the competition of two factors–thermodynamic profit and ki-
netic disability leading to oscillations. We tried to check, if such ex-
planation is reasonable, by means of the following simplified phe-
nomenological model of simultaneous interdiffusion and ordering with 

nonlinear dependence of diffusivity on the order parameter: 

 ( )
c c

D
t x t

 ∂ ∂ ∂= η ∂ ∂ ∂ 
% , (2.2) 
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 ( )( )e c
t

∂η = −γ η − η
∂

, (2.3) 

where ( )e cη  is an equilibrium value of order parameter η correspond-
ing to local value of concentration. 
 Dependence ( )D η%

 was proposed as quadratic under exponent, in the 

frame of mean-field considerations for the energy of jumping atoms in 

the sites: 

 ( )2
0( ) expD Dη = −αη%  (2.4) 

with α being proportional to the mixing energy. 

 

Fig. 2.2. Time dependence of the ordered ‘volume’ fraction (with absolute 
value of order parameter larger than 0.9) in the planar layer of the diffusion 
zone containing 40 atom rows. Time is measured in Monte Carlo steps (MCS). 
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 Numeric solution of the problem (2.2)—(2.4) demonstrated a possi-
bility of nonmonotonic ordering for the certain region of parameters 

D0, γ, α. Characteristic time dependences of ordered (with 0.3η > ) re-
gion’s size for dimensionless values D0 = 1, γ = 1, α = 3, 5 are shown in 

Fig. 2.3. Increase of parameter α leads to more pronounced oscillation 

of order. These oscillations depend also on the initial concentration 

step: the larger is this step, the more pronounced are the oscillations 

(similar to MC simulations); see Fig. 2.4. 
 Thus, the main results of phenomenological model coincide with MC 

results, except the number of oscillations. We believe the reason is just 

one-dimensional character of the phenomenological formulation. 

 

Fig. 2.3. Time dependences of ordered region’s size (η > 0.3) for D0 = 1; 
γ = 1; α = 3, 5. Initial concentration step is 0.00—1.00. 

 

Fig. 2.4. Time dependences of the ordered region’s size for different initial 
concentration steps; D0 = 1, γ = 1, α = 5. 
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3. PHASE COMPETITION 

As we have just seen in MC simulations, a phase growth in diffusion 

zone starts with the nucleation of intermediate phases as a result of 

heterophase fluctuations. A nucleus is thermodynamically stable if its 

size exceeds the critical value (if the gain in bulk free energy due to at-
tachment of monomers begins to exceed the loss in surface energy). 

The fundamental difference from the phase formation by alloy cooling 

is as follows: the phase nuclei are formed in the field of chemical-
potential gradients, and therefore, at once begin to interact diffusion-
ally with parent phases and/or with the nuclei of other intermediate 

phases. This diffusional interaction is mathematically described by the 

system of balance equations for the fluxes on the moving interphase 

boundaries. As a result, the growth velocity of some critical nuclei ap-
pears to be negative, they start decreasing, transforming into embryos 

with subcritical size. Such embryos are thermodynamically unstable 

and must dissociate. It means that certain intermediate phases from 

the phase diagram of the system can be absent in the diffusion zone for 

some time (which can be a rather long time). To be more precise such 

suppressed phases are virtually present, in the form of forming, de-
creasing and dissociating nuclei. The corresponding criteria of phase 

growth/suppression were obtained.  

3.1. Simple Phenomenological Model of Diffusive Phase Competi-
tion of the Two Phases 

Consider binary diffusion couple A—B with two intermediate phases 1, 

2, and negligible solubilities of A in B and of B in A. If, by some rea-
sons, only phase layer 1 grows in diffusion zone, then its growth law is: 

 ( )
1 1

1
1 1

2

1

D C
x t

C C

∆∆ =
−

 (3.1) 

(∆C1–concentration range of the 1-st phase, effective diffusivity 

( )
1

1
1

1

C

D D C dC
C ∆

≡
∆ ∫ %

 [61, 62]), ( )D C% –interdiffusion coefficient). 

Since the reaction 1 + B → 2 is thermodynamically favourable, the 

phase 2 should form the critical nuclei with longitudinal size 2l  at the 

moving interface 1 − B due to heterophase fluctuations. As will be 

shown below, sharp concentration gradients lead to the plate-like 

shape of the nuclei. Therefore, one can consider left and right bounda-
ries of the nucleus as nearly flat. Steps of the diffusion flux profiles at 

these boundaries generate their movement. According to conservation 
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of matter at the moving boundaries, 

 ( ) 2 1 1 2 2
2 1

1 2

Ldx D C D C
C C

dt x l

∆ ∆− = −
∆

,  ( ) 2 2 2
2

2

1 0Rdx D C
C

dt l

∆− = −  (3.2) 

(we neglect solubility of A in B and assume the regions of homogeneity 

to be narrow). 
 Hence, growth/shrinkage rate of critical nucleus’ width is equal to 

 
2

22 2 1 1 1 2 2

2 1 1 2 2

11

1
R L

l

dxd x dx D C C D C

dt dt dt C C x C l

 ∆ ∆ − ∆= − = − + − ∆ − 
. (3.3) 

One can easily see that this expression is positive for big ∆x1, but can be 

negative for small 1x∆ . 

 If 
* 2 1 1

1 1 2
1 2 2

1

1

C D C
x x l

C D C

− ∆∆ < ∆ =
− ∆

, then 

2

2 0
l

d x

dt

∆ < , so that every critical 

nucleus decreases (being ‘eaten’ by rapidly growing neighbouring 

phase 1) and therefore becomes subcritical embryo (unstable), and 

should be dissolved. 
 Such unsuccessful attempts of phase-2 nucleation will be repeated 

during some ‘incubation period’ τ, till the suppressing phase 1 reaches 

thickness 
*
1x∆  growing according to parabolic law (3.1): 

 
( ) ( ) ( )

( ) ( )

2
21 1 1 2* 21 1

1 22
1 1 1 2 2

1 1

2 2 1

C C C C D C
x l

D C C D C

− − ∆τ = ∆ =
∆ − ∆

. (3.4) 

Of course, Eq. (3.4) can be used only if the diffusion couple is suffi-
ciently large. If the specie B is consumed before phase-1 layer could 

reach the critical thickness 
*
1x∆ , the phase 2 will never appear at all. 

 So far, we just assumed that it is phase 1, which grows first. To de-
termine which of phases will actually grow first, one should consider 

diffusive interaction between two initial layers of critical nuclei of 

both phases. One can easily check that 

 
1

1 2 1 1 2 2

2 1 1 1 2

1

l

d x C D C D C

dt C C C l l

 ∆ ∆ ∆= − −  
, 

 
2

2 1 1 1 2 2

2 1 1 2 2

11

1l

d x D C C D C

dt C C l C l

 ∆ ∆ − ∆= − + − − 
. (3.5) 

System has three possibilities: 

 1) 

1

1 1 2 1 1

2 2 1 2

0
l

D C l C d x

D C l C dt

∆ ∆< ⇒ <
∆

, 

2

2 0
l

d x

dt

∆ > , i.e. phase 2 (‘vampire’) 
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starts growing, ‘eating’ the nuclei of the phase 1; 

 2) 

1 2

1 1 1 2 1 1 2

2 2 2 1 2

1
0,  0

1 l l

C D C l C d x d x

C D C l C dt dt

∆ − ∆ ∆
< < ⇒ > >

∆ −
, i.e. both phases 

grow from the moment of nucleation; 

 3) 
1 1 2 1

2 2 1 2

1

1

D C l C

D C l C

∆ −>
∆ −

, i.e. phase 1 (‘vampire’) starts growing, ‘eating’ 

the nuclei of phase 2. 
 Phase suppression cannot continue infinitely. As the suppressing 

(‘vampire’) phases grow, the concentration gradients and correspond-
ing fluxes along the phase layers decrease, their growth velocity slows 

down and their ‘competition ability’ also decreases, For every sup-
pressed phase the moment exists (see Eq. (3.4)), when the growth ve-
locity of its critical nuclei becomes positive, and they start to grow. 
The time of diffusion suppression of the phase nuclei is called the incu-
bation period. Evidently, it is only the ‘diffusion’ part of the full incu-
bation period. The process mentioned above was called diffusion phase 

competition. Such a simple approach is easily generalized on the arbi-
trary number of intermediate phases [31]. 

4. THERMODYNAMICS OF NUCLEATION IN CONCENTRATION 
GRADIENT 

So far, we used classic nucleation theory. Now, we reconsider thermo-
dynamic of nucleation in the contact zone. 

4.1. Polymorphous Nucleation Mode 

Let the nucleus of intermediate phase appear in the frozen concentra-
tion profile formed by interdiffusion in the metastable continuous 

phase (solid solution or amorphous phase) (Fig. 4.1). If concentration 

gradient is sharp enough (narrow diffusion zone), the driving force of 

nucleation per atom ag∆  (function of composition) becomes the func-
tion of space coordinates as well. 
 Hence, the change of Gibbs free energy caused by formation of nu-
cleus in such sharply inhomogeneous conditions is a sum of different 

contributions from each thin slice ( )S x dx  and is given by the following 

expression: 

 ( )( ) ( )( )( ) ( )new oldG n g C x g C x S x dx S∆ = − + σ∫ . (4.1) 

Here, we neglect the volume changes (atomic density 1 2n n n≈ = ) and 

the corresponding stresses. S is the area of newly born interface sur-
face, σ–its surface energy per unit area, S(x)–area of nucleus cross-
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section with plane x, perpendicular to concentration gradient, g–
Gibbs free energy per one atom. To make mathematics simpler, the fol-
lowing approximations are suggested: 

 ( ) ( ) ( ) ( )2 2

0 0 0 0,   
2 2

old new
old old old new new newg C g C C g C g C C

α α= + − = + −  (4.2) 

 ( ) ( )0C x C x C≅ + ⋅ ∇ . (4.3) 

Taking into account Eqs. (4.2), (4.3), one obtains: 

( )( ) ( )2 2
0 1 2G n A A C x A C x S x dx S∆ = + ∇ ⋅ + ∇ + σ∫ , 

where 

 

Fig. 4.1. ‘Gibbs free energy versus composition’ and corresponding ‘composi-
tion versus diffusion co-ordinate’ dependences. Driving forces per atom of 

nucleus are indicated for (a) polymorphous, (b) transversal and (c) total mix-
ing modes. 
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( )( ) ( )( )
( )( ) ( )( ) ( )

2 2

0 0 0 0 0

1 0 0 2

1
0 0 ,

2

0 0 ,   2.

old new old old new new

new new old old new old

A g g C C C C

A C C C C A

   = − − + α − − α −     
 = α − − α − = α − α

 (4.4) 

4.1.1. Spherical Nuclei 

Let nucleus be the sphere with the centre in some point Cx , so that 

( ) ( )( )22
CS x R x x= π − − . 

 Then simple algebra transforms Eq. (4.1) into 

 2 3 5
0 2

4 4
4

3 15
G R n B R B R

 ∆ = σ ⋅ π + π + 
 

, (4.5) 

where 

 ( ) ( )2 22
0 0 1 2 2 2,    C CB A A x C A x C B A C= + ∇ + ∇ = ∇ . (4.6) 

First of all one should find an optimal place for nucleation from the 

conditions 

0
C

G
x

∂∆ =
∂

,  

2

2 0
C

G
x

∂ ∆ >
∂

: 

 
( )( ) ( )( )

( )
0 01

2

0 0

2

old old new new

C new old

C C C CA
x

A C C

α − − α −
= − =

∇ α − α ∇
 (4.7) 

(it corresponds to the minimum, if 
new oldα > α ). 

 Thus, with changing concentration gradient time the optimal place 

of nucleation shifts but the corresponding concentration in the centre 

( ) ( ) 1

2

0 0
2C

A
C x C C

A
+ ∇ = −  

remains the same. 
 Further, we restrict ourselves only to nuclei forming in the optimal 
place. In this case, the size dependence of G∆  has a simple form: 

 ( ) ( )22 3 5G R R R C R∆ = α − β + γ ∇ , (4.8) 
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where 

( ) ( )
2

2
1

0 0 0 0 0
2

4
4 ,    ,

15 2

4 4
.

3 4 3 2

new old

new old
old new old new

new old

n

An n
A g g C C

A

 π α − αα = πσ γ =

   π π α − α  β = − = − + −   α − α   

(4.9) 

Coefficient 0β > , if the curve ( )newg C  intersects the curve ( )oldg C . 
 As follows from Eq. (4.8), the dependence ( )G R∆  can be monotonic 

or nonmonotonic, depending on the magnitude of concentration gradi-
ent (Fig. 4.2). 
 Case (a) corresponds to full suppression of nucleation at sharp con-
centration gradients. Case (b) means a possibility of metastable nu-
cleus formation. Case (c) means the possibility of forming the stable 

particle of new phase, size of which will increase with decreasing (with 

time due to interdiffusion) concentration gradient. 
 Simple algebra gives the following expressions for the values 

 

Fig. 4.2. Size dependence for Gibbs free energy change by nucleation of 
spherical particles in the concentration gradient. 

(a) ( )crit

1 5
C C

β β∇ > ∇ =
α γ

–nucleation forbidden; 

(b) ( ) ( )crit crit

1 2

4

27
C C C

β β∇ > ∇ > ∇ =
α γ

–possibility of metastable nucleus; 

(c) ( )crit

2
C C∇ < ∇ –nucleation possible. 
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( )crit

1,2
C∇ , corresponding to crossovers b a↔  and c b↔ : 

 ( )crit

1 5
C

β β∇ =
α γ

,   ( )crit

2

4

27
C

β β∇ =
α γ

. (4.10) 

One can see the values of ( )crit

1
C∇  and ( )crit

2
C∇  are rather close, so that 

the regime of metastable nucleation is difficult to detect. Moreover, we 

shall see below that the shape optimisation excludes this regime (if one 

does not consider stresses). Numerical estimates for the critical gradi-

ent for systems like Ni—Zr typically give ( )crit 8 1

1
10  mC −∇ ∝ . 

4.1.2. Shape Optimisation 

Evidently, since concentration gradient suppresses the nuclei growth in 

longitudinal direction, nature will find possibilities to increase nucleus 

volume (and decrease Gibbs free energy) by transversal growth. It means 

that nuclei forming in the diffusion zone should be nonspherical. For 

each fixed nucleus volume, one should take into account the shape opti-
misation. First attempt in this direction was made in 1991 [39]. Nuclei 
(embryo) were supposed to be spheroids with symmetry (rotation) axis 

along the C∇ -direction with parameters ( )|| ||R x  and ( )R x⊥ ⊥ . In this 

case, G∇  is a function of two arguments–volume V and shape parame-
ter ||R R⊥η =  at fixed concentration gradient 1C L∇ = : 

( )
22
||2 3 2

0|| || ||2 2 2
||

2 2
, 2

3 15 2 2

R RRg
G R R n g R R R R

L n R R

⊥⊥
⊥ ⊥ ⊥

⊥

  ′′ σ  ∆ = π − ∆ + + + ×   −  

 

 

2

|| || ||

2

|| ||

ln 1 , 1,

arcsin 1 , 1,

R R R

R R R

R R

R R

⊥ ⊥ ⊥

⊥ ⊥

     − + >           ×
    − <        

 (4.11) 

where 

1
2

3
3

||

3

4

V
R

− = ⋅ η π 
, 

1
13
33

4

V
R⊥

 = ⋅ η η 
. 

 At every fixed volume V, an optimal shape ( )Vη  is found by minimiz-
ing the function ( )|G V∆ η . The function ( )opt Vη  increases to infinity 
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at some value V
*
 (Fig. 4.3), which is determined by the concentration 

gradient (the larger is C∇ , the less is V
*). Dependence ( )( ), optG V V∆ η  

looks different for large and for small concentration gradients (Fig. 4.4). 

 

Fig. 4.3. Dependence of optimal shape, 
||R R⊥η = , on nucleus volume. 

 

Fig. 4.4. Dependence of Gibbs free energy on the volume of nucleus with opti-
mized shape: (a) ∇C > (∇C)crit; (b) ∇C < (∇C)crit. V0 = 3⋅10−29

 m
3, ∆go = 10−20

 J; σ = 

= 0.5 J/m2; n = 1029
 m

−3; g′′ = 10−16
 J, critical width of diffusion zone appeared 

to be L
crit

 = 1/∇Ccrit
 = 6.2⋅10−8

 m, Vmax corresponds to some volume at which the 

growing nucleus meets another laterally growing nucleus and stops the own 

lateral growth. 
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 Thus, the main result of previous subsection is repeated–the exis-
tence of concentration gradient, over which nucleation of intermediate 

phase is forbidden. Yet, the possibility of metastable nuclei disap-
peared due to shape optimisation. 
 New results are: (1) the formation of plate-like nuclei (of course, 

this result is not valid, if critical G∆  is much higher than 60kT) and 

(2) decrease of nucleation barrier and corresponding increase of the 

value of critical concentration gradient due to the shape optimisation. 
 Of course, suggestion of spheroidal shape is not rigorous. To verify 

the validity of the above-mentioned results, we will present the direct 

Monte Carlo simulation of the nucleus formation. 

4.1.3. MC Simulation of Nucleus Shape in Concentration Gradient 

We investigated the possible nucleation of the stable intermediate 

phase in concentration gradient by means of Monte Carlo technique. 
Let the concentration dependences of Gibbs potential for both phases 

to be approximately parabolic with minima at 0 0 1/2new oldC C= = . Con-
centration profile in the parent phase in the vicinity of the forming 

nucleus is approximated by linear dependence. In polymorphous mode, 

nucleation proceeds fast in the frozen concentration gradient, and con-
centration changes start due to diffusion after nucleation. We divide 

the homogeneous alloy into ‘elementary’ cells, each of them can trans-
form from old to new phase and vice versa, depending on thermody-
namic profit, which is determined by bulk driving force and the num-
ber of neighbouring cells in different phase states.  
Simulation procedure. Each cell can exist in two-phase states–old and 

new. The change of the phase state leads to change of bulk and surface 

energy. For example, if the cell transforms from old to new state then 

the change of Gibbs potential for the system is equal to 

 ( ) ( )( ) ( )3 2new oldG g C g C a n Na∆ = − ⋅ + σ∆ . (4.12) 

Here C is the concentration in the cell depending on its position (x–co-
ordinate, if the concentration gradient is parallel to x), n–atomic den-
sity, a–the cell size, σ–surface tension between old and new phases, 

∆N is a change of number of neighbouring cells with different states 

(even number from −6 to +6). If ∆G is negative, the transformation is 

accepted, otherwise acceptance probability is found as exp( )G kT−∆  

(Metropolis algorithm). To make the Monte Carlo procedure time sav-
ing, we try the state changes only for cells in the border layer of the 

forming nucleus. 
 The following algorithm has been realized. 
 0) At first, all cells belong to old phase. Randomly we choose one cell 
as a nucleation site and try its transformation according to Metropolis 



 Nucleation and Growth in Nanosystems: Some New Concepts 455 

procedure ( 6N∆ = ). 
 1) One of the border cells is chosen randomly from the border set. 

(Cell belongs to border set if it belongs to nucleus and has at least one 

neighbour of old phase). 
 2) Cluster consisting of the chosen border cell and its six neighbours 

is further considered. One of the seven cells of this cluster is chosen 

randomly. This choice is accepted if the chosen cell is central (trans-
formation new→old) or if it is a neighbour belonging to old phase 

(transformation old→new). Otherwise, attempt is repeated. 
 3) Change of the Gibbs potential for possible transformation is cal-
culated according to Eq. (4.12) and decision on acceptance/non-accep-
tance is made according to the Metropolis procedure. 
 Step (2) of the abovementioned algorithm artificially increases the 

probability of nucleus growth. Otherwise, the subcritical embryo would 

be most probably destroyed, and the formation of overcritical nucleus 

would take very long computation time. The results of simulation are 

presented for sharp and for small concentration gradients at Fig. 4.5. 

 
  a   b 

Fig. 4.5. Examples of nucleus shape simulation for sharp ((a)–∇С = 109 
m−1) and small ((b)–∇С = 107 m−1) concentration gradients. Parameters of 

simulation: σ = 0.15 J/m2, a = 1.5⋅10−10 m, n = 1029 m−3, 
2

2

g

C

∂ ∆
∂

 = 7.77⋅10−19 J, 

g0
old − g0

new = 7.48⋅10−21 J. 
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4.2. Transversal Nucleation Mode 

P. Desré and Yavari [32] first introduced this mode for cubic nuclei 
without shape optimisation. In 1998, shape optimisation was done by 

F. Hodaj, A. Gusak, and P. Desré [37] for the simplest case of paral-
lelepipeds. Let embryo (nucleus) in the form of parallelepiped 

2 2 2h h r× ×  is born in the concentration gradient C∇  of metastable 

parent phase (2r  along C∇ ). Every thin slice 2 2h h dx× ×  with concen-
tration ( )newC x  forms at the cost of slice dx∞ × ∞ ×  with concentration 

( )oldC x  according to the rule of parallel tangents (Fig. 4.7). 
 Driving force per atom of nucleus (not of total system) is equal to 

 ( ) ( ) ( )old old new old new new
b

g
g g C C C g C

C

∂∆ = + − −
∂

 (4.13) 

 

Fig. 4.6. Scheme of transversal nucleation modes, vertical arrows show the 
direction of redistribution fluxes of species in the slice dx.

 

Fig. 4.7. Rule of parallel tangents. 
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and is determined by vertical interval between two parallel tangents as 

shown on Fig. 4.7. 
 Using the rule of parallel tangents for each thin slice dx  of paral-
lelepiped, one obtains:  

( ) ( )( ) 2 2
1 24 2 4 4 4

C

C

x r
old new

x r

G n g C x C x h dx h hr
+

−

∆ = − ∆ → ⋅ + σ ⋅ + σ ⋅∫ , (4.14) 

where ( ) ( )0oldC x C x C= + ⋅ ∇ , ( ) ( ) ( )( )0 0

old
new new old new

new
C x C C x C x

α= + −
α

, 

σ1, σ2–surface tensions for phases, perpendicular and parallel to con-
centration gradient. Rather simple algebra, analogous to that in 4.1, 

gives  

 ( ) ( )22 2 3 2
1 28 8 2G h r C h r h hr∆ = −α ⋅ + γ ∇ + σ + σ , (4.15) 

where 

 
( )2

0 0

0 0

2 1

old new old

old new

old

new

C C
n g g

 
 α − α = − +  α−   α  

,  
4

1
3

old old

new

n  π α αγ = − α 
. (4.16) 

It is suitable to express G∆  as a function of volume 
28V h r=  and shape 

parameter 
h
r

ϕ =  (
1 2

3 31

2
r V

−
= ϕ , 

1 1

3 31

2
h V= ϕ ): 

 ( ) ( )2 5 2 1 23
1 3 3 3 32

1, 2 2
32

C
G V V V s V

−−  ∇ γ
∆ ϕ = −α + ϕ + σ ϕ + ϕ 

 
, (4.17) 

where 2 1s = σ σ  is a Wulf parameter. 
 Function ( )|G V∆ ϕ  at every fixed volume has one minimum, which 

is determined by condition 0G∂ ∂ϕ = , which gives an optimal shape: 

 
( )22

12 4 32opt
opt

C Vh s s

r

γ ∇ ϕ = = + +  σ 
. (4.18) 

For small volumes ( 0V → ), it leads to Wulf rule: 

 ( ) 2 10opt V sϕ → = = σ σ ; (4.19) 

for large volumes, the shape parameter increases as 

1

2V : 
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 ( ) ( )
1

1 2
2 2

132opt V C V
 γϕ → ∞ ≈ ∇ ⋅ ⋅  σ 

 (4.20) 

that means the plate-like shape–concentration gradient limits the lon-
gitudinal size, 

 
( )

( )
1

3 2
1 3

max 2

4
V

r r C
C

−

→∞

 σ → = ∼ ∇
 γ ∇ 

, (4.21) 

but does not limit the transversal growth, 

 

1
1 1 13
3 2 2

V
h V V V

→∞

 
∼ ⋅ ∼ → ∞ 

 
. (4.22) 

The shape parameter depends on the product ( )2
C V∇  that means some 

kind of scale invariance. 
 Thus, the volume dependence of G∆  for optimized shapes is follow-
ing: 

( ) ( ) ( )
4

1 3
2 2 2 52

1 3

132 2 4 32

C C Vs s
G V V V

−
 

 γ ∇ γ ∇ 
 ∆ = −α + + + +  σ  

 

 

( ) ( )
2 1

1 13 3
2 22 2 22 2

3
1

1 1

2 2
2 4 32 2 4 32

C V C Vs s s s
s V

−  
        γ ∇ γ ∇        + σ + + + + +        σ σ               

. (4.23) 

One can see that, depending on the value of concentration gradient, 

G∆  can be monotonously increasing or nonmonotonic with a maximum 

(nucleation barrier): 

 a) ( )
1

2crit

1

4 2

3 3
C C

 α α∇ > ∇ =  σ γ 
–nucleation forbidden,  

 b) ( )crit
C C∇ < ∇ –nucleation possible. 

Thus, transversal mode, under condition of shape optimization, gives 

qualitatively the same results as polymorphic mode: 
 1) nuclei should be more plate-like, the larger is the volume and the 

larger is the concentration gradient, shape being determined by they 

product ( )2
C V∇ ; 
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 2) nucleation is forbidden if concentration gradient exceeds certain 

critical value, which can be about ( )crit 8 9 1

1
10 10 mC −∇ = − . 

4.3. Total Mixing Mode of Nucleation 

Another possibility of nucleation in the fixed gradient is a redistribu-
tion of components only inside the forming nucleus resulting in con-
stant concentration 

newC  and a new lattice, and unchanged gradient 

outside nucleus. In this case, change of Gibbs free energy due to forma-
tion of nucleus is:  

( ) ( )( ) ( )( )( )2 2
1 24 2 4 4

C

C

x r
new new old old

x r

G h hr n h g C x g C x dx
+

−

∆ = σ + σ + −∫ , (4.24) 

 Similar to previous subsection one obtains: 

 ( ) ( )22 2 2 3
1 2 ||4 2 4 8G h hr h r C h r∆ = σ + σ − α + γ ∇ , (4.25) 

 ||

4

3
oldnγ = − α . (4.26) 

The main peculiarity here is the negative sign of ||γ . It means that, con-
trary to polymorphous and transversal modes, in the case of operating 

total mixing mode the concentration gradient helps the nucleation. 

Therefore, at any concentration gradient, a nucleation via total mixing 

mode is always possible in thermodynamic sense. As we will see below, 

kinetics can nevertheless suppress such a nucleation. Dependence 

( )G∆ ϕ  at fixed volumes is nonmonotonic with one minimum and one 

maximum for small volumes (Fig. 4.8, a) and monotonously increasing 

 

Fig. 4.8. ∆G versus shape dependence for total mixing mode at small and 
large V(∇C)2. 
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for large volumes (Fig. 4.8, b). 
 Condition of extremum, 0G∂ ∂ϕ = , leads to the following equation 

( )2

||2

1

0
32

C V
S

γ ∇
ϕ − ϕ + =

σ  with two solutions 

( )2
2

||
1,2

12 4 32

C VS S γ ∇
ϕ = ± −

σ
, 

first of which corresponds to metastable minimum and second–to 

maximum. 

 These solutions disappear, when ( )
2

2 1

||

8S
C V

σ∇ >
γ

, so that nucleus 

should rapidly transform into needle (see Fig. 4.9). Thus, one has kind 

of shape phase transition. 
 Obviously, all above-mentioned considerations are valid only for 

constC∇ = , so that needle cannot exceed the size of diffusion zone. 
 Of course, total mixing mode should operate if the redistribution in 

transversal direction in the parent phase is absent. For this diffusivity 

of the new phase should be much larger than the diffusivity of old one. 

In reality, all nucleation modes operate simultaneously. Description of 

their interference should be made within the kinetic approach and will 
be briefly reviewed in the next section. 

5. KINETICS OF NUCLEATION. FOKKER—PLANCK APPROACH 

Kinetics of nucleation is usually described by Fokker—Planck (FP) 

equation for the size distribution of embryo/nuclei ( , )f t N , where f is a 

number of clusters (say, per unit volume) containing N monomers 

(with size 
1/3( )R N∝ Ω ). In FP approach, the clusters are growing or 

shrinking due to attachment or detachment of individual atoms, so 

that movement of each cluster in the N-space (size space) is quasi-
continuous, step-by-step: clusters are not colliding with immediate 

 

Fig. 4.9. ‘Phase shape transition’ for total mixing mode. 
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coalescence and not splitting. Therefore, size distribution satisfies the 

continuity equation in the size space: 

 ,
f j

t N

∂ ∂= −
∂ ∂

 (5.1) 

where flux ( )j N  of clusters in the size space contains both stochastic 

and drift terms: 

 
f

j f
N

∂= −ν + ∆ν ⋅
∂

. (5.2) 

Stochastic term 
f

N

∂−ν
∂  is due to randomly attaching and detaching at-

oms with average frequency ν . Drift term f∆ν ⋅  is determined by 

thermodynamic profit of attachment comparing with detachment (or 

vice versa): 
G

N+ −
∂∆ν = ν − ν ∝ −
∂

. 

 We just modified this well-known approach by including the gradi-
ent term ( )2 5/3C Nγ ∇ into Gibbs energy change and taking the time de-
pendence of concentration gradient into account. Detailed derivations 

can be found in [38]. Here we present the most characteristic figures.  

5.1. Kinetics of the Intermediate Phase Nucleation  
in the Concentration Gradient: Polymorphic Mode 

Basic kinetic equation for the distribution function ( ),f N t  for the 

clusters of new phase:  

 
( ) ( ) ( )

2

2

,f N t j
f f

t N N N

∂ ∂ ∂ ∂= − ∆ν ⋅ + ν ⋅ = −
∂ ∂ ∂ ∂

, (5.3) 

Here 
2

+ −ν + νν =  is taken to be a constant value, 

 
1 G

kT N

∂∆ν = − ⋅ ν
∂

 (5.4) 

In the case of polymorphous mode, the gradient term is positive (con-
centration gradient hinders the nucleation). Under assumption of 

spherical nucleus shape, the dependence of Gibbs free energy on the 

number of atoms in the nucleus has the following form: 

 ( ) ( )
2 2

5 2
3 32 3 33 3

4
4 10 4m

g
G N g N C N N

n n

′′   ∆ = ∆ ⋅ + ∇ ⋅ + πσ ⋅   π π   
 (5.5) 
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Here g′′  is the difference of second derivatives of Gibbs free energy per 

atom on concentration between the new phase and parent solution. If 

the concentration gradient in the nucleation place changes according 

to parabolic law: 

 ( )2 1

4 parent

C
D t

∇ =
π

, (5.6) 

then a drift term in FP-equation explicitly depends on time, which 

physically means the lowering of nucleation barrier due to interdiffu-
sion in the parent phase. 
 It is convenient to use further the non-dimensional variables: 

tτ ≡ ν , 0mg

kT

∆α ≡ < , 3 24 parent

g
kTC

D

ν′′
β ≡

π
, 3

8

3
C

kT

πσγ ≡ , 

2

3

3

3

4
C

n
 =  π 

. (5.7) 

Then 

 
( )

2
2 3

12

3

,f N t f N
f

N N
N

  ∂ ∂ ∂ γ  = + ⋅ α + β +  ∂τ ∂ ∂ τ    

. (5.8) 

Numeric solution of this last equation has been obtained for the fixed 

total number of nucleation sites (heterogeneous nucleation): 

 ( ), constf N t dN =∫ . (5.9) 

The evolution in time of the size distribution f(N) corresponds to evo-
lution of the potential field ∆G(N) but is shifted in time: For small an-
nealing times, when the concentration gradient remains sharp enough, 

dependence ∆G(N) is monotonously increasing so that nucleation is 

thermodynamically forbidden. 
 During this period, a distribution f(N) remains monotonously de-
creasing. After certain incubation thermodynamic ‘time’, when the 

concentration gradient in the parent phase becomes less than critical 
value, nucleation becomes thermodynamically possible (∆G(N) non-
monotonic with a maximum corresponding to nucleation barrier). Yet, 

a distribution function f(N) reveals maximum not at once, but after 

certain ‘kinetic incubation period’ (Fig. 5.1). We define an incubation 

time as a period of peak formation for size distribution f(N) (not count-
ing an initial peak at minN N= ). Obviously, in dimensionless scale τ , 

the incubation time ( incτ ) should depend on the ratio of two kinetic pa-

rameters: ν  and parentD . Dependences ( )inc parentDτ ν  for different sur-
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face tensions are shown at Fig. 5.2. 
 To evaluate the realistic range of the ratio D ν  one should take into 

account that the frequency ν can be estimated as 

2
23

boundaryN Dν ∼ ⋅ λ , 

where boundaryD  is the diffusivity of interface between new and old 

 

Fig. 5.1. Evolution of size distribution for nuclei of intermediate phase. τ = 50 

(a), 100 (b), 150 (c). Dparent = 10−20
 m

2s−1, ∆gm = −7.48⋅10−21
 J, g′′ = ∂2g/∂C2

 = 

= 7.77⋅10−19
 J, n = 1029

 m
−3, T = 600 K, σ = 0.15 J⋅m−2. 

 

Fig. 5.2. Dependence of dimensionless incubation time inc inctτ = ν  on the ratio 
D ν  for different surface tensions: 0.09 (a), 0.10 (b) and 0.11 (b) Jm−2. 
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phases, and the number of atoms in the nucleus, λ, is the characteristic 

length of random walk of atom looking for suitable place of joining the 

new phase. It is reasonable to suppose that boundary parentD D>  and aλ > , 

where a is an interatomic distance. If 30N ∼ , 
− −λ ∼ −10 810 10  m , then 

D ν  belongs to the interval 
− −−17 21 210 10  m . 

 One can see that with growing diffusivity of parent phase a dimen-
sionless incubation time decreases to some asymptotic level. 
 It means that this level represents the time for nuclei growth even 

when gradient effect does not hinder the nucleation. Then we may con-
sider the difference minτ − τ  as a time of ‘concentration preparation’. 

5.2. Kinetics of Nucleation via Total Mixing Mode 

For total mixing mode, the gradient term (factor γ) in Eq. (5.8) is nega-
tive–concentration gradient C∇  supports the nucleation process. The 

results of calculation for total mixing mode differ substantially from 

those for polymorphic mode. First of all, nucleation is never sup-
pressed. Moreover, nucleation behaviour may well be oscillatory; for 

certain range of parameters, the time evolution of new phase volume is 

non-monotonic (see Fig. 5.3). Similar non-monotonic behaviour is ob-
served as well for the number of smallest embryos (in our case 

min 5N = ) for the same thermodynamic parameters except surface ten-
sion (Fig. 5.4). 
 Why are the embryos generated intensively at the very first stage 

and than partially dissolved? Our answer is following: for total mixing 

mode, the gradient term supports nucleation. At first, the gradient is 

 

Fig. 5.3. Time dependence of new phase volume in the case of total mixing 
mode for σ = 0.20 Jm−2. 
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large making nucleation barrier low and the nucleation process easy. 

With time the gradient decreases, nucleation barrier and critical nu-
cleus size increase. Therefore, particles which had been generated ear-
lier as overcritical and which did not manage to reach the new critical 
size, find themselves to be subcritical and are dissolved. In other 

words, if the growth rate of particles is less than the rate of critical 
size growth (due to decreasing concentration gradient), these particles 

will be disintegrated. 
 We had observed the non-monotonic behaviour of new phase forma-
tion during interdiffusion by Monte Carlo simulations both for second-
order and first-order phase transitions in the concentration gradient 

(Section 2). 

5.3. Interference of Nucleation Modes 

As we have just seen, nucleation of intermediate phase during reactive 

diffusion can proceed via different ‘modes’, each being characterized 

by its own nucleation barrier, own frequency factor and own 

shape/volume dependence. We restricted ourselves with special 
shape–parallelepiped, leaving the only free shape parameter /h rϕ = , 

where 2h, 2r are the nucleus sizes in transversal and longitudinal di-
rections. 
 Every mode has its own velocity determined by diffusivities and em-
bryo shape. In [38] we considered the interference of two modes–
transversal and total mixing. Nucleation modes operate simultane-
ously with different rates:  

 

Fig. 5.4. Time dependence of the number of smallest new phase embryos 
(Nmin = 5) for heterogeneous nucleation via total mixing mode for σ = 0.15 Jm−2. 
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 ( ) ( ) ( ) ( ) ( )/ / /
b cN N N+ − + − + −ν = ν + ν . (5.9) 

Rather tricky mathematics using the steady state solutions of FP equa-
tion with additive contributions to frequencies from two modes dem-
onstrated that interference leads to dependence of effective nucleation 

barrier on the ratio of kinetic parameters–the larger is the diffusivity 

of new phase, the lower is an effective nucleation barrier. 

 The specific form of the function ( )crG c∆ ∇% %
 (reduced to non-

dimensional form) depends on the ratio 

( ) ( )
exp

4

c b
i

m

D G G

D

 ∆ − ∆Λ = −  θ 
, 

including the ratio of diffusivities in intermediate and parent phases. 
 At 

*Λ < Λ  the function ( )crG c∆ ∇% %
 is non-monotonous with a maxi-

mum (Fig. 5.5), which shifts to the zero c∇%  with increasing Λ  to 
*Λ . 

With decreasing Λ  to zero this maximum 
max
crG∆  tends to infinity, 

(transversal mode is overwhelming). At 
*Λ > Λ  the function ( )crG c∆ ∇% %

 

is monotonic–the sharper is the concentration gradient, the less is the 

nucleation barrier (total mixing mode is overwhelming). Thus, strictly 

speaking, there is no critical gradient in general case, and nucleation 

of intermediate phase is possible at any gradient due to the possibility 

of the total mixing mode. Instead of critical gradient beyond which nu-
cleation would be impossible the characteristic gradient exists at 

which the probability of nucleation is the smallest. In the process of the 

 

Fig. 5.5. Dependence of an effective nucleation barrier for the critical nu-
cleus on the non-dimensional concentration gradient at different ratios of 
diffusivities in the new and parent phases.
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interdiffusion in the parent phase, the concentration gradient de-
creases and the nucleation barrier increases at first. It means that the 

nuclei of the new phase born at the very beginning can become sub-
critical at the later stage (if they had no time for growth). Therefore, 

the oscillatory regime of intermediate phase formation can be possible. 
 Thus, the kinetic constraints and the interference of different nu-
cleation modes lead to the effective nucleation barriers depending on 
the ratio of diffusivities as well as on usual thermodynamic factors. 

6. ‘ALMOST LATERAL’ GROWTH AFTER NUCLEATION 

DSC-analysis of reactions in multilayers often shows two peaks of the 

heat flux corresponding to the same phase. It means that the solid-
state reaction of intermediate phase formation proceeds in two stages. 

According to С. Michaelsen, K. Barmak et al. [14, 67], first stage may 

correspond to nucleation and lateral growth of new phase islands, and 

second stage–to their normal layered growth. Direct observations of 

morphology [67] demonstrate that islands after first stage have rather 

substantial thickness–about 8 nm–much more than the critical size. 

It means that lateral growth proceeds simultaneously with slow normal 
growth, which is later practically stopped for some period. 
 First attempts (to our knowledge) of theoretical description of the 

lateral intermetallic compound growth during peritectoid reaction [68] 

or simply during reactive diffusion [69] have been based on alternative 

physical principles but have led to the similar main result–
asymptotically constant phase thickness and constant lateral growth 

velocity. A steady-state model of Klinger et al. [68] treated the curva-
ture gradient as the only driving force of diffusion along the moving 

interface. The gradient of chemical potential related not to the curva-
ture but to the composition gradient, was neglected (as far as we un-
derstand). In our first model [69] we tried to take into account this 

very facto–gradient of chemical potential along the moving bound-
ary, related to the gradient of composition and leading to a diffusion 

flux along the interface (as usual for intermetallic compounds, a very 

small concentration gradient corresponds to a very substantial chemi-
cal potential gradient and substantial flux). The concentration gradi-
ent corresponds to different supersaturations in different places of the 

interface. The local velocity of the interface was taken (as usual in the 

first-order reactions) proportional to the local supersaturation, being 

maximal at the joint perimeter A-IMC-B and minimal at the island tops 

A/IMC and B/IMC. The curvature gradient as a driving force of diffu-
sion had been neglected in [69]. This model has led to reasonable 

asymptotical regimes for thickness and volume but gave not very rea-
sonable shape (shallow) around the top. In [70], we tried to take into 

account the curvature gradient, as well as nonrectangular wetting an-
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gles but still restricted ourselves with symmetric A/IMC/B configura-
tion. 
 Bulk diffusion is assumed to be frozen both in IMC and in parent A- 

and B-phases. Only diffusion along the moving interphase boundary is 

possible. Let at first consider the spherical nucleus of intermediate 

phase 1 (IMC), appearing at the interface A/B. Growth of the new 

phase particle proceeds due to diffusion of, say, A-atoms along the 

curved interphase boundary IMC/B with simultaneous reaction of 

these diffusing atoms with the atoms of B-phase. It means that at each 

moment an A-atom migrating along IMC/B interface has a choice–to 

migrate further or to react with B-atoms, adding a new structural unit 

of phase IMC and shifting the interface inside phase B. Migration rate 

is governed by interphase diffusivity D. The rate of transversal shift-
ing of the interface is taken to be proportional to the difference of the 

local concentration of A in the boundary and the equilibrium value:  

 ( )A ARU k C C= − , (6.1) 

where k is a reaction constant. 
 We took an average IMC composition equal to 0.5, an equilibrium 

concentrations AC  equal to 0.52 (A/IMC-equilibrium) and 0.48 (IMC/B 

equilibrium). The new phase island is treated as a figure of rotation 

with profile changing with time due to the above-mentioned reaction.  
 The flux of A-atoms is used for reaction and may not reach the top 

region. It means that the island will be more and more plate-like, nor-
mal growth tending to zero.  
 The main kinetic coefficients are the interface diffusivity D and the 

reaction constant k, the island shape being determined by their ratio. 
 The initial shape was taken as a sphere of radius r. Its cross-section 

is a circle, transforming into oval-like figure. The length of this circle 

is divided into elementary intervals, with concentrations changing 

with time according to the following balance equation:  

   ( ) ( ) ( ) ( ) ( )( )1 1
0

2 2A AdC i S i I i I i dt U i S i C i dt
    δ = + − − − −    

    
 (6.2) 

 Here i is a number of cell (Fig. 6.1), 
1

2
i +  corresponds to the bound-

ary between i-th and (i + 1)-th cells, δ is the width of the interface, S(i) 

is the area of elementary surface generated by rotation of an elemen-
tary interval. 

    ( ) ( )
2 2

1 1 1 1
2

2 2 2 2
S i r i z i z i r i r i

          = π + − − − + − −          
          

 (6.3) 
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 The growth of the island proceeds due to the movement of each ele-
ment in a perpendicular direction with velocity U(i) = k(CA(i) − CAR). 

The fluxes are determined by the concentration gradient and by the 

gradient of curvature: 

( ) ( )
( ) ( )( ) ( ) ( )( )2 2

1 11

2 1 1

A A
A

C i C i
I i D

z i z i r i r i

  + − −    + = − −     + − + + −

 

 
( ) ( )

( ) ( )( ) ( ) ( )( )
( )

1

2 2

1 1
[ ( 1) ( 1)]

1 1
2

1 1

B
A A

b

C i C i
kT R i R i

r i
z i z i r i r i

 σ Ω + + − −  + −   − δ π
+ − + + − 




, (6.4) 

where R is the local radius of curvature. Of course, the movement of 

interval boundaries with different velocities changes the lengths of all 
intervals. Therefore, we redefine the equidistant grid at each new time 

step, using interpolation procedure. 
 Boundary conditions are introduced in the following way: at each 

time step, the marginal interval ( 0i = ) moves along the normal direc-
tion, ‘breaking link’ with the A/B interface. Simultaneously the new 

point of grid is added at the A/B interface ( ( )0 0z = ), at the distance 

( )
1

0

sin B

U dt

θ
, where wetting angles are determined by Young’s relation 

1 1 1 1cos cosA A B B ABσ θ + σ θ = σ . After this, the grid is redefined by in-
terpolation procedure restoring the number of intervals. To simplify 

our scheme, we considered only the symmetric case 1 1A Bθ = θ . The 

main results of calculations are as follows: 
 the island thickness tends to some asymptotical value maxz ; 
 the thickness maxz  and the time derivative dz dt  decreases with in-

 

Fig. 6.1. Reaction/diffusion scheme. 
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creasing reaction rate k (Fig. 6.2) and increases with increasing diffu-
sivity D along the moving interface; 
 the aspect ratio (shape factor) max / (0)z r  decreases with increasing 

reaction rate constant and decreasing diffusivity. 

7. NUCLEATION IN NANOPARTICLES AND COMPETITIVE 
NUCLEATION IN BULK MATERIALS 

Previous sections treated the case of intermediate phase (or several 
phases) formation during reactive diffusion. Now let us consider sim-
pler situation, when the intermediate phase(s) appears as a result of 

decomposition in supersaturated binary alloy. Two ‘nano-cases’ can be 

distinguished: (1) nucleation in the array of separated nanoparticles 

and (2) simultaneous nucleation of many clusters in the bulk material, 

when each nucleation site has limited nanovolume of the ‘responsibil-

 

Fig. 6.2. Shapes (a) and time dependences (b) of the thickening growth ve-
locity dz/dt for a diffusivity D = 1⋅10−15 m2/s and different reaction rate 
constants: (1) k = 1⋅10−6 m/s; (2) k = 5⋅10−7 m/s; (3) k = 1⋅10−7 m/s. All 
σ = 0.3 J/m2.
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ity region’ (further also as supply region). In the first case, the exis-
tence of external boundary of the particle may influence the nucleation 

process. In the second case, the ripening effect can be important at 

some stage. Yet, both cases have something in common–it is a limited 

amount of material for construction of the new phase (in nanoparticle, 

it is limited forever, in bulk material it is limited till/if the intensive 

ripening starts).  
 The effect of depletion in the parent phase on nucleation and growth 

at a nanometre scale cannot be neglected. In the following, we briefly 

review the thermodynamic study of nucleation and growth in confined 

volumes, considering this effect. 
 We consider the decomposition of a supersaturated binary alloy α 

(containing A and B components) leading to the formation (when it is 

not suppressed) of two-phase system α + 1 or α + 2, where 1, 2 are in-
termediate phases which both have non-zero driving forces of trans-
formation. In all cases, depletion of the nanosized parent phase in-
creases the Gibbs free energy of the system and makes nucleation more 

difficult. Thus, the decrease of the size R (particle size or half-distance 

between nucleation sites), should increase the nucleation barrier. 
 Moreover, when two phases can nucleate, they will compete for at-
oms the amount of which is limited (in the following, the competition 

will concern B atoms). Result of competition depends on R, interface 

energies σ, driving forces (per atom) ∆g1, ∆g2, initial composition C0 

(mole fraction of B-specie), compositions of the new phases Cnew (then 

also as X1 or X2) and temperature T. 
 First, the thermodynamics associated with the formation of a single 

intermediate phase in a nanometric volume is treated. 

7.1. Nucleation/Suppression Criterion for Single Intermediate 
Phase in a Small Volume 

Very simplified illustration of the essence of the size effect related to 

parent phase depletion can be following. If the nucleus of the new 

phase 1 of radius r* with mole fraction Cnew of specie B is formed in a 

parent phase with much less initial mole fraction C0, it should ‘suck 

out’ the atoms B from the sphere (supply region) with radius not less 

than ( )1/3

1 0* ( ) ( ) *newR C v C v r=  (here v and v1 are the volume per atom 

in the parent and new phases respectively). Obviously, if the size of 

whole particle is less than mentioned value R, and r* is the critical size 

of nucleus in bulk material, nucleation becomes impossible–total 
number of atoms B in the whole particle is just not enough for con-
struction even of single stable nucleus. Taking r* = 10−9

 m, C0 = 0.1 and 

1/ 1v v ≈ , Cnew = 0.8, one obtains for the ‘minimal’ radius R* of the 

supply region R* = 2 nm. When R < 2 nm, nucleation is absolutely im-
possible. Actually, this is only estimation, since with depletion of par-
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ent phase with, say, atoms B, the Gibbs free energy increases due to 

decrease of entropy. Therefore, nucleation becomes impossible already 

for some particle size R > R*. To obtain quantitative results, we should 

choose the thermodynamic models for the new and parent phases. 
 At any moment and at any size r (radius) of growing nucleus, mole 

fraction distribution is supposed to be step-like (without transient lay-
ers) so that concentration is uniform inside each phase. Analogous 

scheme, for single intermediate phase, has been proposed [71] within 

the framework of Cahn—Hilliard approach [72] with gradient terms 

and diffuse interface.  
 It is suggested that for any given nucleus size r, the mole fractions 

Cnew and C0 + ∆C in the new and parent phases respectively satisfy the 

condition of minimum for the Gibbs free energy. The following con-
servation law relates the mole fractions:  

 ( )o o new n oC V C V C C Vα= + + ∆ . (7.1) 

In relation 1, the number of atoms per unit volume n is taken the same 

for all phases. For spherical clusters inside spherical particles: 

34
,

3nV r= π    34
,

3oV R= π    Vα = Vo − Vn. 

 Thus, mole fraction Cnew is a function of depletion ∆C. Conditions 

0
G

C

∂∆ =
∂∆

, 

2

2
0

G

C

∂ ∆ >
∂∆  determine an optimal depletion for fixed nucleus 

size. 
 The driving force for transformation per particle or per one nuclea-
tion site is: 

   ( ) ( )( )( ) ( )n new new o n old o o old oG n V g C V V g C C V g C S∆ = + − + ∆ − + σ . (7.2) 

Cnew is related to C0 as ( )
3

3
1new o

R
C C C

r

 
= + − −∆ 

 
; S = 4πr2. 

 Once more, we use the parabolic approximations:  

 0 0 2( ) ( ) ( )
2
new

new new n ng C g C C C
α∆ = ∆ + − , (7.3) 

 0 0 2( ) ( ) ( )
2
old

old old o og C g C C C
α∆ = ∆ + − . (7.4) 

 Condition 

,

0
r R

G

C

∂∆  = ∂∆ 
 coincides with the classical parallel tangents 
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rule but here depletion of the parent phase is taken into account. It 

gives: 

  

0

3

3

( )

1

o old
n o o o

opt new

old

new

C C C C
C

R
r

α+ − −
α∆ = −

α− +
α

;   
3

3
1 ( ) .opt opt

new o

R
C C C

r

 
= − −∆ + 
 

 (7.5) 

 Substituting ∆Copt(r, R) and ( , )opt
newC r R  into expression (7.2) for ∆G, 

one obtains ∆G as a function of one ‘reaction coordinate’ r (at fixed R). 
 ∆G(r, R) has been calculated the following values for the parameters: 
n = 6⋅1028

 m
−3, Co = 0.32, Cn

0
 = 0.8, Сo

0
 = 0.2, ∆g(Cn

0) − ∆g(Co
0) = 0, αnew = αold = 

= 10−19
 J and σ = 0.15 Jm−2. Results are represented in Fig. 7.1. 

 For small R = 2.3 nm (situation III), ∆G(r) is monotonically increas-
ing which means that nucleation is impossible. 

 

Fig. 7.1. Dependences ∆G(r, R) on nuclei radius r and external particle size R 
as a parameter. I–decomposition (RI = 32·10−10 m), II–metastable α + 1 
state (RII = 28·10−10 m), III–nucleation forbidden (RIII = 23·10−10 m). 
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 For R = 2.8 nm (situation II), a function ∆G(r) has a metastable 

minimum laying for higher Gibbs energy than the initial state. 
 For large R (R = 3.2 nm, situation I in Fig. 7.1), ∆G(r) presents the 

classical form with one maximum defining the nucleation barrier 

∆G(r*) and a minimum corresponding to final decomposition. 
 Situations I and II, in the case of multiple simultaneous nucleation 

at nucleation sites, can be compared to the so called ‘mob effect’: ‘If 

people pass the door one by one, they all do succeed, but if they try to 

do it simultaneously, the process stops’. 
 Thus, it has been shown from thermodynamics that nucleation in 

nanometric volumes in very small single particles as well as when mul-
tiple simultaneous nucleation with short distance between the nuclea-
tion sites occurs, nucleation can be suppressed due to depletion of the 

parent phase. 
 The previous analysis demonstrates that the effect of depletion in the 

parent phase on nucleation and growth at a nanometre scale cannot be 

neglected. The following thermodynamic study of nucleation and 

growth in confined volumes is based on such an effect and will be repre-
sented in the frame of phase diagram method (Section 7.2). 
 Furthermore when two phases compete for nucleation and growth 

the following regimes had been found to be possible, depending on sup-
ply region size (or particle size) and thermodynamic parameters of par-
ent and intermediate phases: (1) total prohibition of separation for 

both phases, (2) formation and stabilization of metastable phase in-
stead of stable one, (3) relative stabilization of metastable phase with 

the temporary delay of its transformation into the stable phase after 

certain crossover point (in the case of sufficiently high additional bar-
rier for next transformation), (4) formation and growth of stable 

phase, when the metastable phase does not appear at all, (5) formation 

and growth of stable phase via the metastable phase (Section 7.3). 

7.2. Phase-Diagram Method of Analysis for Nanosystem 

Let us choose the model of the new phase as a ‘line’ (strictly stoichiomet-
ric) intermediate phase and exclude the elastic contributions into the 

Gibbs energy. We will consider formation of the spherical nucleus of in-
termediate phase inside the spherical particle of supersaturated solid 

solution at initial concentration X0 (Fig. 7.2). 
 The Gibbs energy per atom of the new phase 1 (line compound) and of 

the parent phase are taken as (Fig. 7.3): 

 ∆g1(T) = ∆g1 + αkT   (X = X1), (7.6) 

 ∆go(T, X) = kT{Xln(X) + (1 − X)ln(1 − X)}. (7.7) 
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Hereby, ∆g1 is the isothermal Gibbs energies of formation (per atom) 

from pure solid components, α > 0–non-dimensional parameter de-

 

Fig. 7.2. Schematic representation of phase transformation: (а)–particle of 

concentration X0 before transformation, (b)–the same particle after the 

transformation with concentration redistribution being taken into account: 
Xmed(r)–concentration of ambient parent phase, X1–concentration of strong 

stoichiometric intermediate phase, r–nucleus size, R–radius of supply re-
gion (nanometric isolated particle).

 

Fig. 7.3. ∆g(X)–Gibbs free energy (per atom) as a function of composition for 

‘old’ (parent) and ‘new’ (phase 1) phases (qualitative dependence). X0 is the ini-
tial composition of the parent phase, Xmed(r)–composition of the parent phase 

as a result of fluctuation/nucleation and/or separation. (In this diagram, the 

pure components are supposed to have the same structure.) 
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termining temperature-dependent behaviour of driving forces, k is the 

Boltzmann constant. 
 The expression for the driving force is: 

 ( ) 2
1 1 1 0( ) ( ) 4old med oldG nV g n V V g X nV g X r∆ = ∆ + − ∆ − ∆ + π σ . (7.8) 

 In Eq. (7.8), the number of atoms per unit volume n is taken the 

same in the two phases (
3

1

4

3
V r= π , 

3
1

4

3
V R= π ). 

 Extremes of ∆G function in Eq. (7.8) have been found by direct cal-
culation of ∆G for all reasonable sizes r (with small step). 
 Let us plot the Gibbs free energy versus nucleus size ∆G(r) according 

to the Eq. (7.8) for different values of temperature, initial concentra-
tion X0 or size of particle. The typical schematic dependences are pre-
sented in Fig. 7.4. 
 One can obtain spectrum of all states by changing the initial super-
saturation (due to composition and temperature), size of transforming 

particle. Namely, possible cases are separation (cases T3, R3, X03 in Fig. 

7.4), metastable state (cases T2, R2, X02 in Fig. 7.4), and impossibility 

of separation (cases T1, R1, X01 in Fig. 7.4). The last situation for small 
particle may be realized even at concentrations and temperatures for 

which separation is possible in infinite alloy. 
 Let us choose a criterion of separation for parent phase in small iso-
lated particle and of stability of new two-phase equilibrium. Under 

separation criterion, we will understand the situation at which the 

 

Fig. 7.4. Schematic Gibbs free energy dependence ∆G on radius of nucleus r: –
–for different temperatures T1 > T2 > T3 and fixed other parameters; - - - –
for different initial concentrations X0 (X01 < X02 < X03), provided other pa-
rameters are fixed; – –for different radii of supply region R1 < R2 < R3 re-
spectively. Graphs T2, R2 and X02 (middles) correspond to the separation crite-
rion. 
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Gibbs free energy dependence on radius of a new phase becomes non-
monotonic with maximum and zero second minimum: ∆G = 0, 

0
R

G

r

∂∆ =
∂  for r > 0 (cases T2, R2, X02 in Fig. 7.4). In the case of small 

particle the equilibrium condition means the equal depths of two pits 

(in Gibbs free energy dependence on radius r), which are separated by 

thermodynamic barrier. In the case of small particle, this barrier is of 

nucleation barrier order and may be not high (< 50kT). It means that 

the phase equilibrium in ensemble of small particles will correspond to 

statistic distribution, at which one part of particles will be in single-
phase state and second part–in two-phase state.  
 Let us take the size of our binary system: R = 10−8

 m (at same fixed 

parameters: n = 7⋅1028
 m

−3, σ = 0.15 J⋅m−2, ∆g1 = −3⋅10−20
 J, X1 = 0.5, α = 

= 2.4). According to the separation criterion for small particle (case X02 

in Fig. 7.4) one can find the optimal composition 
оpt
medX  

( ( ),оpt оpt
med medX X R T≡ ) of the parent phase corresponding to stable ∆G(r) 

minimum. Thus, we have two important points (third one, X1 = 0.5, is 

determined from initial condition) for chosen criterion: initial compo-
sition as the limit solubility 0 ( , )crX R T  (further 0

crX ) of one component 

in another (B in A) and optimal composition of the depleted ambient 

parent phase 
оpt
medX  as the result of separation. Size dependent separa-

tion diagram is presented in Fig. 7.5 (case MQZNL). 
 Notice that in contrast to analysis for cupola-shaped separation dia-
gram of massive alloy one needs to interpret the size dependent separa-
tion diagram for small particle otherwise. This is clear from following 

reasons. In fact, the usual cupola-shaped equilibrium diagram deter-
mines solubility 0

crX  as well as equilibrium compositions ( , 0
cr

medX X∞ =  

and X1) as a result of separation by one line (ASHPNF). 
 For small particle, the equilibrium diagram becomes doubled (and 

shifted and size dependent). That is, instead of one line we distinguish 

two lines, namely, line MQZNL of solubility 0
crX  and line DQ′ENL of 

separation results: 
оpt
medX  and X1. Hence, the limiting solubility in small 

particle does not coincide with the equilibrium composition after the 

separation. We call this effect ‘critical supersaturation’ [72—73]. It 

means that separation is possible only (at some fixed temperature and 

size) if ∆X > ∆Xcr. Here 0
cr cr оpt

medX X X∆ = −  is the ‘critical supersatura-
tion’, that is the difference between the limiting mean mole fraction of 

component B in initially saturated alloy (or solubility–concentration 

corresponding to separation criterion) and optimal (or equilibrium) 

concentration in parent phase after the separation. If the supersatura-
tion ∆X is less than the ‘critical supersaturation’ (∆X < ∆Xcr), which is 

the certain value for an alloy of fixed size R and of temperature T, then 

nucleation and separation are impossible. The physical reason of such a 

peculiarity consists of two factors. First one is a conservation law ef-
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fect and the second one is that the separation in small particle may 

start only from nucleus formation, volume of which is not small with 

respect to the total system volume. 
 Thus, in description of separation of supersaturated solution in 

small particle one must distinguish the solubility limit (maximal con-
centration of impurity before separation) and equilibrium concentra-
tion of depleted parent phase after separation–difference being called 

a ‘critical supersaturation’. 
 For finite rate of T, R or X0 changes, one should observe hysteresis 

behaviour. Contrary to usual hysteresis, which vanishes at infinitely 

slow processes ( 0
dT

dt
→  or 0

dR

dt
→ , or 

0 0
dX

dt
→ ) the critical super-

saturation does not disappear; being some thermodynamic characteris-
tics depending on T and R. Increasing (decreasing) the size the magni-
tude of critical supersaturation ∆Xcr

 decreases (increases). In limiting 

case of infinite environment, the ‘critical supersaturation’ ∆Xcr
 be-

comes zero. 

 

Fig. 7.5. Size dependent state diagram ‘temperature—composition’. Con-
tinuous line ASHPNF–cupola-shaped diagram of binary system for the 
case of separation in infinite system, which is found analytically when the 
new phase is strictly stoichiometric; MQZNL–cupola-shaped diagram of 
small particle at fixed radius R (line connecting the experimental points 
‘+’ is plotted for visualization of cupola-shape); set of points DQ′ENL de-
termines the result of separation: оpt

medX  (points DQ′E) and X1 = 0.5 (points 
NL) in small particle. The parameters are in the main text. 
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7.3. Competitive Nucleation and Growth of Two Intermediate Phases 

As shown in the previous section, limited volumes of the decomposing 

alloy can change both the rate and the very result of decomposition. If 

two phases have the driving force to nucleate, the competition between 

them is inevitable, first of all, competition for necessary constructing 

material. One can expect interesting possibilities if phase 2 has both a 

smaller driving force of transformation and interface energy 

( 20 10σ < σ ). In principle, different possibilities must be considered. 

They are represented in Fig. 7.6. 
 The analysis of competitive nucleation is presented in detail in [53]. 
 To catch the main idea, let the intermediate phases be line com-
pounds with fixed compositions X1, X2, and the parent supersaturated 

phase behaves like an ideal solution (see Fig. 7.7). 
 The Gibbs energy per atom of the parent supersaturated phase is 

presented in Eq. (7.7). The expression for the driving force is: 

 
( )1 1 2 2 1 2

0

( )

( ) .
old med

old surf

G nV g nV g n V V V g X

nV g X G

∆ = ∆ + ∆ + − − ∆ −

− ∆ + ∆
 (7.9) 

 Hereby, ∆g2 and ∆g1 are the isothermal Gibbs energies of formation 

 

Fig. 7.6. Modes of nucleation and growth of new phases in the centre of a small 
particle or a region of supply: (а)–nucleation of phase 1; (b)–nucleation of 

phase 2; (c), (d)–competitive formation of phase 1 and phase 2. 
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(per atom) from pure solid components. 
 The conservation law leads to: 

 ( )1 1 2 2 1 2o medX V X V X V X V V V= + + − − , (7.10) 

where again the number of atoms per unit volume n is taken the same 

in the three phases. 
 The reaction co-ordinate Xmed (medium composition) decreases from 

X0 in the process of evolution. 
34

3
V R= π  is the total volume of particle 

or of the ‘supply region’. 
 According to the configurations represented in Fig. 7.6, it follows: 

  (a) 3
1 1

4

3
V r= π ,   V2 = 0,   ∆Gsurf = 4πr1

2σ10, (7.11) 

  (b) V1 = 0,   3
2 2

4

3
V r= π ,   ∆Gsurf = 4πr2

2σ20, (7.12) 

  (c) 3
1 1

4

3
V r= π ,   3 3

2 2 1

4
( )

3
V r r= π − ,   ∆Gsurf = 4πr12σ12 + 4πr2

2σ20, (7.13) 

 

Fig. 7.7. ∆g(X)–Gibbs free energy (per atom) as a function of composition 
for ‘old’ and ‘new’ phases. X0 is the initial composition of the parent 
phase. (In this diagram, the components are implicitly supposed to have 
the same structure). Hereby, ∆g1 and ∆g2 are the isothermal Gibbs energies 
of formation (per atom) from pure solid components.
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  (d) 3 3
1 1 2

4
( )

3
V r r= π − ,   3

2 2

4

3
V r= π , ∆Gsurf = 4πr2

2σ21 + 4πr1
2σ10. (7.14) 

 State parameters r1, r2, Xmed are linked by conservation law (7.10). 

Therefore, ∆G can be treated as a function of two independent parame-
ters ∆G(r1, Xmed) or ∆G(r2, Xmed). Numeric analysis shows that minimi-
sation of ∆G at fixed Xmed gives r1 = 0 or r2 = 0. It means that the three-
phase configurations α + 1 + 2 (cases (c) and (d) in Fig. 7.6) appeared to 

be less favourable than two-phase configurations α + 1 (case (a) in Fig. 

7.6) or α + 2 (case (b) in Fig. 7.6). Therefore, dependences of ∆G(Xmed) 

are presented only for regimes (case (a) in Fig. 7.6) and (case (b) in Fig. 

7.6). Results can be gathered into the following three cases: 
 Case 1. When the interface energies are such that σ10 < σ20 with bulk 

driving force for phase 1 larger than for phase 2; phase 1 has a lower 

nucleation barrier and its formation is more favourable in general. 

Then system will stop in absolute minimum state (decomposition α + 

1). That is the usual case of total suppression of the metastable phase 2 

by stable phase 1. 
 Case 2. When σ20 << σ10 with bulk driving force for phase 1 larger 

than for phase 2; nucleation of phase 1 is more difficult. 
 It appears that phase 2 will nucleate first (suppressing the forma-
tion of phase 1) and the system will stop in state (α + 2). In this case, a 

small volume helps phase 2 to suppress the precipitation of phase 1. 

Moreover, it is noteworthy that the absolute minimum of Gibbs energy 

for phase 2 is being reached during the evolution of reaction co-
ordinate before the correspondent value for phase 1. 
 All cases including impossibility of phase 1 formation (owing to too 

small volumes) even in the absence of phase 2 must also be considered. 

Actually, they have been considered above for the case of nucleation of 

single phase. 
 Case 3 or crossover regime. When the conditions σ20 < σ10 with a 

driving force for phase 1 larger than for phase 2 are satisfied, the fol-
lowing other situation can be set up: Nucleation remains easier for 

phase 2 but with a minimum of Gibbs energy for phase 1 being deeper 

than for phase 2 but this for a greater depletion (smaller Xmed). Then, a 

crossover from regime (a) to regime (b) becomes possible (see Fig.). 
 At first stage of the evolution path of the system, phase 2 should nu-
cleate and grow, since nucleation barrier for phase 2 is smaller than for 

phase 1. But beyond the crossover-point, phase 1 becomes more fa-
vourable, so that further depletion beyond this point favours trans-
formation α + 2 → α′ + 1. However, this transformation (second stage 

of evolution) obviously means one more Gibbs energy barrier ∆G12 due 

to the required formation of the interface between phase 1 and phase 2. 

The ‘kinetic decoding’ of this additional transformation at the cross-
over point will be more fully discussed in a future work. Here, only 

general considerations are given about this point. 
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 If this additional barrier ∆G12 is small enough, so that the sum of 

∆G12 and nucleation barrier for phase 2 will be less than nucleation bar-
rier for phase 1, then the evolution path of the formation of the phase 1 

via phase 2 becomes more favourable and phase 2 helps to form phase 1. 
 On the contrary, sum of ∆G12 and value of nucleation barrier for 

phase 2 will be larger than nucleation barrier for phase 1 (∆G12 becomes 

sufficiently high to hinder the transformation). In this case, the sys-
tem can reach the metastable state and is able to remain there for a long 

time. 
 It is of interest to study, through a practical example, whether a me-
tastable state, at the sample level, can be attained owing to a very high 

nucleation frequency and how such a metastable state may compete 

with the formation of the stable phase. Authors of [53] studied a prac-
tical example of Al—Li alloy. The possibility of formation and total sta-
bilization of metastable Al3Li1 phase instead of stable Al1Li1 phase in 

small particles of Al—(5—50) at.% Li alloys had been demonstrated. 

8. MODEL OF DISCONTINUOUS PRECIPITATION BASED ON 
THE BALANCE AND MAXIMUM PRODUCTION OF THE ENTROPY 

In previous section, we considered a decomposition process provided by 

bulk diffusion in nanoparticles or nanoalloys. At low temperatures, 

when bulk diffusion is frozen, nature finds other ways of reducing its 

Gibbs energy. Usually such reduction is provided by easy-path diffu-
sion via moving grain-boundaries (discontinuous precipitation and 

DIGM) or interphase boundaries (Section 6). A model of discontinuous 

precipitation in supercooled binary polycrystalline alloys at reduced 

temperatures, taking place as a result of the diffusion-induced grain-
boundary migration, is constructed with allowance of grain-boundary 

diffusion [57]. The proposed approach allows independent determina-
tion of the main parameters, including the interplate distance, the 

maximum velocity of the phase transformation front, and the concen-
tration jump at this boundary. This is achieved by using a set of equa-
tions for the (i) mass transfer in the moving interphase boundary, (ii) 
balance of the entropy fluxes at the phase transformation front, and 

(iii) maximum rate of the free energy release. The model uses minimum 

thermodynamic information about the two-phase system: the curva-
ture of the Gibbs potential surface in the decomposing phase and the 

free energy of the interface between the new phases.  
 Figure 8.1 shows the configuration of a model system representing a 

binary alloy α0 decomposing with the formation of a single cell of the 

depleted phase α in equilibrium with phase β. The transformation re-
gion R moving at a constant velocity υ  toward the decomposing phase 

α0 coincides with the boundary between α0 and α phases and has the 

height b, width h, and length ∆z. Let 
/cα β

 denote the equilibrium con-
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centration at the α—β interface in the α phase; c
β , the equilibrium con-

centration in the β phase plate; and 
max
1c , the maximum concentration 

in the α phase (at the centre of the α phase plate along the х axis). 
 The thermodynamic stimulus of the discontinuous precipitation, as 

well as of any other process at a constant temperature and pressure, is 

a decrease in the Gibbs potential. A model phase diagram in Fig. 8.2 

illustrates this. The dominating factor is a change in the chemical en-
ergy, while the role of elastic energy is insignificant. The motion of the 

transformation front partly decreases the degree of non-equilibrium in 

the system by reducing the concentration in the α phase cell and by in-
ducing the β phase separation with the α—β interface formation. At-
taining the perfect equilibrium behind the transformation front corre-
sponds to the formation of α phase cells with the 

/cα β
 concentration, 

which is principally possible in the case of a strongly retarded phase 

boundary. 
 At low temperatures, the rate of discontinuous precipitation is con-
trolled by the diffusion of components in the flat grain boundary mov-

 

Fig. 8.1. A model system for discontinuous precipitation: (a)–cross-section 
in x—z plane; (b)–concentration distribution behind the transformation 
front at the concentration c0 of the supersaturated solid solution. 

 

Fig. 8.2. A model phase diagram and phase equilibria.
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ing at a constant velocity υ  (for the frozen bulk diffusion) [6, 74]. The 

dependence of concentration in the α phase on the coordinate z along 

the transformation boundary is described by a quasi-stationary grain-
boundary diffusion equation for a moving boundary [74] based on the 

balance of component fluxes (without specification of the mechanism 

of atomic jumps): 

 
2

0
2

( )( )
0,

c c zd c z
sD

dz h

−+ υ =%  (8.1) 

Here, s is the segregation coefficient, D%  is the coefficient of mutual 
diffusion in the phase boundary R, ( )c z  is the local concentration in 

the boundary R, and h is the boundary width. The Cahn solution to this 

equation is as follows: 

 
( )

( )
/

0 0

ch /
( ) ( ) ,

ch /

z L
c z c c c

z L
α β= − −

∆
 (8.2) 

where the co-ordinate z varies from zero (in the middle of the α phase 

plate) to ∆z at the α—β interface. Accordingly, c(z) changes from 
max
1c  

to 
/cα β

 over a half-length of the cell, depending on the combination of 

parameters ∆z/L. The interplate distance ∆z, the kinetic coefficient 

L sDh= υ% , and the triple product sDh%  are related as  

 21
shD z

C
= ∆ υ% , (8.3) 

where C is the Cahn parameter determined from the relation 

0 1
/

0

2
th

2

c c C

c c Cα β

 − =   −  
, and c1 is the average concentration in the α 

phase.  
 Each kinetically possible solution for an arbitrary transformation 

rate and the corresponding value of the parameter L gives a certain in-
terplate distance ∆z. For / 0z L∆ → , the maximum concentration 

max
1c  

in the α phase (at the centre of the α phase plate and along the plate) 

tends to the equilibrium value 
/cα β . As the /z L∆  ratio increases, the 

degree of redistribution of the components decreases, the interphase 

boundary velocity increases, and the system remains substantially 

non-equilibrium. Thus, a single equation (8.1) with the solution (8.2) 

cannot unambiguously describe the kinetics of the discontinuous pre-
cipitation and do not provide for the independent determination of ∆z 

and L. In order to eliminate this uncertainty, Cahn [74] employed the 

principle of maximum decrease in the free energy ∆F during the dis-
continuous precipitation reaction. This was achieved by considering a 

linear relationship between ∆F and the boundary velocity and by intro-
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ducing the second kinetic coefficient representing the boundary mobil-
ity [74]. However, this linear relationship is not always confirmed in 

experiment [75]. 
 The main idea of the approach developed in [57] consists in a more 

thorough analysis of the balance of energy release and degradation in 

the transformation boundary moving at a constant velocity. In con-
trast to the Cahn model, it is suggested that the total decrease in the 

free energy has to be balanced with all ways of the energy degradation: 

both via diffusion along the transformation region and via interphase 

(α0—α) jumps of atoms (with the jumping kinetics determining mobility 

of the phase boundary). For independently determining the main ki-
netic parameters, we use the principle of maximum rate of the free en-
ergy release [76], the equation of balance of the entropy fluxes, and the 

Cahn solution (8.2) of the mass transfer equation. The analysis is per-
formed for a diffusion-controlled discontinuous precipitation reaction 

under the assumption of a readily moving (high-mobility) interphase 

boundary. 
 Let us assume that a change in the entropy deS during the elemen-
tary time interval dt as a result of the phase transformation in the re-
gion R (coinciding with the interphase boundary) shifting by its width 

is equal to the change in the entropy diS as a result of the diffusion re-
distribution of components in the same region R. We consider a quasi-
stationary process obeying the condition [77] 

0,i edS d SdS
dt dt dt

= + =  

which means that the total entropy change in the moving open system 

is zero (this condition is valid at a constant transformation front veloc-
ity v). In order to pass from the rate of entropy change to the rate of 

free energy release, we can use the relation (valid at a constant tem-
perature and pressure) 

, ,1
.i e i edS dG

dt T dt
= −  

 In this case, the rate of the free energy release is [77, 78] 

 0.i i e

V

dS dG d G
T T dV

dt dt dt
Ψ ≡ = σ = − = >∫  (8.4) 

 The entropy production as a result of the diffusion redistribution of 

components in the region R can be written as [77—79] 

 
0 0

( ) ( )
( ) ,

z zhb hb c z z
IX dz sD dz

z z z z

∆ ∆ ∂ ∂µ Ψ = = − − ∆ ∆ ∂ ∂ ∫ ∫
%%  (8.5) 
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where I is the generalized flux along the z-axis, X the driving force, 

and ( ) A B Az g cµ = µ − µ = ∂ ∂%  is the generalized chemical potential at a 

point z of the region R. 
 Let us determine a change in the Gibbs potential as a result of the 

transformation of the α0 phase in an element dz + dz′ at the point z of 

the interphase boundary. For this element, transformed into a band of 

the α phase of length dz and a band of the β phase of length dz′, the law 

of conservation of the substance yields 

 0( ) ( )c dz dz c z dz c dzβ′ ′+ = + . (8.6) 

 The change of the Gibbs potential be written as 

 0( ) ( ( )) ( )( ),G z g c z dz g dz g c dz dzβ ′ ′∆ = + − +  (8.7) 

where g(c(z))dz is the Gibbs potential of the α phase band of length dz 

at the point z with the concentration c(z) in the region R, g
β
 is the Gibbs 

potential of the β phase, and g(c0) is the Gibbs potential in the super-
saturated α0 phase in front of the transformation boundary. Expand-
ing the Gibbs potential for the α and α0 phases into the Taylor series 

with respect to g(cα/β) and retaining terms up to the second order 

(which is permissible for regular solutions with a large energy of mix-
ing), we obtain  

   ( ) ( ) /

2 2/ /
0

0

1 ( )
( ) | ( ( )) ,

2 c

c c z
G c z c c c g f c z k

c c
α β

β
α β α β

β

 − ′′∆ = − − − = − 
 (8.8) 

where f(c(z)) < 0 and /| 0
c

k g α β′′= >  is the curvature of the Gibbs poten-

tial surface in the α phase, at the point with concentration c
α/β. 

 The driving force can be expressed as  

( )c z
X k

z z

∂µ ∂= − = −
∂ ∂
%

, 

where  

 ( ) ( )2/
0/

0

( ) .
( ) 2( )

c cG
c z c k

c z c c

α β
α β

β

 −∂∆  µ = = − −
 ∂ −
 

%  (8.9) 

 The rate of the free energy release as a result of the phase transfor-
mation in the region R can be written as 

 /

0

( ( )) ,
z

ed G b
G c z dz g b

dt z

∆
α βυΨ = = − ∆ − υ

∆ ∫  (8.10) 
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 Here, the first term in the right-hand part is the energy gain per 

unit volume and the second term corresponds to the formation of a new 

boundary region of length h between α0, and β phases. The Gibbs poten-
tial per unit volume is 

/ 2g zα β = γ ∆ , where γ is the free energy per unit 

area of the α—β interface. 
 Using expressions (8.2), (8.4), (8.5), (8.8)—(8.10) and integrating 

with respect to z, we eventually obtain 

 

( )

/ 2
0

/
2 0

0

2/ 2
0

( )
16

3 2
sch th

( )

2
th sch .

2

e

i

d G kL
c c

dt z

c c cz z z

L L c c L

zdG kL z z
c c

Lz dt z L L

α β

β α β

β

α β

υΨ = = − − ×
∆

 − −∆ ∆ ∆   × − −    −    
∆ γυ υ ∆ ∆   − = − = − −    ∆ ∆     

 (8.11) 

 This equation determines the first relation between ∆z and L: 

   ( )
1/

2/ 2 0
0

0

2
8 sch th

c c cz z z
kL c c

L L c c L

−α β β
α β

β

 − −∆ ∆ ∆   − = γ −    −    
. (8.12) 

 Once this relationship is established, we can use the principle of 

maximum rate of the free energy release for determining the optimum 

∆z from the condition  

 
 

0
( )

d

d z

Ψ =
∆

. (8.13) 

 The explicit expression (8.13) is very complicated. For this reason, 

let us use a numerical method for finding the maximum of expression 

(8.13) with respect to ∆z under the condition (8.12) (see Fig. 8.3). As a 

result, we obtain a solution to the system of equations (8.12) and (8.13) 

by determining the values of ∆z = ∆zSOL
 and L for the given values of 

the triple product shD%  and the equilibrium concentration 
/cα β . For the 

comparison with experiment, we will use the data for Ni—1.4 at.% For 

system at 703 K [6] with the following model parameters: 
111.075 10k = ⋅  J/m3, 0.5γ =  J/m2, 0 1.4с =  at.%, 

/ 0.43сα β =  at.%, 

25сβ = at.%, and 
24 32.12 10  m ssDh −= ⋅% , the calculations yield the 

values of parameters coinciding with the experimental values: the av-
erage concentration in the cell, 1 0.82c =  at.%; the interplate distance, 

60.134 10  mSOLz −∆ = ⋅ ; and the Cahn parameter, C = 9.2. The trans-
formation boundary velocity is determined by the formula 

2sDh Lυ = =%
 2.7⋅10—10

 m/s. For the given parameters, a change in the 

Gibbs free energy determined by integrating relation (8.8) and taking 

into account the surface energy gives 14.6G∆ = −  J/mol, which coin-
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cides with the experimental value. 
 Thus, using the equation of balance of the entropy fluxes at the 

phase transformation front, we obtained a new scheme for determining 

the main parameters of cellular decomposition without using the Cahn 

assumption concerning a linear relationship between the driving force 

and the transformation front velocity (the form of this relationship 

can be established in the course of calculations). The proposed scheme 

allows additional ways of the energy degradation in the transforma-
tion region to be taken into account, in particular, those related to a 

reduced mobility of the interphase boundary or to the presence of driv-
ing forces of various kinds. 

9. NANOSTRUCTURE FORMATION DURING THE SHOCK 
LOADING AND ANOMALOUS MASS-TRANSFER 

Rather unexpected area of possible applications of nano-ideas is a mass 

transfer proceeding in metals under pulse loading with deformation 

rates 
−ε ∼ −& 6 11 10  s  [58, 59, 80—83]. Numerous experiments (with 

tracers as well as with standard diffusion couples) show that such a 

fast deformation leads to mass transfer with huge penetration depth of 
− −−6 410 10  m at very small loading times 

−τ ∼ ε ε ∼ −& 0 6
max 10 10  s 

(maximal deformation maxε  is typically about 10—15%). In most cases, 

the concentration profiles for tracers or impurity atoms have ap-
proximately Gaussian form, 

2( ) (0) exp( )c x c x≈ −α , which allows intro-
ducing (at least formally) an effective diffusivity 

1(4 )D −= ατ , which 

 

Fig. 8.3. Calculated: (1) dependences of the difference between LHS and RHS 

of Eq. (8.12) on interlammelar semiperiod; (2) rate of free energy release in 

transformation region. The optimal solution corresponds to ∆zSOL. 
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can well be about 
− −−5 710 10  m

2/s (much more than in liquids). Thus, 

effective diffusivities are huge. What mechanism can explain such 

migration rates? 
 The first idea was ‘mechanical diffusion’ [61], when stochastic plas-
tic shifts make atoms to demonstrate random walk (each step is a shift 

with different blocks of matter). Authors of [58] claim, that it is not 

the case. Their arguments are following. In case of mechanical diffu-
sion, the effective ‘diffusivity’ of single atoms and molecules should be 

the same. Yet, special experiments with some salt, containing tracer 

atoms, deposited on the surface prior to loading, demonstrated (ac-
cording to authors) that molecules remain practically immovable. We 

will discuss other possible interpretation of this experiment in the con-
cluding paragraph of this section.  
 Enhanced diffusion under pulse loading cannot be attributed to va-
cancies or to dislocations since increasing density of vacancies or of 

dislocations leads to decrease of effective diffusivity [58, 83]. Grain 

boundaries are also bad candidates for explanation, since in the vicin-
ity of GBs the concentration of tracers drops [58, 59, 83]. 
 Several authors proposed to explain anomalous mass transfer as a 

result of diffusion with drift, but this approach is unable to explain, 

for example the following fact: if tracers are situated between two 

samples, after loading they are redistributed in both directions almost 

symmetrically. 
 We tried to investigate at least some aspects of above-mentioned 

phenomena by means of molecular dynamics (MD), applied to model-
ling of shock wave propagation in Cu.  

9.1. Model 

1. System consisted of 6×6×42 elementary f.c.c. cells (6048 atoms) 

with periodic boundary conditions along axes perpendicular to shock 

direction.  
2. Before shock started, atoms had been situated in the equilibrium 

sites, and their initial velocities were distributed according to Maxwell 
with certain ‘starting’ temperature.  
3. Prior to shock initiating the system relaxed, kinetic and potential 
energy were redistributed, and the final mean temperature was estab-
lished. If the mean temperature should be equal to the starting one, the 

velocities were renormalized.  
4. Shock was generated by motion of two boundary atomic planes with 

constant velocity U along the <001>-direction.  
5. Motion equations have been solved according to modified Verlet’s 

algorithm.  
6. Interactions have been modelled by the pair Born—Mayer potential 
and, alternatively, by many-body Sutton—Chen potential.  
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7. Special block of the program made possible the return of interstitial 
atoms into vacant sites, generation of new interstitials and vacancies, 

generation of dumbbell configurations. 

9.2. Results 

To check the validity of our model, we measured the dependence of the 

shock wave velocity VSW on the shock velocity U in the interval U ∈ 

(1000, 3000) m/s. 
 Thickness of SW front was only 3—4 atomic planes, which is reason-
able since no dislocations were present. According to experimental 
data for copper [6],  

 SWV a bU≅ + , (9.1) 

where aexper = 3958 m/s, bexper = 1.5. Our simulations gave aexper = 3905 

m/s, bexper = 1.5268. 
 Density, temperature and pressure were determined as average val-
ues for each atomic plane. Temperature was displayed in the coarsened 

space scale (averaged over 5 planes).  
 Pressures, ratio of densities and temperature behind the SW front 

are given in Table 9.1. Pressures and densities practically coincide 

with experimental data. Temperatures are much higher than in real 
experiments (usually ∆T is not more than 100 K [58]). 

Behaviour of the Point Defects 

In absence of the shock wave, the main mechanism for diffusion of in-
terstitial defects appeared to be ‘kick-out’. Propagation of SW front 

for any shock velocity U did not lead to capturing of defect atom for 

long distances. Behaviour of interstitial atom was a random process 

and different runs gave different results: a) capturing of defect atom 

TABLE 9.1. Dependence of pressure, density and temperature behind SW-
front on the shock velocity U. 

U [m/s] ∆pmodel [GPa] ∆ptheor [GPa]
0

ρξ =
ρ

 Tmodel [K] 

1000 47 49 1.235 734 

1500 79 82 1.333 1385 

2000 121 124 1.408 2636 

2500 170 172 1.493 4499 



 Nucleation and Growth in Nanosystems: Some New Concepts 491 

for 2—3 atomic distances (never more); b) kick-out, after which atom, 

getting to lattice site, remained there forever; c) no changes at all.  
 One can see that our computer model perfectly fits all experimental 
data except temperature. It means that there exists another channel of 

energy dissipation, which is not reduced to chaotic atoms vibrations. 

As a first ‘scientific guess’, we assumed that this channel can be a di-
rect use of stress energy for generation of interstitial defects. Let us 

make elementary evaluations. 
 Difference between model and real temperatures is about ∆T ∼ 103

 K. 

Formation energy for interstitial in copper is 2.8 eV. If all this extra 

energy is used for generation of interstitial, their concentration will be 
23 10i ic k T E −∼ ∆ ∼ ⋅ . Then effective diffusivity of atoms will be about ( ) 2 6 8

0 exp 3 10 10 3 10i
i i i i mD c D c D E kT − − −= = − ∼ ⋅ ⋅ ∼ ⋅  m

2/s. During pe-
riod about 10−4

 s, it will give diffusion zone of about 
62 2 10Dt −∼ ⋅  m, 

which appears to be the maximum possible penetration for experi-
ments with shock waves. Yet, authors of the book [58] (and other nu-
merous publications, see, for example, [80—83]) claim that experimen-
tally the penetration depth can reach as much as 100 microns. If they 

are right, even direct and total consumption of the shock energy by 

generation of interstitials cannot be the final explanation.  
 However, at the same time, in our simulations, the nanograins for-
mation has been revealed in the compressed region beyond the SW 

front prior to decompression wave. Conditions of the shock wave load-
ing were rather unsuitable for detailed analysis of this phenomenon, 

since the time prior to propagation of decompression wave was too 

short (time and memory constraints on our computers). To study the 

lattice reconstruction of the compressed regions in more details, we 

independently simulated the uniaxially compressed lattice and traced 

the relaxation processes in it without time limitations of SW propaga-
tion. Actually, the nanoscale structure transformations under differ-
ent ways of deformation have been observed recently [60]. We chose 

special way of deformation, close to conditions of shock wave loading: 

we have studied (by MD-simulation) the behaviour of three-
dimensional, initially single-crystalline CuNi alloys under uniaxial 
single and double loading/decompression cycles.  

9.3. Model and Compression Regimes 

Cubic samples with 18—24 elementary f.c.c. cells along each side con-
sisted of 23000—55000 atoms. Periodic boundary conditions had been 

applied along all three axes X, Y, Z. Interatomic interactions had been 

cut off at the 5-th coordination shell, so that for each atom in the site 

78 interacting neighbours had been taken into account. Interactions 

have been modelled by using the pairwise Born—Mayer potential for the 

pure Cu and the many-body Sutton—Chen potential for the CuNi alloys 
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[84]. Qualitatively the results for both potentials were similar. Time 

step was taken as 5 fs. Maximal time was 110 ps. Initial temperature 

was 300 K. Before deformation, sample was allowed to relax for 10 ps 

but with the fixed sample length. 
 Sample was uniaxially compressed with up to some maximal defor-
mation taken from the results of SW simulation (35, 29, 25%) and sta-
bility of lattice without deformation was checked.  
 Two regimes of compression have been realized: gradual non-
uniform compression (generated by gradual motion of sample walls); 

gradual uniform compression (provided by ‘hand-made’ uniform re-
scaling of all interatomic longitudinal coordinates for all atoms be-
tween moving walls of sample). At each regime, both single loading or 

decompression and combination of consecutive loadings/decompress-
sions have been modelled. In case of consecutive loadings, the second 

compression has been realized in two ways–along the same axis as the 

first one, and transversely to it. 
 In order to quantify the simulation results we used the potential en-
ergy distribution ρ(Ep) and distribution ρ(∆) of specially designed pa-
rameter of non-equiaxiality ∆, which was calculated as logarithm of 

the ratio of maximal (rmax) and minimal (rmin) distances among the 12 

nearest neighbours of each atom:  

 max

min

ln
r

r
∆ = . (9.2) 

 Results are qualitatively similar for all simulated alloy concentra-

 

Fig. 9.1. Cubic sample relaxed after uniaxial 25%-deformation, time 35 ps. 
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tions, compression regimes, and sample sizes. 
 Characteristic global picture of lattice reconstruction is shown in 

Fig. 9.1. The homogeneous regions with different orientations–
nanograins–are observed. Boundaries between such regions are visi-
ble as well. Thus, initially single-crystalline uniaxially compressed 

sample transforms into nanocrystalline system. The bulk of each 

nanograin is significantly more equiaxial comparing with initial state 

after compression. Simultaneously, atoms at the newly formed grain 

boundaries have less equiaxial surrounding of nearest neighbours and, 

respectively, higher potential energy.  
 For better understanding of the structure transformation, we traced 

the time evolution of the distribution of atoms over the non-
equiaxiality parameter ∆ (Fig. 9.2).  
 Analysis of dynamics of non-equiaxiality parameter distribution 

results in following conclusions. 

 

Fig. 9.2. Time evolution of non-equiaxiality parameter distribution after 
uniaxial 25%-compression (1–before compression, 2–12.5 ps after load-
ing starts, 3–15 ps after loading starts, 4–20 ps after loading starts). 
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 1. Initial distribution is obviously a Dirac function, since all atoms 

are initially in the same conditions. 
 2. For ideal non-compressed f.c.c. structure, this parameter is equal 
to zero and due to thermal stochastic vibrations, the distribution of 

this parameter will be broadened, similar distribution being reached 

for each initial deformation after about 12.5 ps (plot 1). 
 3. For the case of initial compression 25%, the first steps of recon-
struction (small shifts and rotations) lead to division of atoms into two 

classes (plot 2). First (main) class includes atoms, for which the non-
equiaxiality of their neighbourhood decreases. Eventually these atoms 

become part of bulk of the nanograins. Other, smaller, class corre-
sponds to increasing ∆-parameter and includes atoms, which eventu-
ally will belong to grain boundaries and their junctions. Formation of 

this class is almost completed after 15 ps (plot 3), yet, separate peak is 

 

Fig. 9.3. Distribution of potential energy per atom Ep (dark region corre-
sponds to the right peak of ∆-distribution).
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formed after much longer period (plot 4). 
 4. For the case of initial compression 35%, the general picture de-
pends on the way of compression and on the choice of potential. If the 

compression process is gradual and the interatomic potential is a 

Born—Mayer one, then the bimodal distribution of ∆-parameter is simi-
lar to abovementioned picture. If the deformation is instant, but the 

interaction is governed by the ‘mild’ Sutton—Chen potential, we obtain 

similar picture. Distribution of potential energies is not so sensitive to 

the processes of reconstruction and does not show two peaks (Fig. 9.3). 

Atoms belonging to the right peak of ∆-distribution are situated at the 

right slope of energy distribution (dark region in Fig. 9.3). It means 

correlation between ∆ and energy. 
 We determined the spatial distribution of the atoms corresponding 

to the right peak of ∆-distribution. These atoms with highest degree of 

parameter ∆ formed parallel one-dimensional chains along the (111)-
direction. Comparison of Fig. 9.1 and Fig. 9.4 demonstrates that these 

‘special’ atoms find themselves just at grain boundary junctions. 

 

Fig. 9.4. Atoms with highest potential energy and parameter ∆ form parallel 
one-dimensional chains of atoms along the (111)-direction. Note, that the 
lattice orientation here is different from lattice orientation in Fig. 9.1. 
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 In the certain sense, obtained nanocrystalline structure is ‘virtual’, 

since after gradual uniform decompression the number of grains de-
creases. Yet, the change of short-range order (created by the loading) 

does not vanish after decompression. Namely, planes, formed from the 

parts of initially neighbouring planes, remain the common planes after 

decompression (Fig. 9.5). Thus, the monocrystal becomes a polycrys-
tal, with the number of grains less than in compressed state.  
 Under second deformation (both in the direction of previous com-
pression and in the perpendicular direction) the results qualitatively 

coincide with the results of first deformation. Further formation of 

nanocrystalline structure with larger extent of off-orientation of 

grains is observed. At the histogram of ∆-parameter, the shift of main 

peak to the right and its broadening after second compression is ob-
served. It means the decrease of ‘bulk fraction’, i.e. the higher degree 

of grain crushing.  
 It can be assumed that during the pulse loading the ensemble of mi-
crowaves of loading/decompression propagates. Their superposition 

can lead to the intermixing with creation of nanostructure and large 

relative shifts of nanograins. Because of multiple propagations of 

shock waves and decompression waves, the substantial transport of 

matter (anomalous mass transfer) is possible. Thus, we came back to 

 

Fig. 9.5. Two fragments of sample after decompression (atoms initially be-
longed to common plane have been marked with the same colour with pe-
riod of four planes), time 60 ps.
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the initial Ruoff’s idea [61] of mechanical diffusion, but now at nano-
level. As for abovementioned arguments about the immobility of mole-
cules, we can argue that in salt the tracers are incorporated not just in 

molecules, but also in crystalline grains of salt, which, of course, are 

larger than the size of nanograins, and therefore cannot be just inter-
mixed.  

10. FUTURE DEVELOPMENTS  

So far, we have some set of thermodynamic and kinetic models for de-
scription of phase nucleation, growth and competition. Yet, the pic-
ture is still incomplete. Here we will indicate only some of future de-
velopments. 
 1. Models of nucleation in the concentration gradient have been de-
veloped so far mainly for the case, when parent metastable phase has 

broad concentration range. In many real cases it is not so. Recently 

[85] a new possible description of nucleation and sequential phase 

growth in thin films was proposed in the frame of ‘nucleation in con-
centration gradient’ approach. If at least one phase with narrow homo-
geneity range is already growing, the sharp gradient of chemical po-
tential in it strongly influences the nucleation barrier for next phase to 

appear. Gradient input to size dependence of Gibbs energy change ap-
pears to be proportional to the fourth power of size instead of fifth 

power in previous models. As a result, thermodynamic suppression (in 

addition to kinetic suppression) may be effective with suppressing 

phases thickness of tens or even hundreds nanometres. Thus, ‘gradient 

term effect’ may well lead to the total absence of suppressed phases 

prior to consumption of thin film by suppressing growing phase.  
 2. Almost simultaneous multiple nucleation, leading to formation of 

bulk nanocrystalline alloys, presents a new challenge for materials sci-
ence–ripening just after nucleation, without intermediate growth 

stage, and with large volume fraction of coarsening phase. It is now 

well established that LSW (Lifshitz—Slyozov—Wagner) theory of ripen-
ing does not work in this case. LSW theory is correct for negligibly 

small volume fractions f, and it can be modified in terms of perturba-
tion theory for cases of still very small f. Yet, there exists a critical 
value of volume fraction, above which LSW is not to be used even with 

perturbation, because the diffusive screening length is reduced to in-
ter-particle distance. For these ‘large’ volume fractions (usually oc-
curring in most experiments), each precipitate can effectively ex-
change atoms only with nearest neighbours. For this case recently, a 

new approach has been proposed [86]–‘ripening in the normalized 

space’ (invented initially for description of normal grain growth [87]), 

making possible to take into account a cooperative character of ripen-
ing with only the nearest-neighbour diffusive interactions. The pre-
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dicted particle size distribution has no cut-off. It is broader and lower, 

and it has small positive skewness (instead of a large negative one in 

LSW). We hope that this approach can be helpful also for nanoalloys. 
 3. One more important problem is a flux-driven coarsening in nano-
systems. In open system, kinetics of coarsening may well be controlled 

not just by curvature of interfaces, but instead by external fluxes. This 

idea has been used recently for interpreting the flux-driven ripening 

during reactive diffusion [88] and the flux-driven grain growth during 

thin film deposition [89].  
 4. There is still some problem with using proper diffusivities D for 

description of intediffusion in nanosystems. Most often D is treated as 

an interdiffusion coefficient, determined by the well-known Darken’s 

expression [90] with Manning’s corrections (due to vacancy wind ef-
fect) [91]. Yet, Darken’s approach is based on the account of Kirken-
dall shift of lattice planes. This shift proceeds due to vacancy flux, re-
sulting from difference of intrinsic diffusivities of species: DA ≠ DB. 

Mechanism of Kirkendall shift is the dislocation climbing in the proc-
esses of vacancy generation and annihilation–building up of extra-
planes in one part of the diffusion couple (containing the slower diffus-
ing species) and dismantling of planes in another part (containing the 

faster species). In nanosystems, the characteristic size may be less than 

the mean free path of vacancy migration between sources and sinks. As 

was shown, for example in [4, 92], in this case Darken’s analysis is not 

applicable because the redistribution of species in mesoscopic regions 

between vacancy sources and sinks is governed not by Darken’s inter-
diffusivity 

( ) A B
DARKEN B A A B

C C
D C D C D g

kT
∗ ∗ ′′= + ⋅ , 

but instead by effective diffusivity 

A B A B
eff

A A B B

D D C C
D g

C D C D kT
′′= ⋅

+
 

(known, for example, from diffusion theory of ionic crystals). The 

main difference is that Darken’s diffusivity in concentrated alloys is 

determined mainly by the fast species, but the effective diffusivity is 

determined by the slow species.  
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